CHAPTER-- V

ANALYSIS AND INTERPRETATION

V. 1 INTRODUCTION

V. 2 ANALYSIS OF THE SCORES OF PRE-TEST AND POST-TEST
V. 3 ANALYSIS OF THE PERCENTAGES OF CORRECT RESPONSESTO EVERY STATEMENT

V. 4 CONCLUDING REMARKS

CHAPTER - V

ANALYSIS AND INTERPRETATION

V. 1 INTRODUCTION

The last chapter was devoted to the procedure of the research.

In this chapter the analysis of the scores of the experimental and control group is given as well as the meaning of this analysis is stated.

Analysis is a very important step in research,

Good, Barr and Scates write "Analysis is a process which enters into research in one form or another from the very beginning. It may be fair to say that research consists in general of two larger steps, the gathering of the data and the analysis of the data."

Martz points out that bare facts never determine anything, Facts are interpreted and it is related to the purpose of the facts.

The data does not serve any purpose unless it is carefully edited, systematically classified and tabulated, scientifically analysed, intelligently • interpreted and rationally concluded.

Analysis of data means studying the tabulated material to determine inherent meaning.

Therefore organization of data is necessary so classification and tabulation is a must in analysis.

Interpretation is the process of stating what the results show, what do they mean what is their significance and what is answer to the original problem.

Analysis is of two types -

1) Descriptive data analysis
2) Inferential data analysis

In the experimental studies the inferential analysis is used and statistical significance is tested.

A mere quantitative superiority of the experimental group mean scores over the control group mean score is not conclusive proof of its superiority. To be statistically significant the difference must be greater than that reasonably attributed to sampling error. The test of the significance of the difference between two means is known as a test.

So 't' test was applied and the comparison was done on that base to accept or reject null hypothesis.

The following formula was used for that

The significance of difference between two percentage is tested by the following formula

The analysis of two groups, t tests, C.R. and its result whether it is significant or not has been described further.

V. 2 ANALYSIS OF THE SCORES OF PRE-TEST AND POST-TEST

According to the hypotheses put forth the researcher had to compare.

1) The difference between the means of pre-test of experimental and control group.
2) The difference between the means of pre-test and posttest of experimental group.

NOTATIONS :

X_{1} - Mean Score of Experimental Group.
$\mathbf{x}_{2}{ }_{2}$ Mean Score of Control Group.
$\Sigma \mathrm{d}_{1}{ }_{2}{ }_{2}$ Sum of Deviations ${ }^{2}$ of Experimental Group.
Σd_{2}^{2} - Sum of Deviations ${ }^{2}$ of Control Group.
\mathbf{N}_{1} - No. of Teacher-trainees of Experimental Group.
\mathbf{N}_{2} - No. of Teacher-trainees of Control Group.
\mathbf{P} is percentage of correct response. \mathbf{Q} is 1 - \mathbf{P}
$\mathbf{N}_{1}+\mathbf{N}_{2}$ are the number of teacher-trainees from mental group and Control group.

3) The difference between the means of pre-test and post-test of control group.
4) The difference between the means of post-test of control group and experimental group.
5) The difference between the percentage of correct responses to every statement by both groups after post-test.

Out of above mentioned five, the fifth one is analysed separately.

The following tables give the individual score, means, S.D. and t test to analyse pre-tests and post-tests of each group and both groups.

The comparative study tells whether the difference is significant or not.

TABLB V. 1

EXPERIMENTAL GROUP

SCORES \& MEAN

Sr.No.	Pre-test Scores	Post-test scores
1	26	45
2	09	23
3	08	28
4	13	28
5	17	45
6	10	25
7	06	16
8	27	39
9	14	29
10	25	50
11	32	46
12	17	30
13	24	46
14	16	37
15	07	36
16	10	37
Total	261	560
Mean	16.31	35

TABLE V. 2

CONTROL GRUUP
SCORES 6 MEAN

Sr.No.	Pre-test scores	Post-test scores
1	08	16
2	15	18
3	13	19
4	15	08
5	24	41
6	25	39
7	17	36
8	12	18
9	11	14
10	18	08
11	17	20
12	10	11
13	12	16
14	15	15
15	29	37
16	09	11
Total	250	327
Mean	15.63	20.44

TABLE V. 3

PRE-TEST DATA

Sr.	Experimental Group			Control Group		
	Scores	Deviation	Deviation	Scores	Deviation	Deviation ${ }^{2}$
	x_{1}	$\mathrm{x}_{1}-\overline{\bar{x}_{1}}$	$\mathrm{d}_{1}{ }^{2}$	x_{2}	$\mathrm{x}_{2} \mathrm{~d}_{2}^{-\overline{\mathrm{X}}_{2}}$	d_{2}^{2}
1	26	+ 9.69	93.90	08	- 7.63	58.22
2	09	- 7.31	53.44	15	- Q. 63	0.40
3	08	- 8.31	69.06	13	- 2.63	6.92
4	13	- 3.31	10.96	15	- 0.63	0.40
5	17	+ 0.69	0.48	24	+ 8.37	70.05
6	10	- 6.31	39.82	25	+ 9.37	87.80
7	06	- 10.31	106.30	17	+ 1.37	1.88
8	27	+ 10.69	114.28	12	- 3.63	13.18
9	14	- 2.31	5.34	11	- 4.63	21.43
10	25	+ 8.69	75.52	18	+ 2.37	5.62
11	32	+ 15.69	246.18	17	+ 1.37	1.88
12	17	+ 0.69	0.48	10	- 5.63	31.69
13	24	+ 7.69	59.14	12	- 3.63	13.18
14	16	- 0.31	0.10	15	- 0.63	0.40
15	07	- 9.31	86.68	29	+ 13.37	178.76
16	10	- 6.31	39.82	09	- 6.63	43.95
Total	261		1001.50	250		535.38
Mean	16.31			15.63		
S.D.	7.91			5.78		
t	0.27			0.27		

TABLE V. 4

POST-TEST DATA

Sr . No.	Experimental Group			Control Group		
	Scores	Deviation	Deviation ${ }^{2}$	Scores	Deviation	Deviation ${ }^{2}$
	X_{1}	$x_{1}-\bar{x}_{1}$	$\mathrm{d}_{1}{ }^{2}$	X_{2}	$\begin{gathered} \mathrm{x}_{2}-\overline{\mathrm{x}}_{2} \\ \mathrm{~d}_{2} \end{gathered}$	d_{2}^{2}
1	45	$+10$	100	16	-4.44	19.71
2	23	- 12	144	18	- 2.44	5.95
3	28	- 7	49	19	- 1.44	2.07
4	28	- 7	49	08	- 12.44	154.75
5	45	+ 10	100	41	+ 20.56	423.54
6	25	- 10	100	39	+ 18.56	344.47
7	16	- 19	361	36	+ 15.56	242.11
8	39	$+4$	16	18	- 2.44	5.95
9	29	- 6	36	14	- 6.44	41.47
10	50	+ 15	225	08	- 12.44	154.75
11	46	+ 11	121	20	- 0.44	0.19
12	30	-5	25	11	- 9.44	89.11
13	46	+ 11	121	16	- 4.44	19.71
14	37	+ 2	4	15	- 5.44	29.59
15	36	+ 1	1	37	$+16.56$	274.23
16	37	+ 2	4	11	- 9.44	89.11
Total	560		1456	327		1896.71
Mean	35			20.44		
S.D.	9.54			10.89		
t	3.90			3.90		

TABLE V. 5

COMPARATIVE STUDY OF PRE-TEST

't' critical value at 0.05 level of significance for df 30 is 2.042 .

As the 't' value 0.27 is less than ' t ' critical value 2.042 null hypothesis is accepted i.e. there is no significant difference between the mean scores of Experimental and Control group.

It means that both the groups are equal.

TABLE V. 6

COMPARATIVE STUDY OF PRE-TEST AND POST-TEST OF EXPERIMENTAL GROUP				
Experimental Group	Number of Students	Mean Score	S.D.	t Value
Pre-test	16	16.31	7.91	
				5.84
Post-test	16	35	9.54	

The 't' value 5.84 is more than the ' t ' critical value
2.042. Hence null hypothesis is rejected. There is significant differ-
ence between mean scores of pre-test and post-test of Experimental
Group.

This difference is due to the experimental treatment given to the Experimental Group.

COMPARATIVE STUDY OF PRE-TEST AND POST-TEST OF_CONTROL_GROUP

Control Group	Number of Students	Mean Score	S.D.	t Value
Pre-test	16	15.63	5.78	
			------	1.51
Post-test	16	20.44	10.89	

The ' t ' value 1.51 is less than the ' t ' critical value 2.042 at 0.05 level of significance with df 30 . Hence null hypothesis is accepted. There is no significant difference between the mean scores of pre-test and post-test of the control group.

TABLE V. 8

COMPARATIVE STUDY OF POST-TEST

Name of	Number of	Mean	S.D.	t Value
Group	Students	Score		

Experimental Group	16	35	9.54	
Control Group	16	20.44	10.89	

't' critical value at 0.05 level of significance for $d f 30$ is 2.042 .

As the ' t ' value 3.90 is more than ' t ' critical value 2.042 null hypothesis is rejected i.e. the difference between the mean scores of experimental and control group is significant after posttest.

It implies that the significant change in the mean scores is due to the treatment given to experimental group.

V. 3 ANALYSIS OF THE PERCENTAGE OF CORRECT RESPONSESTO EVERY STATEMENT

The fifth hypothesis was related to the correct responses to every statement by both groups. The researcher had to find the difference between the percentage of correct responses to every statement by both groups after post-test,

The correct responses of the students given to each statement were converted into percentage. The difference between the percentage of control group and experimental group was tested at the 0.05 level of significance. The following formula was used for that

$$
\begin{aligned}
& t=\frac{D \%}{\sum D \%} \\
& \Sigma D \%=\sqrt{P Q\left(\frac{1}{N_{1}}+\frac{1}{N_{2}}\right)} \\
& t=\frac{\left(P_{1}-P_{2}\right)}{\sqrt{P Q\left(\frac{1}{N_{1}}+\frac{1}{N_{2}}\right)}}
\end{aligned}
$$

Here P is percentage of correct response
Q is $1-P$
$N_{1}+N_{2}$ are the number of students from Experimental Group and Control Group.

The critical ratio is named as $C R$ and it is compared with the 't' value 2.036 at 0.05 level of significance.

Analysis is made questionwise and statementwise. The following tables describe the correct responses, percentage and the difference of each statement.
TABLE V. 9
DIFFER CONTROL GROUP AND EXPERIMENTAL GROUP

Q.No. 1	Control Group				Experimental Group				CR
State-	Pre-test		Post-test		Pre-test		Post-test		t
No.	Correct Responses	\%	Correct Responses	\%	Correct Responses	\%	Correct Responses	$\%$	Value
1	5	31.25	7	43.75	4	25	12	75	1.80
2	8	50	9	56.25	15	93.75	13	81.25	1.54
3	2	12.5	5	31.25	4	25	11	68.75	2.12 *
4	8	50	7	43.75	4	25	12	75	1.80
5	16	100	14	87.50	15	93.75	16	100	1.46
6	1	6.25	3	18.75	2	12.50	5	31.25	0.08
7	5	31.25	5	31.25	2	12.50	7	43.75	0.73
8	0	0	1	6.25	0	0	1	6.25	0.00
9	3	18.75	3	18.75	6	37.50	9	56.25	2.19 *
10	0	0	0	0	0	0	10	62.50	3.81*

* Shows that, the difference is significant as C.R. exceeds 2.036 at 0.05 level of significance.
TABLE V. 10
DIFFERENCE BETWEEN THE PERCENTAGES OF CORRECT RESPONSES
BY CONTROL GROUP AND EXPERIMENTAL GROUP

Q.No. 1	Control Group				Experimental Group				CR
State-	Pre-test		Post-test		Pre-test		Post-test		t
No.	Correct Responses	\%	Value						
11	3	18.75	4	25	3	18.75	11	68.75	$2.48{ }^{*}$
12	0	0	4	25	0	0	11	68.75	$2.48{ }^{*}$
13	1	6.25	1	6.25	0	0	10	62.50	$3.35 *$
14	1	6.25	6	37.50	3	18.75	7	43.75	0.36
15	7	43.75	7	43.75	5	31.25	13	81.25	2.19 *
16	6	37.50	7	43.75	5	31.25	11	68.75	1.42
17	4	25	4	25	4	25	12	75	2.82 *
18	1	6.25	1	6.25	0	0	9	56.25	$3.05 *$
19	1	6.25	5	31.25	1	6.25	12	75	$2.41{ }^{*}$
20	0	0	0	0	1	6.25	7	43.75	$2.99{ }^{*}$

* Shows that the difference is significant as C.R. exceeds 2.036 at 0.05 level of significance.
table V. 11
DIFFERENCE BETWEEN THE PERCENTAGES OF CORRECT RESPONSES
-_-_ BY CONTROL GROUP_AND EXPERIMENTAL GROUP

Q.No. 1	Control Group				Experimental Group				CR
State-	Pre-test		Post-test		Pre-test		Post-test		t
No.	Correct Responses	\%	Correct Responses	8	Correct Responses	\%	Correct Responses	\%	Value
21	2	12.50	4	25	1	6.25	11	68.75	$2.48{ }^{*}$
22	3	18.75	6	37.50	7	43.75	11	68.75	1.77
23	5	31.25	7	43.75	1	6.25	10	62.50	1.18
24	0	0	5	31.25	0	0	7	43.75	0.73
25	5	31.25	7	43.75	6	37.50	12	75	1.80
26	4	25	7	43.75	3	18.75	11	68.75	1.42
27	14	87.50	9	56.25	16	100	16	100	2.99 *
28	1	6.25	5	31.25	3	18.75	10	62.50	1.77
29	15	93.75	13	81.25	16	100	16	100	1.82
30	0	0	0	0	4	25	14	87.50	$4.99{ }^{*}$

* Shows that the difference is significant as C.R. exceeds 2.036 at 0.05 level of significance.
TABLE V. 12

Q.No. 2	Control Group				Experimental Group				CR
State-	Pre-test		Post-test		Pre-test		Post-test		t
No.	Correct Responses	\%	Value						
1	5	31.25	9	56.25	10	62.50	13	81.25	1.53
2	4	25	6	37.50	9	56.25	10	62.50	1.44
3	6	37.50	8	50	13	81.25	9	56.25	0.354
4	1	6.25	3	18.75	2	12.50	9	56.25	$2.19{ }^{*}$
5	4	25	13	81.25	11	68.75	14	87.50	0.486
6	6	37.5	11	68.75	15	93.75	14	87.50	1.42
7	4	25	11	68.75	13	81.25	14	87.50	1.42
8	5	31.25	10	62.50	16	100	13	87.50	1.63

shows that the difference is significant as C.R. exceeds 2.036 at 0.05 level of significance.
table V. 13
dIFFERENCE BETWEEN THE PERCENTAGES OF CORRECT RESPONSES -.-.-.-.-. BY CONTROL GROUP_AND EXPERIMENTAL GROUP

Q.No. 3	Control Group				Experimental Group				CR
State-	Pre-test		Post-test		Pre-test		Post-test		t
No.	Correct Responses	\%	Correct Responses	\%	Correct Responses	\%	Correct Responses	$\%$	Value
1	3	18.75	8	50	1	6.25	12	75	1.46
2	14	87.50	11	68.75	13	81.25	15	93.75	1.81
3	1	6.25	8	50	4	25	8	50	0
4	11	68.75	13	81.25	13	81.25	14	87.50	0.486
5	8	50	9	56.25	3	18.75	12	75	1.11

* Shows that the difference is significant as C.R. exceeds 2.036 at 0.05 level of significance.
TABLE V. 14
DIFFERENCE BETWEEN THE PERCENTAGES OF CORRECT RESPONSES
----------BY CONTROL GROUP_AND_EXPERIMENTAL GROUP

Q.No. 4	Control Group				Experimental Group				CR
State-	Pre-test		Post-test		Pre-test		Post-test		t
No.	Correct Responses	\%	Value						
1-Who	13	81.25	8	50	12	75	8	50	0
2-Which	10	62.5	4	25	9	56.25	8	50	1.46
3-What	3	18.75	5	31.25	4	25	9	56.25	1.42
4-Where	8	50	5	31.25	4	25	9	56.25	1.42
5-How	2	12.50	3	18.75	3	18.75	10	62.50	2.52
6-How many	13	81.25	6	37.50	8	50	9	56.25	1.07
7-Whom	3	18.75	2	12.50	3	18.75	7	43.75	1.97

* Shows that the difference is significant as C.R. exceeds 2.036 at 0.05 level of significance.

V. 4 CONCLIDING REMARKS

```
This chapter was devoted to analysis and interpretation based on the scores, means and \(t\) values gained in the pre-test and post-test.
```

It also analysed the percentage of correct responses to each statement in the question papers for pre-test and post-test.

The conclusions based on this analysis and interpretation are given in the next chapter. Along with the conclusions, some recommendations for betterment and some problems for further studies are suggested.

