

CHAPTER-III
SPEECH SYNTHESIS -
A CASE STUDY

3.1 SPO 256 NARRATOR SPEECH PROCESSOR FEATURES:

- Natural speech
- Stand Alone Operation with Inexpensive support components
- Wide operating voltage
- Word, phrase or sentence library ROM expandable
- Expandable to use 491 k of ROM directly
- Simple interface to Most Micro-Computers or Microprocessors
- Supports L.P.C Synthesis: Formant Synthesis: Allophone Synthesis The SPO 256 (speech processor) is a single chip N channel MOSLSI device that is able to use its stored program, to synthesize speech or complex sounds. The achievable output is equivalent to a flat frequency response ranging from 0 to 5 KHz a dynamic range of 42 dB and a signal to noise ratio of approximately 35 dB .

The SPO 256 incorporates 4 basic functions.

- A software programmable digital filter that can be made to model a VOCAL TRACT;
- A 16 k ROM which stores both date and instructions;
- A MICROCONTROLLER which controls the data flow from the ROM to the digital filter, the assembly of the "word strings" necessary for linking speech elements together and the amplitude and pitch information to excite the digital filter; and
- A pulse width modulator that creates a digital output which is converted to an analog signal when filtered by an external low pass filter

The SPO 256 is controlled using the address pins ($A_{1}-A_{8}$), ALD (Address load) and SE (store enable). The object for controlling the chip is to load an address into it which contains the desired allophone. The speech data for the allophone set is contained within the internal 16 k ROM of the SPO- 256 AL2. It
requires six address pins ($\mathrm{A}_{1}-\mathrm{A}_{6}$) to address all the 59 allophones plus 5 pauses, a total of 64 locations. A_{7}, A_{8} can be tied low.

There are two modes available for loading an address into the chip 'strobe enable' controls the mode that will be used. Mode-0 will latch in an address when any one or more of the address pins makes a low to high transition.

Mode-1 will latch in an address using the ALD pin. First, set up the desired address on the address bus ($\mathrm{A}_{1}-\mathrm{A}_{6}$) and then plus ALD Low. Any address can be loaded using this mode.

Two microprocessor interface pins are available for quick loading of addresses. They are LRQ and SBY. LRQ tells the processor when the input buffer is full. SBY tells the processor that the chip has stopped talking and no new address has been loaded.

3.2 DETAILS OF SPO-256 SPEECH PROCESSOR:

3.2.1 Pin Configuration of SPO-256:

Top view

Fig 3.1 Top view of SPO-256

3.2.2 SPO-256 Block Diagram:

Fig. 3.2 SPO-256 block diagram

3.2.3 Pin Functions of SPO-256:

PIN	NAME	FUNCTION
1	VSS	Ground
2	RESET	A logic 0 resets that portion of the SP powered by VDD. Must be returned to a logic 1 for normal operation.
3	ROM DISABLE	For use with an external serial speech ROM, a logic 1 disables the external ROM.
$4,5,6$	$C_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$	Output control lines for use with an external serial speech ROM.
T VDD	Power supply for all portions of the SP except the microprocessor interface logic	
8	SBY	STANDBY. A logic 1 output indicates that the SP is inactive and VDD can be powered down externally to Conserve power. When the SP is reactivated by an address being
loaded, SBY will go to a logic 0		

LRQ	LOAD REQUEST LRQ is a logical
output whenever the input butter is	
full, when LRQ goes to a logic 0, the	
input port may be loaded by placing	
the 8 address bits on $A_{1}-A_{8}$ and	
pulsing the ALD output.	

$10,11,13,14$ $15,16,17,18$	$\mathrm{A}_{8}, \mathrm{~A}_{7}, \mathrm{~A}_{6}, \mathrm{~A}_{5}$ $\mathrm{~A}_{4}, \mathrm{~A}_{3}, \mathrm{~A}_{2}, \mathrm{~A}_{1}$	8 Bit address which defines anyone of 256 speech entry points.
12	SER OUT	SERIAL ADDRESS OUT This output transfers a 16 bit address serially to an external speech ROM.

(Continued.....)

PIN	NAME	FUNCTION
19	SE	STROBE ENABLE. Normally held in a logic 1 state, when tied to ground ALD is disable and the SP will automatically latch in the address on the input bus approximately $1 \mu \mathrm{~s}$ after detecting a logical 1 on any address lines.
20	ALD	ADDRESS LOAD: A-ve pulse on this input loads 8 address bits into the I/P port. The -ve edge of this pulse causes LRQ to go high.
21	SER IN	SERIAL IN - This is an 8 bit serial data input from an external speech ROM.
22	TEST	This pin should be grounded for normal operation.
23	VP_{1}	Power supply for the microprocessor interface logic and controller.
24	DIGITAL OUT	Pulse width modulated digital speech output which when filtered by a 5 KHZ low pass filter and amplified, will drive a loudspeaker.
25	SBY RESET	STANDBY RESET. a logic 0 resets the microprocessor interface logic and the address latches. Must be returned to a logic 1 for normal operation.
26	ROM CLOCK	This is a 1.56 MHZ clock output used to drive an external serial speech ROM.
27	OSC 1	XTAL In. Input connection for a 3.12 MHZ crystal.
28	OSC 2	XTAL OUT. Output connection for a 3.12 MHZ crystal.

3.2.4 Electrical characteristics:

Maximum Ratings*:

All pins with respect to V_{ss}	-0.3 to 8 OV
Storage temperature	$-25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Standard Conditions:

$$
\begin{array}{ll}
\text { Clock-Crystal frequencies } & 3.120 \mathrm{MHZ} \\
\text { Operating temperature }\left(\mathrm{T}_{1}\right) & 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}
\end{array}
$$

DC CHARACTERISTICS/SPO 256

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic \& Sym \& Min \& Typ \& Max \& Units \& Conditions

\hline Supply voltage \& $$
\begin{aligned}
& \mathrm{V}_{\mathrm{DO}} \\
& \mathrm{~V}_{\mathrm{D}}
\end{aligned}
$$ \& $$
\begin{aligned}
& 4.6 \\
& 4.6
\end{aligned}
$$ \& - \& $$
\begin{aligned}
& 7.0 \\
& 7.0
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { v } \\
& \text { v }
\end{aligned}
$$ \& -------

\hline Supply current \& I_{D}

$I_{\text {d }}$ \& - \& - \& 90
21 \& mA

mA \& | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VD}_{1}, \mathrm{~V}_{\mathrm{DD}}=7.0 \mathrm{~V}$ |
| :--- |
| Reset \& SBY Reset high All outputs floating Same as above |

\hline
\end{tabular}

Inputs
A1-A8, $\overline{A L D}$, SERIN
TEST, SE

Logic 0	V_{iL}	0.0	-	0.6	V	
Logic 1	$\mathrm{V}_{\text {iH }}$	2.4	-	V_{D1}	V	
Capacitance	C_{iN}	-	-	10	pF	0 Volts Bias, $\mathrm{F}=3.12 \mathrm{MHZ}$
Leakage	I_{L}	-	-	10	$\mu \mathrm{a}$	$\mathrm{V}_{\text {PIN }}=7.0 \mathrm{~V}$, other pins $=0.0 \mathrm{~V}$
RESET, $\overline{\text { SBY RESET }}$				0.6	V	
Logic 0	V_{IL}	0.0	-	0.6	V	
Logic 1	$\mathrm{~V}_{\mathrm{IH}}$	3.6	-	$\mathrm{V}_{\mathrm{D} 1}$	V	

Outputs
SBY digital out,
C1, C2, C3
SEROUT

Logic 0	$V_{D I}$	0.0	-	0.6	V	$I_{D L}=0.72 \mathrm{ma}$
Logic 1	$V_{D H}$	2.5	-	$V_{D 1}$	V	$I_{D H}=-50 \mu \mathrm{a}$

Oscillator
OSC 2 (output) When driven from external
$\begin{array}{llllll}\text { Logic } 0 & V_{D L} & 0.0 & - & 0.6 \quad \mathrm{~V} & \text { OSC1 }=3.90 \mathrm{~V} \text { min. }\end{array}$
Logic 1
$\mathrm{V}_{\mathrm{DH}} \quad 2.5 \quad-\quad \mathrm{V}_{\mathrm{D} 1} \quad \mathrm{~V}$
OSC1 $=0.60 \mathrm{v}$ max.

3.2.5 Timing Diagram:

3.2.6 Dictionary:

Table 1:
Numbers:

zero	ZZ YR OW	seventeen	SS SS EH VV TH NN1 PA2 PA3 TT2 IY NN1
one, WON	WW SX AX NN1		
two, to, too	TT2 UW2	eighteen	EY PA2 PA3 TT2 IY NN1
three	TH RR1 IY	nineteen	NN1 AY NN1 PA2 PA3 TT2 IY NN1
four, for, fore	FF FF OR	twenty	TT2 WH EH EH NN1 PA2 PA3
five	FF FF AY VV		TT2 IY
Six	SS SS IH IH PA3 KK2 SS	thirty	TH ER2 PA2 PA3 TT2 IY
seven	$\begin{aligned} & \text { SS SS EH EH } \\ & \text { VV IH NN1 } \end{aligned}$	forty	FF OR PA3 TT2 IY
eight, ate	EY PA3 TT2	fifty	FF FF IH FF FF PA2 PA3 TT2 IY
nine	NN1 AA AY NN1	Sixty	$\begin{aligned} & \text { SS SS IH PA3 KK2 } \\ & \text { SS PA2 PA3 TT2 } \\ & \text { IY } \end{aligned}$
ten	TT2 EH EH NN1	seventy	SS SS EH VV IH NN1 PA2 PA3 TT2 IY
eleven	IH LL EH EH VV IH NN1	eighty	EY PA3 TT2 IY
twelve	TT2 WH EH EH LL VV	ninety	NN1 AY NN1 PA3 TT2 IY
thirteen	TH ER1 PA2 PA3	hundred	HH2 AX AX NN1 PA2 DD2 RR2 IH IH PA1 DD1
fourteen	FF OR PA2 PA3 NN1	thousand	TH AA AW ZZ TH PA1 PA1 NN1 DD1
fifteen	FF IH FF PA2 PA3 TT2 IY NN1	million	MM IH IH LL YY1 AX NN1
sixteen	SS SS IH PA3 KK2 SS PA2 PA3 TT2 IY NN1		

Table 1 (Continued....)
DAYS OF THE WEEK:

Sunday	SS SS AX AX NN1 PA2 DD2 EY	Monday	MM AX AX NN1 PA2 DD2
	Tuesday		
	TT2 UW2 ZZ PA2 DD2 EY	Wednesday	WW EH EH NN1 ZZ PA2
Thursday	TH ERZ ZZ PA2 DD2 EY	Friday	FF RR2 AY PA2 DD2 EY
Saturday	SS SS AE PA3 TT2 DD2 EY		

MONTHS:

January	JH AE AE NN1 YY2 XR 1Y	February	FF EH EH PA1 BR RR2
March	MM AR PA3 CH		UW2 XR 1Y
May	MM EY	April	EY PA3 PP RR2 IH IH LL
July	JH UW1 LL AY	June	JH UW2 NN1
		August	AO AO PA2 GG2 AX SS
September	SS SS EH PA3 PP PA3 TT2 EH EH PA1 BB2 ER1	October	AA PA2 KK2 PA3 TT2 OW
			PA1 BB2 ER1

LETTERS:

A	EY	B	BB2 IY	C	SS SS IY
D	DD2 IY	E	IY	F	EH EH FF FF
G	JH IY	H	EY PA2 PA3 CH	I	AA AY
J	JH EH EY	K	KK1 EH EY	L	EH EH EL
M	EH EH MM	N	EH EH NN1	O	OW
P	PP IY	Q	KK1 YY1 UW2	R	AR
S	EH EH SS SS	T	TT2 IY	U	YY1 UW2
V	VV IY	W	DD2 AX PA2 BB2 EL YY1 UW2 Y	WW AY	Z

DICTIONARY:

Alarm	AX LL AR MM	Bathe	BB2 EY DH2
Beer	BB2 YR	By	BB2 AA AY
Clock	KK1 LL AA AA PA3 KK2	Checks	CH EH EH PA3 KK1 SS
Cookie	KK3 UH KK1 IY	Coop	KK3 UW2 PA3 PP
Crown	KK1 RR2 AW NN1	Date	DD2 EY PA3 TT2
Daughter	DD2 AO TT2 ER1	Emotional	IY MM OW SH AX NN1 AX
Enrage	EH NN1 RR1 EY PA2 JH	Escape	EH SS SS PA3 KK1 PA2 PA3 PP
Equal	IY PA2 PA3 KK3 WH AX EL	Error	EH XR OR
Fir	FF ER2	Freeze	FF FF RR1 IY ZZ
Gauge	GG1 EY PA2 JH	Hello	HH EH LL AX OW
Hour	AW ER1	Infinitive	IH NN1 FF FF IH IH NN1 IH PA2 PA3 TT2 IH VV
Key	KK1 IY	Letter	LL EH EH PA3 TT2 ER1
Little	LL IH IH PA3 TT2 EL	Memory	MM EH EH MM ER2 IY
Minute	MM 1H NN1 1H PA3 TT2	Nip	NN1 1H 1H PA2 PA3 PP
No	NN2 AX OW	Pin	PP 1H 1H NN1
Plus	PP LL AX AX SS SS	Ray	RR1 EH EY
Ready	RR1 EH EH PA1 DD2 IY	Red	RR1 EH EH PA1 DD1
Robot	RR1 OW PA2 BB2 AA PA3 TT2	Score	SS SS PA3 KK3 OR
Sincere	SS SS IH IH NN1 SS SS YR	Sister	SS SS IH IH SS PA3 TT2 ER1
Spell	SS SS PA3 PP EH EH EL	Start	SS SS PA3 TT2 AR PA3 TT2
Switch	SS SS WH IH IH PA3 CH	Talk	TT2 AO AO PA2 KK2
Talking	TT2 AO AO PA3 KK1 IH NG	Then	DH1 EH EH NN1
Time	TT2 AA AY MM	Uncle	AX NG PA3 KK3 EL
Whale	WW EY EL	Yes	YY2 EH EH SS SS

3.2.7 Consonant and Vowel Phonemes of English:

Consonant phonemes of English:

		Labial	Labio- dental	Inter- dental	Alveo- lar	Palatal	velar	glottal
Stops	Voiceless	pp			TT		kk	
	voiced	BB			DD		GG	
Frica- tives	Voiceless	WH	FF	TH	SS	SH		HH
	Voiced							

Labial: Upper and lower lips touch or approximate
Labiodental: Upper teeth and lower lip touch
Interdental: Tongue between teeth
Alveolar: Tip of tongue touches or approximates alveolar ridge
Patal: Body of tongue approximates palate
Velar: Body of tongue touches velum
Glottal: Glottis (opening between vocal cords)

Vowel phonemes of English:

	Front	Central	Back
High	YR		
	IY		UW \#
	IH *		UH * \#
Mid	EY	ER	OW \#
	EH *	AX *	OY \#
	XR		
Low	AE *	AW \#	AO * \#
		AY	OR \#
		AR $*$	

[^0]
3.2.8 Guidelines for Using the Allophones:

Silence:
PA1 (10 ms) _ before BB, DD, GG and JH
PA2 (30 ms) _ before $\mathrm{BB}, \mathrm{DD}, \mathrm{GG}$ and JH
PA3 (50 ms) _ before PP, TT, KK and CH and between words
PA4 (100 ms) _ between clauses and sentences
PA5 (200 ms) _ between clauses and sentences
Short vowels:
/IH/ _ sitting, stranded $ / E H / ~$ extend, gentleman
*/AE/ _ extract, acting */UH/ _ cookies, full
*/AO/ _ talking, song */AX/ _ lapel, instruct
*/AA/ _ pottery, cotton
Long vowels:
/IY/ _ treat, people, penny /EY/ _ great, statement, tray
/AY/ _ kite, sky, mighty /OY/ _ noise, toy, voice
/OW/ _ zone, close, snow /AW/ _ sound, mouse, down
/EL/ _ little, angle, gentleman /UW1/ _ after, clusters with YY: computer
/UW2/ _ in monosyllabic words: two
R-Colored vowels:
/ER1/ _ letter, furniture, interrupt /ER2/ _ monosyllabic, bird, fern, burn
/OR/ _ fortune, store, /AR/ _ farm, alarm, garment
/YR/ _ hear, earring, irresponsible /XR/ _ hair, declare, store
Resonants:
/WW/ - we, warrant, /RR1/ _ initial position: read, write
/RR2/ _ initial clusters: brown /LL/ _ like, hello, steel
/YY1/ _ clusters: cute, beauty /YY2/ _ initial positions: yes, yarn

Voiced fricatives:

/VV/ _ west, prove, even /DH1/ _ word initial position: this, then
/ZZ/ _ zoo, phase /ZH/ _ pleasure
/DH2/ _ word, final and between vowels: bathing

[^1]
Voiceless fricatives:

/SH/ _ shirt, leash, nation,
/HH1/ _ before front vowels: YR, IY, IH, EY, EH, XR, AE
/HH2/ - before back vowels: UW, UH, OW, OY, AO, OR, AR
/WH/ _ White, twenty

Voiced stops:

/BB1/ _ final position: rib, between vowels: fibber, in clusters: bleed, brown
/BB2/_ initial position before a vowel: beast,
/DD1/_ final position: played, end
/DD2/_ initial position: down, clusters: drain
/GG1/ _ before high front vowels: YR, IY, IH, EY, EH, XR
/GG2/ _ before high back vowels: UW, UH, OW, OY, AX
/GG3/ _ before low vowels: AE, AW, AY, AR, AA, AO, OR, ER

Voiceless stops:

/PP/ _ pleasure, ample, trip
/TT1/ _ final clusters before SS: tests, its,
/TT2/ _ all other position: test, street
/KK1/ _ before front vowels: YR, IY, IH, EY, initial clusters: cute, clown
/KK2/ _ final position: speak, final clusters: tasks
/KK3/ _ before back vowels: UW, UH, OW, OY: initial clusters: crane, quick

Affricates:

/CH/ _ church, feature /JH/ _ Judge, injure

Nasal:

/MM/ _ milk, alarm, ample /NN1/ _ final clusters: earn, YR, IY, IH, EY
/NN2/ _ before back vowels: UH, OW /NG/ _ string, anger

3.2.9 Allophone Address Table:

Decimal address	Octal address	Allophone	Sample word	Duration
0	000	PA1	Pause	10 ms
1	001	PA2	Pause	30 ms
2	002	PA3	Pause	50 ms
3	003	PA4	Pause	100 ms
4	004	PA5	Pause	200 ms
5	005	/OY/	Boy	420 ms
6	006	/AY/	Sky	260 ms
7	007	/EH/	End	70 ms
8	010	/KK3/	Comb	120 ms
9	011	/PP/	Pow	210 ms
10	012	/JH/	Dodge	140 ms
11	013	/NN1/	Thin	140 ms
12	014	/IH/	Sit	70 ms
13	015	/TT2/	To	140 ms
14	016	/RR1/	Rural	170 ms
15	017	/AX/	Succeed	70 ms
16	020	/NN/	Milk	180 ms
17	021	/TT1/	Part	100 ms
18	022	/DH1/	They	290 ms
19	023	/IY/	See	250 ms
20	024	/EY/	Beige	280 ms
21	025	/DD1/	Could	70 ms

(Continued.....)
(Continued.....)

Decimal address	Octal address	Allophone	Sample word	Duration
22	026	/UW1/	To	100 ms
23	027	/AO/	Aught	100 ms
24	030	/AA/	Hot	100 ms
25	031	/YY2/	Yes	180 ms
26	032	/AE/	Hat	120 ms
27	033	/HH1/	He	130 ms
28	034	/BB1/	Business	80 ms
29	035	/TH/	Thin	180 ms
30	036	/UH/	Book	100 ms
31	037	/UW2/	Food	260 ms
32	040	/AW/	Out	370 ms
33	041	/DD2/	Do	160 ms
34	042	/GG3/	Wig	140 ms
35	043	/VV/	Vest	190 ms
36	044	/GG1/	Got	80 ms
37	045	/SH/	Ship	160 ms
38	046	/ZH/	Azure	190 ms
39	047	/RR2/	Brain	120 ms
40	050	/FF/	Food	150 ms
41	051	/KK2/	Sky	190 ms
42	052	/KK1/	Can't	160 ms
43	053	/ZZ/	200	210 ms
44	054	/NG/	Anchor	220 ms

(Continued.....)

Decimal address	Octal address	Allophone	Sample word	Duration
45	055	/LL/	Lake	110 ms
46	056	/WW/	Wool	180 ms
47	057	/XR/	Repair	360 ms
48	060	/WH/	Whig	200 ms
49	061	/YY1/	Yes	130 ms
50	062	/CH/	Church	190 ms
51	063	/ER1/	Fir	160 ms
52	064	/ER2/	Fir	300 ms
53	065	/OW/	Beau	240 ms
54	066	/DH2/	They	240 ms
55	067	/SS/	Vest	90 ms
56	070	/NN2/	No	190 ms
57	071	/HH2/	Hoe	180 ms
58	072	/OR/	Store	330 ms
59	073	/AR/	Alarm	290 ms
60	074	/YR/	Clear	350 ms
61	075	/GG2/	Guest	40 ms
62	076	/EL/	Saddle	190 ms
63	077	/BB2/	Business	50 ms

1

3.3 HARDWARE IMPLEMENTATION:

The Intel 8255 a is a general purpose programmable I/O device designed for use with Intel microprocessor 8085. It has 24 I/O pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operations. Group A contain port B and upper bits of port C and group B contain port B and lower bits of port C .

In our interface, 8255 is used in mode ' 0 ' i.e. group of $12 \mathrm{I} / 0$ pins are programmed in sets of 4 bits as Input Port/Output port. The functional configuration of each port is programmed by the system software. Control status Register initializes the functional configuration of the 8255 .

Port A is used to access the memory address of SPO-256. As per requirement, only 6 lines of port $A\left(P A_{o}-P A_{5}\right)$ are used. Port B is used as Input Port, only one line PB_{\circ} is used to connect $\overline{\mathrm{ALD}}$ signal from SPO-256 and port C is used as Output Port. $\quad \mathrm{PC}_{\mathrm{o}}$ line is used to connect $\overline{\mathrm{LRQ}}$ signal.

Port address of 8255

A	OOH
B	01 H
C	02 H
CSR	03 H

The 8085 CPU is interfaced with 8255 and SPO 256. The main line program is written at the address 6000 H . The look up table in written at the address 6500 H . The interfacing of microprocessor and SPO-256 is shown in Fig. 3.4.

3.4 SYSTEM INTERFACE:

A microprocessor is of no use unless interfaced with other devices. The interfaced devices are called as peripherals or helping tools to the
microprocessor. These devices, i.e., peripherals should be compatible with each other.

The incompatibility between any two devices could arise because of one or more of the following differences.

1. Timing according to which date transfer is to take place.
2. Formant in which data is to be transferred.
3. Electrical characteristics of two devices.

The allocation of address to memory Chip and I/O device depends on microprocessor architecture. Some processor provides only one address space thereby treating I/O devices as memory locations. Some other provides two disjoint address spaces one for memory and other for I/O devices.

Thus, there are 2 schemes for memory address into devices.

1. Memory mapped I/O scheme.
2. I/O mapped I/O scheme.

In this work, the system is interfaced with I/O mapped I/O scheme. According to this scheme the memory and I/O device use distinct address space. Thus, the total address space provided for the memory can be fully used by assigning to the $1 / O$ devices address from the $1 / O$ space. For this scheme processor needs to provide following additional facilities.

1. At least two extra instruction by means of which the I / P and O / P devices could be addressed.
2. An O / P signal that may be used by memory and I/O devices to ascertain whether the address on the address bus is to the memory or for an I/O device. So, to decide address for memory or I/O the 8085 provides $10 / \mathrm{M}$ signal, when it is high indicates the address is for I/O and low indicates address for memory.

3.5 DETAILS OF AMPLIFIER TBA 810:

TBA 810 it is a monolithic silicon 7 watt Audio Power Amplifier with Thermal Shunt down. BEL TBA 810 is monolithic audio amplifier intended for class B operation. They are specifically design for mobile equipment operating from 12 V battery supplies. They operate over a wide range of supply voltages (4 to 20 V) with very low harmonic and cross-over distortion. The maximum repetitive peak output current is 2.5 A , and an integral thermal limiting circuit shunts the device down in case of O / P overload or excessive package temperature.

The TBA 810 is supplied in modified 16 head quad-in-line plastic package ("Q" suffix) with integral wingtab heat sinks. The tabs on the TBA 810 are flat and pierced for easy attachment to an external heat sink.

Maximum ratings	Absolute maximum
Values at TA	$25^{\circ} \mathrm{C}$
Supply voltage	20 V.
Peak 0/P current (non repetitive)	3.5 A.
Peak 0/P current (repetitive)	2.5 A
device dissipation	1 W
At TA $=70^{\circ} \mathrm{C}$	5 W.

Features:

- Power $0 / P=7 \mathrm{~W}$ with 4Ω load
- Supply voltage range 4 to 20 V .
- Peak output current 2.5 A (max.)
- Very low harmonic and cross over distortion.

Fig. 3.3 Terminal diagram of TBA 810 As.

3.6 INTRRFACE BLOCK DIAGRAM:

Fig. 3.4 Interface block diagram

Electrical characteristics at $\mathrm{TA}=25^{\circ} \mathrm{C}$.

Characteristics	Symbol	Test conditions Supply voltage $\left(\mathrm{V}^{+}\right)=14.4 \mathrm{~V}$. Unless otherwise specified	Min.	Limits Typ.	Max.	Unit
Supply voltage	V^{+}		4	-	20	V.
Input voltage	V_{1}		-	-	220	mV .
Input sensitivity	$\mathbf{e l}_{1}$	$\begin{aligned} & \mathrm{Po}=6 \mathrm{w}, \mathrm{RL}=4 \Omega \\ & \mathrm{R}_{1}=56 \Omega \mathrm{f}=1 \mathrm{KHZ} \end{aligned}$	-	80	-	mV
Quiescent 0/P voltage	Vo		6.4	7.2	8	V
Quiescent current drain	I_{0}		-	12	20	mA
Input noise voltage	e_{n}	$\begin{aligned} & \mathrm{Rg}=\mathrm{o}, \mathrm{Bw}(-3 \mathrm{~dB}) \\ & =20 \text { to } 20,000 \mathrm{~Hz} . \end{aligned}$	-	2	-	$\mu \mathrm{V}$.
Bias current	$I_{1} \mathrm{~B}$		-	0.4	-	$\mu \mathrm{A}$
Output power	$\mathrm{P}_{\text {o }}$	$\begin{aligned} \mathrm{f}=1 \mathrm{KHZ}, \mathrm{RL} & =4 \Omega \\ \mathrm{TND}=10 \% \mathrm{~V}^{+} & =14.4 \mathrm{~V} . \\ \mathrm{V}^{+} & =6 \mathrm{~V} \end{aligned}$	-	6	-	
			-	1	-	
Input resistance	R_{1}		-	5	-	m Q
Total harmonic Distortion	TND	$\begin{aligned} & \mathrm{P}_{\mathrm{o}}=50 \mathrm{~mW} \text { to } 3 \mathrm{~W} \\ & \mathrm{RL}=4 \Omega \mathrm{f}=1 \mathrm{KH} 2 \end{aligned}$	-	0.3	-	\%
Open loop voltage gain	AOL	$\mathrm{RL}=4 Q, \mathrm{f}=1 \mathrm{KH} 2$	-	80	-	dB
Closed loop voltage gain	A	$\begin{aligned} & \mathrm{RL}=4 \Omega, \mathrm{f}=1 \mathrm{KH} 2 \\ & \mathrm{R}_{1}=56 \Omega \end{aligned}$	34	37	40	dB
Efficiency	N	$\begin{aligned} & P_{0}=5 \mathrm{~W}, \mathrm{RL}=4 \Omega \\ & \mathrm{f}=1 \mathrm{KHZ} \end{aligned}$	-	70	-	\%

3. 6 COMPLETE CIRCUIT DIAGRAM FOR SPEECH SYNTHESIIER

3.7 SOFTWARE IMPLEMENTATION:

3.8 SOFTWARE PROGRAM:

Label	Address	Mnemonics	Instruction			Comments
START	6000	LXI HL	21	00	65	Initialize HL pair
	6003	MVI A, 89	3E	89	-	Initialize 8255
	6005	OUT CSR	D3	03	-	Control Status Register
	6007	MVI C, X	OE	X	-	Count
WAIT	6009	MVI A, 00	3E	00	-	Set ALD $=1$
	600B	OUT PB (01)	D3	01	-	Sent ALD Logic '0'
	600D	IN PC (02)	DB	02	-	In LRQ
	600 F	ANI 01	E6	01	-	Wait for LRQ
	6011	CPI 00	FE	00	-	Wait for LRQ
	6013	JNZ (WAIT)	C2	09	60	No: go to wait
	6016	mov A, M	7E	-	-	Yes: Transfer M-A
	6017	OUT PA	D3	00	-	-
	6019	MVI A (01)	3 E	01	-	$\begin{gathered} \text { Clear } A \& D=0 \\ \text { ALD }=1 \end{gathered}$
	601B	OUT PB (01)	D3	01	-	-
	601D	DCR C	OD	-	-	-
	601 E	JZ (START)	CA	00	60	-
	6021	INX H	23	-	-	-
	6022	JMP (WAIT)	C3	09	60	Jump to Wait

3.8.1 Look Up Table:

a.	To send 'One'	b.	To send 'E'	c.	To send ' U '
	650002		650002		650002
	650123		650114		650116
	650216		650202		650235
	6503 1A		650302		650302
	6504 OB		650413		
	650502		650503		
d.	To send 'I'	e.	To send ' A '	f.	To send ' 0 '
	650002		650002		650002
	6501 OC		650113		650135
	650214		650203		650202
	650303				

3.9 UPDATING OF VOCABULARY:

Generated sound	Phoneme code (Hex address)
A	$02,13,03$
Account	$08,1 \mathrm{~A}, 02,2 \mathrm{~A}, 20,38,02,0 \mathrm{D}, 03$
Achievement	$0 \mathrm{C}, 1 \mathrm{~A}, 02,32,0 \mathrm{C}, 0 \mathrm{C}, 23,10,07,0 \mathrm{~B}, 02,0 \mathrm{~B}, 02$
Agree	$06,1 \mathrm{~A}, 01,3 \mathrm{D}, 27,13,03$
Aim	$03,14,10,02$
Apple	$05,1 \mathrm{~A}, 02,09,3 \mathrm{E}, 02$
B	$02,1 \mathrm{C}, 14,02,14,00,3 \mathrm{f}, 1403$
Bank	$07,01,3 \mathrm{~F}, 0 \mathrm{~B}, 02,29,02$
Batch	$09,01,3 \mathrm{~F}, 07,01,02,0 \mathrm{D}, 00,32,02$
Bridge	$07,01,3 \mathrm{~F}, 27,0 \mathrm{C}, 00,0 \mathrm{~A}, 02$
C	$04,37,37,13,03$
Camera	$09,02,2 \mathrm{~A}, 1 \mathrm{~A}, 10,07,07,0 \mathrm{E}, 18,03$

(Continued.....)

Generated sound
Phoneme code (Hex address)

Car	04, 02, 2A, 3B, 02
Cinema	08, 37, 37, 13, 0B, 1A, 10, 18, 03
D	04, 00, 21, 13, 03, 02, 21, 14, 02
Data	04, 01, 21, 1A, 02, 0D, 18, 18, 03
Dress	07, 01, 21, 27, 07, 37, 37, 03,
E	02, 14, 02, 02, 13, 03
Early	04, 33, 2D, 03
Echo	05, 13, 02, 08, 17, 03
End	07, 07, 0b, 15, 03
F	02, 07, 28, 28, 03, 02, 28, 02
Fair	04, 28, 28, 2F, 03
Fine	05, 28, 28, 06, 2D, 03
Four	02, 28, 3A, 00
G	02, 22, 14, 03
Gain	05, 00, 24, 06, 0B, 03
Gold	04, 00, 22, 17, 35, 2D, 00, 15, 03, 00
H	02, 13, 1B, 03
Hall	04, 39, 18, 2D, 03
Help	04, 1B, 07, 3E, 02, 09, 02
Home	04, 39, 17, 10, 03
I	02, 0C, 14, 03
Ice	04, 18, 06, 37, 03
Ink	OC, 0C, 0B, 02, 29, 02

(Continued.....)

Generated sound	Phoneme code (Hex address)
Ill	04, 0C, 0c, 2D, 03
J	02, 0A, 13, 02
Job	05, 0A, 18, 00, 1C, 03
June	04, 0A, 1F, 0B, 03
K	02, 2A, 07, 1A, 02
Key	04, 02, 2A, 13, 02
Kodak	04, 02, 08, 17, 00, 24, 1A, 02, 29, 03
L	02, 13, 2D, 02
Lamp	02, 2D, 07, 07, 10, 02, 09, 02
Law	04, 2D, 17, 17, 03
M	02, 14, 10, 02
Mail	04, 10, 07, 3E, 02
Me	03, 10, 13, 03
Mother	05, 10, OF, 12, 33, 03
N	02, 14, OB, 02
Nice	04, 0B, 06, 37, 03
Novel	05, 38, 35, 23, 3E, 02
O	02, 35, 02
Octal	08, 17, 17, 02, 2A, 02, 0D, 3E, 03
Omega	07, 35, 10, 07, 00, 24, 18, 03
Our	04, 18, 23, 33, 03
P	04, 02, 09, 13, 03
Pair	04, 02, 09, 2F, 03

(Continued.....)

Generated sound Phoneme code (Hex address)

Pen	$05,02,09,07,0 B, 02$
Q	$08,16,35,02$
Queen	$07,02,2 \mathrm{~A}, 23,0 \mathrm{C}, 0 \mathrm{C}, 0 \mathrm{~B}$,
Quiz	$06,02,2 \mathrm{~A}, 23,13,2 \mathrm{~B}, 02$
R	$02,1 \mathrm{~A}, 1 \mathrm{~A}, 27,02$
Rain	$04,0 \mathrm{E}, 14,0 \mathrm{~B}, 02$
Real	$04,0 \mathrm{E}, 0 \mathrm{C}, 3 \mathrm{E}, 02$
S	$02,13,25,02$
Save	$05,37,37,1 \mathrm{~A}, 23,03$
Science	$08,37,37,0 \mathrm{~F}, 31,18,0 \mathrm{~B}, 37,02$
Ship	$05,25,0 \mathrm{C}, 02,09,03$
T	$02,0 \mathrm{D}, 14,02$
Talk	$07,02,0 \mathrm{D}, 1 \mathrm{~A}, 01,1 \mathrm{C}, 3 \mathrm{E}, 02$
Theory	$07,02,1 \mathrm{D}, 0 \mathrm{C}, 17,3 \mathrm{~A}, 13,03$
Twice	$07,02,0 \mathrm{D}, 23,1 \mathrm{D}, 06,37,03$
U	$02,16,35,02$
Ultra	$08,18,2 \mathrm{D}, 02,0 \mathrm{D}, 27,06,0 \mathrm{~F}, 03$
Upon	$07,0 \mathrm{~F}, 02,09,17,17,0 \mathrm{~B}, 02$
Use	$05,31,1 \mathrm{~F}, 2 \mathrm{~B}, 03$
V	$02,23,00,00,14,02$
Value	$06,23,1 \mathrm{~A}, 2 \mathrm{D}, 31,16,03$
Verb	$05,0 \mathrm{~F}, 1 \mathrm{C}, 02$

(Continued.....)

Generated sound	Phoneme code (Hex address)
Vision	$07,23,13,2 \mathrm{~B}, 18,01,0 \mathrm{~B}, 02$
W	$02,21,1 \mathrm{~A}, 3 \mathrm{~F}, 2 \mathrm{D}, 16,02$
Wall	$05,2 \mathrm{E}, 17,35,2 \mathrm{D}, 02$
Weak	$06,2 \mathrm{E}, 0 \mathrm{C}, 0 \mathrm{C}, 02,29,02$
X	$02,13,39,02$
Xerox	$09,2 \mathrm{~B}, 1 \mathrm{~A}, 0 \mathrm{E}, 17,02,29,37,37,03$
X-ray	$0 \mathrm{~A}, 07,07,02,29,37,37,02,0 \mathrm{E}, 14,02$
Y	$03,2 \mathrm{E}, 06,03$
Yellow	$07,31,1 \mathrm{~A}, 3 \mathrm{E}, 2 \mathrm{D}, 17,23,03$
Yoga	$06,19,17,00,3 \mathrm{D}, 18,02$
Youth	$06,19,1 \mathrm{~F}, 1 \mathrm{~F}, 00,1 \mathrm{D}, 02$
Z	$02,26,13,21,02$
Zenith	$07,2 \mathrm{~B}, 1 \mathrm{~A}, 00,0 \mathrm{~B}, 0 \mathrm{C}, 1 \mathrm{~B}, 02$
Zone	$04,2 \mathrm{~B}, 35,0 \mathrm{~B}, 02$

REFERENCES

1. "Introduction to Microprocessor". Aditya P. Mathur.
2. Micro computer system. Intel's 8085 family user's manual.
3. Intel sdk 8085 manual.
4. Microprocessor programming. Trouble shooting and interfacing by James W. Coffron. Prentice Hall, Englewood Cliffs, New Jersey 07632.
5. Technical data by RADIO SHACK A DIVISION OF TANDY CORPORATION, U.S.A.

[^0]: * Short vowels
 : Rounded vowels

[^1]: * This allophones can be doubled.

