
The System
In the previous chapters which introduced the programmable logic controller, a

discussion on CPU, P/M, I/O modules, the peripherals and their use in enhancing the PLC

was evolved. This chapter looks inside the PLC and investigates its internal operation by

actually designing a PLC hardware system.

The total system hardware is designed according to the available facilities from the

Shivaji University Electronic Department Laboratory and assistance provided by Prof. A.R

Nigavekar (RTFs College of Engineering Kolhapur). It was built and tested in the laboratory

successfully and submitted for evaluation to Prof. A.R.Nigavekar.

PLC: A Look Inside
This deals with the investigation of the four main elements, while analyze the make up

of discrete input and output modules(interfaces), by seeing how they can be interfaced. It

examines what goes inside the PLC to enhance the understanding of the remaining topics to

come.

• The total system hardware is divided into four major cards and the power supply.

The division is being done on the basis of the function of the individual cards.

• CPU Card

• System Card

• Input Card

• Output Card

59

The CPU Card: Central Processing Unit
This card is designed, using Z80 microprocessor around which the whole system is

built. This card also houses the entire memory decoding and data bus drivers. A four MHz

system crystal oscillator is used as the clock source for Z80 CPU.

An octal bus transceiver 74LS245 is used as the driver for data bus (D0-D7). The line

drivers 74LS245 are also used to drive the address bus (A0-A15) and control line signal.

The memory system housed in this case has IC 2732 which contains the monitor

program for the system with address from 0000 to OFFF. IC 6116 is used as scratch pad

memory with address from 1000 to 17FF. IC 2764 which contains the ladder program has the

address from 6000 to 6FFF. (REF 35,36,37)

The decoding system on this card incorporates two 4 to 16 decoders and a 2 to 4

decoder. The line A0 to A3 gives 16 output lines through 74LS154 (4 to 16 decoder). These

lines are used as chip select lines. The next 4 address lines (A4 to A7) are used as card select

lines.

The address lines A0 to A15 are given to 74LS224 drivers, to drive 4 slot select lines

for selecting the system slot. The Z80 is used for addressing as the CPU has as unique feature

in which the MSB address lines i.e. A0 to A15 are duplicated with the contents of the register

B. These facilities increased input and output capability of the system.

60

V
cc

10
K

|—
'W

v~
|

10
K

h-
A

M
H

10
K

M
A

H
10

K
LW

V
-

Fr
om

Z8
0C

TC

V
cc

 Vcc

96
 PIN

U
R

O
 CO

N
N

EC
TO

R

I/P
 Se

le
ct

O
/P

 Se
le

ct

Sy
st

em
 Se

le
ct

N
C

I/O
D

ec
od

er

74
 L

S 1
38

La
dd

er
EP

R
O

M
27

64

C
D

'

A
8 -

A
9 ■

A
10

 ■

•6
00

0-
0F

FF

■ 7
00

0-
7F

FF

■ 0
00

0 -
0F

FF

•1
00

0
-1

FF
F

• 2
00

0-
2F

FF

I

!> CO«
T~
</)

N.

M
em

or
y

D
ec

od
er

atc
Ul
s

A
12

A
13

A
14

C
D

—
1

R
O

M
27

32

W
R C

D[S
cr

at
ch

 P
ad

R
A

M
61

16
10

00
-1

FF
F

C
D

 —

M
on

ito
r

R
O

M
27

32
lO

O
O

O
-O

FF
F

D
O

D
7 ■

A
11

 •
R

D

Figure 9 CPU Card

The System Card: Supporting Unit ' <

This card incorporates the following main ICs in the system card, IC 8255, IC %% IC
A

Z80CTC.

These ICs are selected by the 3 address lines A2-A4 using 74LS138 decoder, which

generate the chip select signals.

The IC 8279 is used to control the keyboard containing 28 keys and seven segment

display. This interface was required during the initial stage of software development (low

level format), while creating the ladder control software, this makes works easily. It is needed

in case of some special functions.

The two IC 8255 are used for the interfacing of ADC’s and DAC’s useful in

controlling devices like stepper motor, etc.

The Z80CTC is used as the timer, each chip houses 3 counters/timers. Three different

time bases are provide by 3 IC 555 timers with time buses of O.Olsec, O.lsec respectively.

(REF 35,36,37)

Input Card: Input Interface

For the circuit to perform properly, the input signal to the PLC must be boosted to a

power level compatible with the CPUs logic circuitry. The input card is used in the system

through which the CPU reads the status of the external controlling element.

62

Figure 10 System Card

Here IC 74LS244 (tristate octal buffer) is used as the input port. The 8 pins to be

read are connected to the input side of the IC 74LS244 and the system data lines are

connected at the output. The chip enable is signal is achieved by “OR”ing the slot lone of

input, chip select line, one of the card select line and the RD line. During the Read operation,

the input status is directly transferred to the system data bus.

The output of the controlling element is connected to the input port through optical

isolators which provides isolation as well as the conversion of 24V dc output of controlling

element the isolator sends a signal to the CPU via 74LS244. When the isolators output is on,

it is sensed by a coded signal from the CPU. Each terminal number of the module is assigned

a number in a consecutive order. The on-off status for each number is checked on each sweep

of the input scan. (REF 35,36,37)

Output Card: Output Interface
The signal from the PLC should be electrically isolated from the output device. This

card is used to transfer the process data to external controlling element. The IC 74LS373

(octal latch) is used to the process data the latch enable signal is obtained by “OR”ing the slot

line slot line for output, chip selecting and select line of the “WR” line. The data transfer area

to the output remains latched till the next transfer.

The output of the latch is used for driving relays housed on this cards through a

driver circuit. The relays (directly switched 220V AC which is available on a PBT connector

64

Figure 11 Input Card

connected to the output card) are used for controlling user supplied discrete (on/off) load like

motor starters, solenoids valves, indicator lights etc. (REF 35,36,37)

Power Supply:
The PLC CPU must contain circuitry to convert the 220 volt AC to the required 5

volt DC values. The conversion is accomplished by built-in voltage-converting power supply.

Figure 13 Power Supply Figure 13 includes the makeup of a typical power supply. The AC

conditioning block is according to the Z80 CPU. A bridge rectifier is used to produce pulsing

DC outputs. This dual voltage is required to operate many of the IC chips in the CPU. A

regulator is used to keep the voltages at or near the 5 volt level regardless of load (CPU).

[Ref 3, pp 39-40]

65

O
ut

pu
t

to
M

ac
hi

ne

Figure 12 Output Card

Figure 13 Power Supply

The System Software
Mathematicians are notorious for inventing new forms of mathematics for no

immediate practical applications but which later prove very useful. George Boole (1815 -

1864) [Ref. 33 - chapter. 1], the mathematician and logician was no exception. He

developed an algebra of sets that bears his name, Boolean algebra. The symbolism of set

theory is confusing to most non mathematicians, so a complete definition of Boolean algebra

and its postulates is not attempted here. It is sufficient to note that Boolean algebra provides

a convenient shorthand for describing logic operations, particularly AND, OR, EXOR,

NAND, NOR etc.

Using logic design using Boolean algebra, information may be represented by two-

level or binary, and a combination of AND, OR and INVERT logic blocks may be used with

these binary signals to perform the various functions in a computer. [Ref. 23]

This logic gate design is the heart of the programmable controller and is called a

Binary device. As explained in chapter 4 there are different formats of designing the low-

level language. The language used in this project is the Boolean language, which is based on

the principles of Boolean algebra as discussed above.

Getting Started
Because the PLC was originally intended only to replace relay type functions, the

PLCs software architecture was designed with an embedded model of the panel. A relay

ladder logic (RLL) diagram consists of an arrangement of contacts and coil as in the

electricians ladder diagram. This is a schematic format used to implement a combinatorial

(Boolean) logic structure.

67

In combinatorial logic for control, the status of an output is determined by the status

of a certain combination of inputs. The combinatorial logic offers little facility for describing

the status of an output in relation to time, to the operational flow it the process under control

or to the other output.

Special function boxes are used in RLL for control requirement that cannot be

implemented with an arrangement of contacts, clever contact arrangements are used to create

the interlocking logic required for event that occur sequentially in the process. A combination

logic function with an RLL representation is an excellent choice is for designing the system

software of the PLC system.

Scanner Generator
A PLCs is made to function by scanning its operational program. Each PLC

operational cycle is made up the three separate parts input scan, program scan and output

scan (as seen in chapter 4). Here we see how it can be applied to create a new algorithm.

Basic Registers
Within the PLC CPU, registers are found in two locations. The microprocessor has its

internal registers, which are not directly accessible by users. But registers are needed in

system programming, therefore the PLC CPU’s RAM also contains slots that can be

designated to hold variable information. These location or addresses becomes external

registers. This project designs and uses registers of three types: Input, Output, Accumulator

register.

68

Input Registers
Signal data from a specific input device is first “deposited” in the form of Os and Is,

in the input register. The input register is readily accessible to the input modules terminals or

ports. The number of input registers in a PLCs normally depends on the number of input

cards. The program performs this by storing from the input card in form of 1 byte data and

than converting it to store in form of bits, either Is or Os. The input data is scanned from

until all the input data is scanned until all the input cards are completed.

Output registers
The output register has the same basic characteristics as the storage register.

The output register is readily accessible to the output module’s terminals and ports. The

number of input register is equal to number of output to ports.

Accumulator Registers
The function of accumulator is similar to microprocessor internal accumulator

register. It is used to perform all the PLCs functions operation such AND,LF, JMP etc.

Storage Registers

Like the input register, the storage registers are used to hold data. Conceptually, it is

in the middle of the CPU (input and output register). These registers are useful to store the

intermediate results of the accumulator.

Signaling output
The data associated with the output status is transferred to output terminals or ports.

This is always done at end of the ladder. The process is carried out by the END instruction.

70

Decoding the Instruction Code Generation
Turning to code generation, the code generation phase converts the intermediate code

into a sequence of machine instructions. Code generation will be applied again in the user

interface software. Nevertheless this subject must be considered because a careless code

generation algorithm can easily produced by an ill considered algorithm. Good code helps in

reducing scan time. The method applied in machine code generation is “Microprogramming”.

A group of eight bits have been used to develop a maximum of 34 instructions. The

concept used here to specify whether a particular eight bit is an instruction or the data for the

instruction is that of microprogramming with a few exceptions which are necessary to avoid

computations, thereby increasing the scan period.

The instruction is always followed by data. During the continuous execution, the

program control transfers to a particular instruction routine. This software design approach

is similar to the architecture of a microprocessor where an instruction pointer points to the

next instruction to be executed and the instruction decoder decodes on a combination basis to

a greater extent than of more than one ladder program in the RAM and just subroutine, and

then returns back to main execution.

The changing of the address is done according to instruction format. The program

counter always considers the first code as instruction, once the instruction is detected, the

contents of program counter is changed to the address of code and the control is transferred

to that address to carry out that particular instruction. The counter is changed to the address

71

of data, where specific status is stored. This point explains the instruction decoding. For

proper decoding to take place, the instruction should be in the format given below.

Instruction Format XX DD

Where XX 4 Respresent the instruction to be process.
DD Data

Serial Communication Service

The BIOS communication service performs RS-232C character I/O with the INT 14h

serial communication DSR. The DSR provides a hardware independent interrupt driven RS-

232C serial interface with more functionality than is available from DOS serial port driver.

Theory of Operation

Description : The ROM BIOS serial communication service is based on the EIA RS-232C

specification and the capabilities of the National Semiconductor 8250 UART.

Data frames: The ROM BIOS serial communication service packages each data byte into a

separate frame. Each frame consist of a start bit, the data bits, an optional parity bit and one

or two stop bit.

INT 14h RS-232 Compatibility : INT 14h transmits data across the RS-232C I/O path in

three steps.

1. The application program places the data byte to sent in AL, puts function Olh send

character in AH, and performs an INT 14h.

73

2. The BIOS transfers the Data in AL to the serial port specified in DX. The serial of

handshaking signals, such as Data Terminal Ready (DTR) and Request to Send (RST).

When the external device signals that it is ready to begin the data transfer, the controller

assembles the data frames and sends them across the I/O path.

3. The external device receive each charters, removes the start parity and stop bits and

assembles that data bits into charters.

INT 14h RS-232 Communication DSR

Description : The INT 14h serial communication DSR provides support for sending and

receiving data and determining the status of equipment used in serial communications.

The INT 14h serial communication DSR references control information stored in the

BIOS data area of the system RAM. This information is located at the following offsets of

segment 40h, OOh, lOh, & 7h.

The INT 14h serial communication DSR references I/O port address 3F8h - 3FFh for

serial portl and 2F8h - 2FFh for serial port2. There are no standard I/O port addresses for

serial port 3-4 the addresses referenced by DSR for there optional serial ports are specific to

each manufactures model. The most common I/O port address for serial port 3 are 3220h -

3227h; the most common I/O port address for serial port 4 are 3228h - 322Fh.

Invoking the INT 14h DSR: Software INT 14h invoke the INT 14h serial communication

DSR. The INT 14h vector resides at address 00 : 50h in the interrupt vector table and is

74

initialized by the BIOS to point to system ROM address F000:E739h. DOS takes over this

services and re-vectors the interrupts vector table entry.

Error Handling: The serial communication service detects two kinds of errors, which

are as follows:

Parameter-related errors : Parameter-related error do not return an error indication instead,

the serial communication service function checks the following parameter - related

conditions when it receives inputs.

• The function number specified in AH falls within the range 0-3.

• The serial port specified in DX falls within the range 0-3.

• The serial port specified in DX exists in hardware.

If any of the conditions above are not true, the serial communication service does not

perform the requested function and returns with register preserved.

Time-out errors: A time-out error occurs when either a read or a write of a specified

communications line was unable to occur.

The serial communication service read and write function test the line status register.

When a time-out error occurs, bit 7 “time-out error” is set.

[Ref. (2 - pp. 306 - 311), (31 - pp. 258 - 270), 8, (1 - pp. 235 - 271),

75

Service Description

INT 14h - OOh Initialize the serial Adapter

INT 14h- Olh Send Character

INT 14h - 02h Receive Character

INT 14h - 03h Return serial port status

Table 9 BIOS communication service for serial communication

I/O Addre;>s iW Description

02F8h w Serial 2, Transmitter holding register.

02F8h R Serial 2, Receiver buffer register.

02F8h R/W Serial 2, divisor latch, low byte.

02F9h RAV Serial 2, divisor latch, high byte.

Table 10 I/O Address Range

76

The PLC Circuit Builder Program

The PLC program to define ladder diagrams is written on the Windows 95 and

Windows NT 32 bit PC operating systems using Microsoft Visual C++ 4.2 compiler. The

program is implemented using object oriented analysis and design. The program makes use of

the Windows graphical user interface (GUI) elements to aid the user in designing the ladder

diagram.

Microsoft Visual C++ 4.2 was chosen as the development tool because it offers

various programmer aids like syntax colouring, integrated class hierarchy, resources and file

viewer, highly sophisticated debugging, and tightly integrated help and books on line. The

Appwizard application that comes with it allows an easy way to create a new application. The

ClassWizard application and the dialog editor are extremely helpful to create new classes, to

define Windows message handlers, and to define member variables and functions. The

Microsoft Foundation Classes (MFC) cuts the development time by providing support for

common dialogs, print preview support, helper classes like lists, collections, user interface

classes like dialogs, windows, buttons, listboxes, comboboxes, toolbars, tooltips, statusbars,

menus and scrollbars. The C++ language helps in code reuse.

System Requirements for the PLC Program

The PLC program runs on a IBM compatible PC with Windows NT or Windows 95

operating system installed. It needs the mouse as well the keyboard. A printer attached to the

PC or LAN is required for getting hard copies of the ladder diagram and the instructions

77

generated for the ladder diagram. Memory requirements are not stringent. Nevertheless,

Windows 95 or Windows NT runs well with more than 8MB memory. Also a hard disk is

required to install the program and store the circuits designed. Installation of the program is

merely copying the executable file to the PLC directory on the hard drive.

PLC Program Capabilities

The PLC program has a user friendly graphical user interface along with all the

common features of Windows based programs. Menus, Toolbars, and Keyboard Accelerators

are all implemented to provide the user with alternatives to accomplish the ladder design.

The program is an MDI (Multiple Document Interface) which allows the user to view

and edit multiple ladder diagrams simultaneously. Specifically, the program allows the

following manipulations:

• Any number of input/output cards can be specified from 00-FF at the start

• The ladder diagram can have any number of rungs

• Parallel rungs are supported. A parallel rung is created whenever the user wants to add a

component parallel to a preexisting component. The parallel rungs can have any depth.

The parallel rungs are evaluated recursively. A rung can have more than one parallel rung.

• A cursor is shown to the user at all times to identify where the next component will be

placed, where the parallel rung will begin from or be completed.

• The rung can have any number of components. If the rung’s width is not enough to

accommodate the newly drawn component, all the rungs of the ladder are automatically

extended.

78

• The program prevents the user from adding the first switch as an output switch. No

component is allowed after the Output switch. Also, the program incorporates a Start and

End rung on which no other components can be placed. The cursor cannot be placed on

the Start or End rung.

• If the user has already placed an End rung and then tries to add another rung, the end

rung is shifted downward and a new rung is created.

• The program allows naming of all components. The names can be changed via the user

interface.

• The program allows code to be generated at any stage of the ladder development. The

designer can have the ladder and code documents side by side, add components to the

ladder and update the code.

• All the ladder diagrams and the code can be saved to disk and loaded from the disk.

• The program allows multiple selection of objects, deleting of an object or a rung.

• The program allows printing of the ladder diagram as well as the generated code.

• When the user is creating a parallel rung, it can be aborted at any stage.

• If user moves to an upper rung and starts drawing parallel rungs the other rungs are

pushed down automatically to make space.

• When extending the ladder width, the start and end objects are centered.

• The program checks for the names of switches and other components and disallows

duplicate names. It also allows renaming components by double clicking on the

component.

79

PLC Program User Interface
The program has a toolbar shown in the Error! Reference source not found.. It also

has a menu as shown in Error! Reference source not found.. When a new circuit has to be

designed, the user needs to use the file menu and select ‘new’. Alternatively, clicking on the

toolbar’s first button accomplishes the same thing. The program creates a new empty circuit

document. All the toolbar buttons are also equipped with tooltips which are small bubbles

containing text of what the button is used for. The program also features a status bar at the

bottom which is used to display messages and a vertical and horizontal grid. The status bar,

the tool bar and the grid can be turned on or off using the View menu item. When a toolbar

button is clicked on, the status bar also displays the function of the button.

Figure 14 PLC Program Toolbar

Figure 15 PLC Program Main Menu

When a new document is opened, the user is guided to press the ‘start’ toolbar item

or use the ‘start’ menu item under the Draw menu. All other toolbar buttons and menu items

related to drawing ladder components are disabled at this time. When the user presses start,

he is prompted for the number of input/output ports with the following dialog:

80

PLC I/O Cards

Enter Number of Cards

OK | Cancel

Figure 16 Dialog for Number of ports

When the user responds, the dialog validates the data and generates approproate messages if

the value entered is incorrect. On successful validation, the program draws the Start

component with the number of input/output ports and the first rung. The program screen

looks like that in the following figure.

Figure 17 PLC circuit with start rung

All the drawing related menu items and toolbar buttons are now enabled. The

program uses a cursor to display the position of the next component which will be created.

The cursor is placed at the beginning of the first rung. The user can start placing new

81

components on the ladder with the help of the toolbar, accelerator or menu items. The

following table describes the methods to create the different ladder components.

Action

New Circuit

Menu Item

File/New

Keyboard
Accelerator
Ctrl+N

Toolbar
Button

Open Saved Circuit File/Open

Save Circuit File/Save

Ctrl+O

Ctiri+S

Create New Rung Draw/New Rung FI

Create a shunt or

parallel rung

Complete the shunt

Draw/Shunt F5

Draw/Complete parallel

rung

F6

Create the Move

Instruction

Draw/Instruction/Move Ctrl+M

Create the Greater than

Instruction

Draw/Instruction/ Greater

than

Ctrl + >

Create the Less than

Instruction

Draw/Instruction/Less than Ctrl + <

iSiSiSi

Create the Equal To

Instruction

Draw/Instruction/Equal To Ctrl +:

Create the Addition

Instruction

Draw/Instruction/Addition Shift+ +

Create the Subtraction

Instruction

Draw Open Switch

Draw/Instruction/Subtracti Shift +

on

Draw/Switch/Open Switch F7 ||||||j

82

Action Menu Hem Keyboard
Accelerator

Too
Butt
■

Draw Closed Switch Draw/Switch/ Closed

Switch

F8

Draw Output Switch Draw/Switch/Output F2 nut
Draw Reset Switch Draw/Switch/Reset Switch “ m
Draw Set Switch Draw/Switch/Set Switch Fll ■
Draw the Start Rung Draw/Start F3 pi!

Draw the End Rung Draw/Stop F4 §3
Draw Counter Draw/Advanced

Instruction/Counter

F9 ■

Draw Timer Draw/Advanced

Instruction/Timer

F10
-

Print the circuit File/Print Ctrl + P s
Table 11 Methods to create PLC ladder components

Using the GUI the user can easily navigate between menus and documents and

develop the ladder diagram in very little time. The Code/Generate code menu creates the

code for the ladder being seen. The following figure shows a ladder diagram with its

associated code generated. The menus are also expanded for convenience.

83

LufUill I't L Assembly I i!i {; i'.acini ilmldw
£?e £«fi fcww £ede £Me« ge*

| Generate Cede ~*|

Ctrt+N
aw- OM
Dow
£«ve
Save At...

QMS

grinL.
PtfilPMapew
Ppnt Setup...

Qrf*P

£*»

Undo CbbZ
Delge BMect OrkX
Delete Sm* 0W*R

cw*c
£«te Ctrf*V
gates Mutjsfe &d
Select# CW*A
Ptepefjje*... At*£rter
(mat go* Object..
Link*.

find Lines I
EapeCota-
Shew Objects
lombm
Status l«

Hefe Topic*
About PLC Circuit Suite...

" 9pen>ftch F7
£b«ed Switch FB
fiesetSwIch
SrfSwkh m
Output F2

Hew Ping FI
Shu* F5
Complete Pirslel Rung F6
Safch >
JnstAjedan ►
Advanced Imtwcben »
Sjart F3
Slog F4

Move Qd*M
finite Than Cbi*>
Lose Than Cbi + <
S^iaHo CM*»
AdAon SNft**
St&beetisn Shit**

fiaata FS
liner F10

Figure 18 PLC program screen -with ladder diagram, code and all menus

Program Design
The PLC program uses the classes designed in a manner described in Figure 19. There is one

instance of CPLCApp and an instance of all the tools (eg CRectTool, CStartSwitch etc) that

can be used to draw different ladder components. When a new component is to be drawn, the

tools are used to determine the component’s attributes, bitmap etc. Since the program is a

multiple document interfaces, it creates one instance of CPLCDocument for each document

or ladder diagram that is being edited. Each document object creates a CPLCView object.

The CPLCDocument also contains a CLadder object. The ladder object contains the

CInstructRung objects. One CInstructRung object can contain another array of parallel rung

84

related CInstructRung objects. Each CInstructRung object has an array of CInstruction

object. A CInstruction object corresponds to the actual ladder diagram component shown on

the screen. It also has information about the opcode of the instruction etc. The bitmaps of

various drawing objects are drawn with the help of CDrawBitmap objects.

Program Code Files

The PLC program contains the following source files:

Mainfrm.Cpp, Plcdoc.Cpp, Splitfrm.Cpp, Stdafx.Cpp, Cntritem.Cpp, Rectdlg.Cpp,

Plctool.Cpp, Plcobj.Cpp, Plcapp.Cpp, Plcview.Cpp, Instruct.Cpp, Instrvw.Cpp.

Apart from the source files, each source has its include file, and there are several bitmap files

which define bitmaps for the PLC components. The program uses the Microsoft Foundation

Class (MFC) hierarchy for the User Interface development. A brief description of the function

of each file is presented.

• STDAFX.CPP: This file includes just the standard includes. A precompiled header named

stdafx.pch will be generated in stdafx.obj which will contain the pre-compiled type

information. This is MFC’s mechanism to save compile time.

• PLCAPP.CPP: This file implements the CPLCApp object which is derived from the

CWinApp MFC object. In its Initlnstance method, it generates the document templates

for the Instructions view document and the PLC design document. It also implements the

about dialog.

• MAINFRM.CPP: This file contains the CMainFrame frame window implementation for

the program.

85

CPLCAPP

i
CPLCDocument

I
CDrawObJect

CPLCVIew

CLadder

0>

ClnstructlonRung K>

CDrawRect

CDrawBitmap

Clnstruction OpCode

c
-c
-c
-c
c
-c
£
-C

-C
-C
c
£
c

CSelectTool 3
CRectTool 3
CEqualTo J

CQreaterThan J
CLessThan

CMInus

CMove J
CPLCTlmer

CPLCCountar J
CPLCEnd 3
CPLCOut 3
CPLCStart

CResetSwitch 3
CSerialOpenSwitch 3

-C CSerialCloseSwItch 3
■C CSetSwKch

Figure 19 PLC Program Objects Interaction

86

• PLCDOC.CPP: This file has the drawing document class for the program

• SPLITFRM.CPP: Implements the split frame to show multiple views of the same ladder

diagram.

• CNTRITEM.CPP: This has the ole container for PLC program.

• RECTDLG.CPP: This file has the dialog class for component attributes.

• PLCTOOL.CPP: All the properties of the drawing components for the ladder diagram are

implemented in this file.

• PLCOBJ.CPP: This file implements all the drawing components for the ladder diagram

are implemented in this file.

• PLCVDEW.CPP: The view of the ladder diagram is handled in this file. All the menu

items are also handled here.

• INSTRUCT.CPP : This file handles the instruction generation objects

• INSTRVW.CPP: This file has the code to show the instructions generated for the ladder

diagram.

The entire program is over 12000 lines of C++ code. It is built using a MakeFile with the

Visual C++ application development environment. The program listing is attached for

reference. To develop the PLC program, reference material in [Ref 36,37,38] was used.

87

Figure 20 Class Hiierarchy Chart for PLC Program

88

Figure 21 PLC Program Class Hierarchy

Appendix

Program Listing
LABEL OP.CODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

OE,20 MVI C,20H

7E MOVE A,M

87 ADDA

47 MOV B,A

E5 PUSH H

21,50, 22 LXIH

ED, 48 IN[C]

77 MOV M,A

El PUSHH

21,00,20 LXIH

57 MOV D, A

E6,01 ANDI 01

77 MOV M,A

23 INXH

7A MOV A,D

E6,02 ANI02

OF RRC

77 MOV M,A

23 INXH

7A MOV A,D

E6,04 ANI04

OF RRC

OF RRC

77 MOV A,D

90

LABEL OPCODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

23 INXH

7A MOV A,D

E6,08 ANI08

OF RRC

OF RRC

OF RRC

77 MOV A,D

23 INXH

7A MOV A,D

E6,10 ANI 10

OF RRC

OF RRC

OF RRC

OF RRC

77 MOV A,D

23 INXH

7A MOV A,D

E6,10 ANI 10

OF RRC

OF RRC

OF RRC

OF RRC

OF RRC

77 MOV A,D

23 INXH

7A MOV A,D

E6,20 ANI 20

07 RLC

07 RLC

77 MOV A,D

91

LABEL OP.CODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

23 INXH

7A MOV A,D

E6,20 ANI20

07 RLC

07 RLC

77 MOV A,D

23 INXH

7A MOV A,D

E6,20 ANI20

07 RLC

77 MOV M, A

El POPH

23 INXH

OC INRC

05 DCRB

C2,0B,20 JNZX1

El POPH

23 INXH

7E MOV A,M

C3 JMPBBB

23 INXH

C3 JMP AAA

FE,A0 CPI AO Detection of Instruction

CA JZ

FE,A0 CPI A1

CA JZ

FE,A0 CPI A2

CA JZ

FE,A0 CPI A3

CA JZ

92

L.ABKL OP.CODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

FE,A0 CPIA4

CA JZ

FE,A0 CPI A5

CA JZ

FE,A0 CPI A6

CA JZ

FE,A0 CPIA7

CA JZ

FE,A0 CPI A8

CA JZ

FE,A0 CPI A9

CA JZ

FE,A0 CPI AA

CA JZ

FE,A0 CPI AB

CA JZ

FE,A0 CPI AC

CA JZ

FE,A0 CPI AD

CA JZ

FE,A0 CPIAE

CA JZ

FE,A0 CPI AF

CA JZ

FE,A0 CPI BO

CA JZ

FE,A0 CPIB1

CA JZ

FE,A0 CPI B2

CA JZ

93

LABEL OPCODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

FE,A0 CPIB3

CA JZ

FE,A0 CPIB4

CA JZ

FE,A0 CPIB5

CA JZ

FE,A0 CPIB6

CA JZ

FE,A0 CPIB7

CA JZ

FE,A0 CPIB8

CA JZ

FE,A0 CPIB9

CA JZ

FE,A0 CPI BA

CA JZ

FE,A0 CPIBB

CA JZ

FE,A0 CPI BC

CA JZ

FE,A0 CPI BD

CA JZ

FE,A0 CPI BE

CA JZ

FE,A0 CPI BF

CA JZ

FE,A0 CPI CO

CA JZ

FE,A0 CPI Cl

CA JZ

94

LABEL OP.CODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

AO 23 INXH LOAD INSTRUCTION

56 MOV D,M

E5 PUSHH

21, A.M LX3 H, A.M

E5 PUSHH

6A MOV L,D

26,10 MVI H,20

46 MOV B,M

El POPH

70 MOV B,M

El POPH

C3, NLA IMP NLA

A1 23 INXH AND INSTRUCTION

56 MOV D,M

E5 PUSHH

21, A.M LXIH, A.M

E5 PUSHH

6A MOV L,D

26,10 MVI H,20

46 MOV B,M

El POPH

7E MOV A,M

AO ANAB

77 MOVM,A

El POPH

C3, NLA JMPNLA

A2 23 INXH OR INSTRUCTION

56 MOV D,M

E5 PUSHH

21, A.M LXI H, A.M

95

LABEL OP.CODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

E5 PUSHH

6A MOV L,D

26,10 MVI H,20

46 MOVB,M

El POPH

7E MOV A,M

BO ORAB

77 MOV M,A

El POPH

C3, NLA JMP: NLA

A3 23 INXH EXOR INSTRUCTION

56 MOV D,M

E5 PUSHH

21, A.M LXIH, A.M

E5 PUSHH

6A MOV L,D

26,10 MVI H,20

46 MOV B,M

El POPH

7E MOV A,M

A8 XRA B

77 MOVM,A

El POPH

C3.NLA JMP: NLA

A4 E5 PUSHH NOT INSTRUCTION

21, AM LXI, AM

37 STC

3F CMC

7E MOV A,M

IF RAR

96

LABEL OPCODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

3F CMC

17 RAL

77 MOV M,A

El POP H

C3, NLA JMP: NLA

A5 23 INXH STORE INSTRUCTION

56 MOV D,M

E5 PUSH H

21, A.M LXIH, A.M

7E MOV A,M

6A MOV L,D

26,21 MVI H,21

77 MOV M,A

El POPH

C3, NLA JMP: NLA

A6 23 INXH LOAD FROM STORE MEMORY

56 MOV D,M

E5 PUSHH

6A MOV L,D

26,21 MVI H,21

7E MOV A,M

21, A.M LXIH, A.M

77 MOVM,A

El POPH

C3, NLA JMP: NLA

A7 23 INXH AND WITH STORE MEMORY

56 MOV D,M

E5 PUSHH

6A MOV L,D

26, S.M MVI H, S.M

97

LABEL OP. CODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXI H

7E MOV A,M

21, A.M LXIH, A.M

A6 ANAM

77 MOV M,A

El POPH

C3, NLA JMP: NLA

AS 23 INXH OR WITH STORE MEMORY

56 MOV D,M

E5 PUSH H

6A MOV L,D

26, S.M MVIH, S.M

7E MOV A,M

21, A.M LXI H, A.M

B6 ORAM

77 MOV M,A

El POPH

C3, NLA JMP: NLA

AA 23 INXH OUTPUT TO OUTFILE

56 MOV D,M

E5 PUSH H

21, A.M LXI H, A.M

7E MOV A,M

FF,00 CPI 00H

CA JZ:Z1

3E,FF MVI A,FF

Z1 6A MOV L,D

26, MVI H ,O.M

77 MOV M, A

El POPH

C3, NLA JMP:NLA

98

LABEL OP.CODE MNEMONICS COMMENTS 1

31,FF,27 LXISP Inputting the input status

21,00,30 LX1H

AB E5 PUSHH OUT TO OUPUT PORTS

21,O.M LXI,O.M

E5 PUSHH

06,80 MVI B,80

16,01 MVI D,01

Z2 7E MOV A,M

A2 ANAD

77 movm,a

23 INXH

CB,02 RLCD

05 DCRB

C2,Z2 JNZ: Z2

El POPH

21.PO.M LX3 D,PO.M

OE,08 MVI C,08

Z3 06,08 MVI,08

7A MOVAJM

Z4 23 INXH

B6 ORAM

05 DCRB

C2,Z4 JNZ: Z4

EB XCHG

77 MOV M,A

EB XCHG

23 INXH

13 INXD

0D DCRC

C2,Z3 JNZ: Z3

21,PO.M LXIH,PO.M

OE,40 MVI C,40H

99

LABEL OP.CODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

06,08 MVI B,80

Z5 7E MOV A,M

ED,49 OUT [C]

OC INRC

23 INXH

05 DCRB

C2,Z5 JNZ: Z5

El POP H

C3,Z0 JMP: Z0

AC 23 INX H NOT IMMEDIATE LOAD STATUS

56 MOV D,M

E5 PUSHH

21, A.M LXIH, A.M

E5 PUSHH

6A MOV L,D

26, A.M MVI H, A.M

7E MOV A,M

37 STC

3F CMC

IF RAR

3F CMC

17 RAL

El POPH

77 MOV M,A

El POPH

C3, NLA JMP: NLA

AD 23 INX H NOR LOAD STATUS INSTRUCTION

56 MOV D,M

E5 PUSHH

21, A.M LXI H, A.M

100

LABI. I. op.com. MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

E5 PUSHH

6A MOV L,D

26, A.M MVIH, A.M

46 MOV B,M

El POPH

7E MOV A,M

BO ORAB

37 STC

3F CMC

IF RAR

3F CMC

17 RAL

77 MOVM,A

El POPH

C3, NLA JMP: NLA

AE 23 INX H NAND LOAD STATUS INSTRUCTION

56 MOV D,M

E5 PUSHH

21, A.M LXIH, A.M

E5 PUSHH

6A MOV L,D

26, A.M MVIH, A.M

46 MOV B,M

El POPH

7E MOV A,M

AO ANA B

37 STC

3F CMC

IF RAR

3F CMC

101

LABEL, OP.CODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

17 RAL

77 MOVM,A

El POPH

C3, NLA JMP: NLA

AF 23 INX H NOT IMMEDIATE STORE MEMORY

56 MOV D,M

E5 PUSHH

6A MOV L,D

26, S.M MVI H,S.M

7E MOV A,M

37 STC

3F CMC

IF RAR

3F CMC

17 RAL

21, A.M LXI, A.M

77 MOV M,A

El POPH

C3, NLA JMP: NLA

BO 23 INX H NAND STORE MEMORY INSTRUCTION

56 MOV D,M

E5 PUSHH

6A MOV L,D

26, A.M MVI H, A.M

7E MOV A,M

21,A,M LXI H,A.M

A6 ANA M

37 STC

3F CMC

IF RAR

102

LABEL OP. CODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

3F CMC

17 RAL

77 MOV M,A

El POPH

C3, NLA JMP: NLA

B1 23 INX H NOR STORE MEMORY INSTRUCTION

56 MOV D,M

E5 PUSHH

6A MOV L,D

26, A.M MVIH, A.M

7E MOV A,M

21,A.M LXI H,A.M

B6 ORA M

37 STC

3F CMC

IF RAR

3F CMC

17 RAL

77 MOV M,A

El POPH

C3, NLA JMP: NLA

B2 23 INX H COMPARE IMMEDIATE INSTRUCTION

46 MOV B,M

E5 PUSHH

21.A.M LXIH, AM

4E MOV C,M

El POPH

C3, NLA JMP: NLA

B3 23 INX H COMPARE WITH INPUT STATUS

56 MOV D,M

103

LABEL OP. CODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

E5 PUSH H

6A MOV L,D

26,1.M MVIH, I.M

46 MOV B,M

21,A.M LXI A.M

4E MOV C,M

El POPH

C3, NLA IMP: NLA

B4 23 1NX H COMPARE WITH STORE MEMORY

56 MOV D,M

E5 PUSH H

6A MOV L,D

26, S.M MVI H, S.M

46 MOV B,M

21,A.M LXI A.M

4E MOV C,M

El POPH

C3, NLA IMP: NLA

B5 23 INXH JUMP IF EQUAL

5E MOV E,M

23 INXH

56 MOV D,M

79 MOV A,C

B8 CMP B

| C2,NLA JNZ: NLA

EB XCHG

C3.AAA IMP: AAA

B6 23 INXH JUMP IF LESS

5E MOV E,M

23 INXH

104

LABEL OP.CODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

56 MOV D,M

79 MOV A,C

B8 CMP B

D2, NLA JNC: NLA

EB XCHG

C3, AAA JMP: AAA

B7 23 INX H JUMP IF GREATER

5E MOV E,M

23 ENXH

56 MOV D,M

79 MOV A,C

B8 CMP B

F5 PUSH PSW

Cl POP B

79 MOV A,C

E6,41 ANI41H

FE,00 CPI 00

C2, NLA JNC: NLA

EB XCHG

C3, AAA JMP: AAA

B8 23 INX H SET IMMEDIATE INSTRUCTION

56 MOV D,M

E5 PUSH

21,I.M LXI I.M

7E MOV A,M

FE 01 CPI 01H

C2, Z10 JNZ: Z10

23 INX H

E5 PUSH H

6E MOV L,M

105

LABEL OP.C'ODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

26,O.M MVI H,O.M

3E,01 MVI A,01

77 MOV M,A

El POPH

El POPH

23 INXH

Z10 C3, NLA JMP: NLA

B9 23 INXH RESET IMMEDIATE INSTRUCTION

56 MOV D,M

E5 PUSH

21.I.M LXI I.M

7E MOV A,M

FE 01 CPI 01H

C2, Zll JNZ.Zll

23 INXH

E5 PUSH H

6E MOV L,M

26,O.M MVI H,O.M

3E,01 MVI A,01

77 MOV M,A

El POPH

El POPH

23 INXH

Z10 C3, NLA JMP: NLA

BA E5 PUSH RESET THE COUNTER

21,A.M LXI A.M

7E MOV A,M

23 INXH

77 MOV M,A

El POPH

106

LABEL OP.C'ODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

C3, NLA JMP: NLA

BB 23 INXH LOAD THE COUNTER

56 MOV D,M

E5 PUSH H

6A MOV L,D

26,C.M MVIH,C.M

46 MOV B,M

21, A.M LXIH, A.M

70 MOV M,B

El POPH

C3, NLA JMP: NLA

BB 23 INXH COUNTER INSTRUCTION

56 MOV D,M

23 INXH

5E MOV E,M

E5 PUSHH

6A MOV L,D

26,C.M MVI H,C.M

46 MOV B,M

E5 PUSHH

7A MOV A,D

C6 ,64 ADI 64

6F MOV L,A

7E MOV A,M

70 MOV M,B

1
FE 01 CPIOl

CA,J1 JZ: J1

21,RST LXI HRST

7E MOV A,M

FE,01 CPIOl

107

LABEL OP. CODE' MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

C2,J2 JNZ: J2

El POPH

73 movm,e

E5 PUSHH

6A MOV L,D

26,CFP MVI H,CFP

3E,00 MVI A,00

77 MOV M,A

J2 21,AM LXI H,A.M

7E MOV A,M

FE,01 CPI 01

C2,J3 JNZ: J3

El POPH

35 DCRM

7E MOV A,M

FE,00 CPI 00

C2,J3 JNZ: J3

6A MOV L,D

26,CFP MVI H,CFP

3E,01 MVI A,01

77 MOV M,A

J3 El POPH

C3,NLA JMP: NLA

J1 6A MOV L,D

26,CFP MVI H,CEP

3E,01 MVI A,01

77 MOV M,A

El POPH

73 MOV M,E

C3,J3 JMP: J3

108

LABEL OP. CODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

BC 23 INXH MOVE INSTRUCTION

56 MOV D,M

23 INXH

4E MOV C,M

6A MOV L,D

26,I.M MTV H,I.M

46 MOV B,M

6B MOV L,C

7E MOV A,M

23 INXH

56 MOV D,M

23 INXH

46 MOV C,M

6B MOV L,C

26,I.M MTV H,I.M

7E MOV A,M

6A MOV L,D

77 MOV M,A

C3.NLA IMP: NLA

BD 23 INXH ADD INSTRUCTION

56 MOV D,M

23 INXH

4E MOV C,M

PUSHH

LXIH, A.M

MOV A,M

CPI 01

JNZ: Jll

6A MOV L,D

26,I.M MTVHJ.M

109

LABEL OP.CODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

46 MOV B,M

6B MOV L,C

*** ADD B

FE,11H CPI 11H

CA,J11 JZ: J12

35 DCRM

77 MOV M,A

23 INXH

Jll C3,NLA JMP: NLA

J12 35 DCRH
**** MOV M,01

23 INXH

C3,NLA JMP: NLA

BD 23 INXH SUB INSTRUCTION

56 MOV D,M

23 INXH

4E MOV C,M

PUSHH

LX3 H, A.M

MOV A,M

CPI 01H

JNZ : J13

MOV L,D

MVIH, I.M

MOV L,C

MOV A,M
*** SUB B

E5 POPH
*** DCRH

77 MOV M,A

110

LABEL OP. CODE MNEMONICS COMMENTS

31,FF,27 LXISP Inputting the input status

21,00,30 LXIH

23 INXH

J13 C3,NLA JMP: NLA

Data Operator Instructions
These instruction provide the PLC with the capability with various data operation.

These operation are done with 256 memory location of input port.This is achieved in our
PLC using instruction function.

Format Fn__
Where first digits represent the function number which dinotes functional data

operation id to be done.

Fn AO - LD

Fn AO__
This is to 2 byte instruction that load the accumulator with the contents of inputs

memory specified by the following byte. The input memory varies from (00 -FF).

Fn A1 - AND

Fn A1__
This is to 2 byte instruction that perform bit by bit logical AND operation on the

contents of the accumlator, using the contents of the input memory specified by the 1 byte.

Fn A2 - OR

Fn A2__

All features are same as Fn AO except that it performs logically OR operation.

Fn A3 - EXOR

Fn A3__
All features are same as Fn AO except that it performs logically EXOR operation.

Fn A3 - NOT

Fn A4

ill

This is instruction that causes negation of the Boolean accumulator content.

Fn A5-STA

Fn A5__
This is two byte instruction that loads from the Boolean accumulator with the content

of the store memory specified by the following one byte.

Fn A6-LDS

Fn A6__
This is two byte instruction that loads the Boolean accumulator with the content of

the store memory specified by the following one byte.

Fn A7-ANDS

Fn A7__
This is two byte instruction that performs bit by bit logically AND operation on the

contents of the Boolean accumulator, using the contents of the store memory specified by the
following one byte.

Fn A8 - ORS

Fn A3__
All the features are same as Fn A7 expect that it performs logically OR operation.

Fn A9 - EXORS

Fn A9__
All the features are same as Fn A7 expect that it performs logically OR operation.

Fn AA-OUT

Fn AA__
This is two byte instruction that loads the content of the Boolean accumulator to the

output memory.

Fn AB - END

Fn AB
This is one instruction that outs the content of the output memory to the output ports.

Fn AC - NTI

112

Fn AC__
This is one byte instruction that causes negation of the specified input memory

location.

Fn AD - NOR
Fn AD__

This is two byte instruction that performs logically NOR operation on the content of
Boolean accumulator using the content of specified input memory location.

Fn AE - NAND
Fn AE__

All the features are same as Fn AD expect that it performs logically NAND operation.

Fn AF - NTS
Fn AF__

All the features are same as Fn AC expect that it performs negation with the store
memory location.

Fn BO-NANDS

Fn BO__
All the features are same as Fn AE expect that it performs logically NAND with the

store memory location.

Fn B1 - ORS
Fn B1__

All the features are same as Fn AD expect that it performs logically NOR with the
store memory location.

Fn B2 - CPI
Fn B2__

This is two byte instruction that compares the contents of the accumulator with the
immediate data.

Fn B3 - CMPR
Fn B3

113

This is two byte instruction that compares the contents of the Boolean accumulator
with the of the input memory specified by following one byte.

Fn B4- CMPRS

Fn B4__
All feature are same as Fn B3 except that ot performs the compare instructions with

the stored memory location.

Fn B5-JE

Fn B5_____
This is four byte instruction. This conditional instruction if the condition for equal is

satisfied the instructions loads the program counter with contents of memory location. The
instruction is fetched from the new location loaded into the program counter.

Fn B6-JL

Fn B6_____
All feature are same as Fn B5 except that it performs for jump if less than condition is

satisfied.

Fn B7-JG

Fn B7_____
All feature are same as Fn B5 except that it performs for jump if greater than

condition is satisfied.

Fn B8- SET

Fn B8__
This is two byte instruction. It is used as an auxiliary relay. It sets the specified

location.

Fn B9 - RESET

Fn B9__
All feature are same as Fn B9 except that it performs for reset operation.

Fn BA-RTC

Fn BA_
This is one byte instruction used to reset the counter.

114

Fn BB-LDC

Fn BB__

This is two byte instruction it performs operation of load the specified counter.

Fn BC - COUNT

Fn BC______

This is four byte instruction. It provides the count, specified by the following byte.
The counter varies from 00 to FF.

115

Assembler Flowcharts

Initialize
Peripherals

•4

Check
for

Mode
Hold

Run
i

Execute
Ladder

---------------------------- 3 r

Figure 22 Flowchart l

Figure 23 Flowchart 2

117

Typical Performance Characteristics

Introduction

The controller built around Z80 CPU can handle up to 128 inputs and 64 output

with further expansion resulting in the total handling capacity of4098 I/O ports.

Input

The input module interface on /off signals to the controller from equipment such

as pushbuttons, lamps, limit switches, relay and contacts. The modules provide a high

noise immunity. Interface using optical isolators and insulators for each plant signal. An

indicator lamp is provided for the state of each channel.

The output module interfaces with the process data to the external control element

through a driver stage and relay. The relays are used for controlling user supplied discrete

(ON/OFF) load like motor starter, valves, indicator lights etc. An indicator lamp is

provided for the state of each channel.

Communication

The RS232 serial port interface to the controller is used for the online

programming of the controller from the PC using the PLC program exclusively for the

ladder logic programming and compiling and transfer to the machine code over the

RS232C serial interface.

Memory Option

The controller has 2K RAM for monitor program, 4K RAM for the loading of

ladder diagram of which 2K is for the ladder program. Over and above space is available

for further expansion.

118

Programming

The controller can be programmed from an external keyboard or can be online

programmed from the PC using the PLC program developed for this purpose.

Program Capacity

The capacity depends on the memory size and the number of data tables. The 64K

memory can accommodate approximately 5000 instructions.

Construction

This ruggedly constructed controller is designed for harsh industrial environments.

A range of modules plug into a 19 inch rack mounting metal subtrack. The plug in

modular construction allows a module substitution approach for repair maintenance and

easy upgrading of the controller.

Application

The controller consists of power supply, memory, input processor, ladder program

mounted in a subtrack with facilities for additional modules and equipment. These

controller are well suited to applications in complex industrial plants.

Features

Automatic self testing, memory size field upgradable, online programming from

PC, comprehensive instruction set.

119

Specifications Summary

I/O Basic I/O 128 up to 2048 Input points
64 up to 2048 Output points

Serial Link 1 point
Memory User memory 4K

Total Capacity 64K
Program Monitor 2K

Ladder program 2K (500 instruction)
Power Supply 220 V, 50Hz, single phase
Input Rating 24 VDC, 20 mA (max)
Output Rating 220 V AC, 50Hz, 1 A(max)
Environment Temperature 0-60 degree C operating

-20 degree to 70 degree
storage

Humidity 10 to 90% noncondensing
Mounting 16 inch (483mm) rack

mounting
Additional Facilities On line program charges,

Remote programming,
Flexible self test,
Automatic self test,
Memory size upgrading

120

References
[1] G. Ian Wamock, “ Programmable Controllers” Library of Congress Cataloging-in-

Publication Data. Prentice Hall International (UK) Ltd, Second Edition 1992.

[2] L. George and JR. Batten “Programmable Controllers: Hardware, Software &

Application” Library of Congress Cataloging-in-Publication Data. McGraw-Hill, Inc

Book Company. Second Edition 1994.

[3] John W. Webb and Ronald A. Reis “Programmable Logic Controllers: Principles and

Application” Libraray of Congress Cataloging-in-Publication Data. Prentice Hall Book

Company, Inc. Third Edition 1995.

[4] Kissell E. Thomas “Understanding and Using Programmable Controllers” Lib of

Congress Cataloging-in-Publication. Prentice Hall Inc. First Edition 1986.

[5] Richard A. Cox “ Technician’s Guide To Programmable Controllers”. Library of

Congress Cataloging-in-Publication. Delmar Publishers, Inc. Second Edition 1989.

[6] Frank D. Petruzella “Programmable Logic Controllers” Library of Congress

Cataloging-in-Publication. McGraw-Hill Book Company. Library of Congress

Cataloging-in-Publication. First Edition 1989.

[7] I. Scott Mackengic “The 8051 Microcontroller” Library of Congress Cataloging-in-

Publication. Prentice Hall, Inc. Second Edition 1995.

121

[8] Douglas M. Linsidine “Control System Process / Industrial Instruments and controls”.

Handbook fourth Edition McGraw-Hill 1993.

[9] Mahmond S. Magdi “Computer Operated System Control” Marcel Dekke, Inc. 1991.

[10] Kennedy R. H “Selecting Temperture Sensors” Chemical Engineer. Aug 1983.

[11] Burke A. “Linearizing with a single Resistor Electronics” June 2,1981.

[12] JMC Dermott “Sensors and Transducer” EDN March 20, 1980.

[13] Renn Radnsor “Instrument Engineers” Handbook rev. Edition Chilton Book

Company, 1982.

[14] Cohen E.M and Febervari W. “Sequential Control” Chemical Engineering. 29/4/79.

[15] W. F. Stoecker and P. A. Stoecker “Microcomputer Control of Thermal and

Mechanical System” Van Nostrand Renihold, 1989.

[16] P. Giacomo “A Stepping Motor Primer” Byte (vol. 4-no. 2, February 1979), (vol.4-

no. 3 , March 1979).

[17] H. V Malmstadt, C. G Euke and S. R Grouch “Electronic Measurement for

Scientists”, WA. Benjamin 1997.

[18] Kenneth Hintz and Daniel Tabak(1976) “Microcontrollers, Architecture,

Implementation and Programming” McGraw-Hill, Inc. 1992.

122

[19] R. L. Tokhelium “Theory and Problem of Microprocessor Fundamentals” Schamas

Outline Serial, McGraw-Hill Book Corp. NewYork, 1983.

[20] Memory Components Handbook, Intel Corporation Santa Clara CA, 1986.

[21] G. B. Nebon “The Use of EPROM - based Microcomputer” WESCON’82

Conference Record, Anaheium CA Session 5C/2 Sept. 1982.

[22] L. Wheeler “The Practical EEPROM” Byte July 1983.

[23] Hawkins H.W “Concepts of Digital Electronics” Blue Summit: TAB Books, 1983.

[24] Hallmark C. “Electronics Measurements Simplified” Blue Ridge Summit:TAB

Books, 1973.

[25] Tedesehi F.P “How to Design and use Electronic Control System” Blue Ridge

SummitTAB Books, 1988.

[26] Weiss D Microprocessors in Industrial Measurement and Control” Blue Ridge

SummitTAB Books, 1987.

[27] Dalglish R.L “An Introduction to control and Measurement with Microcomputers”

NewYork: Cambridge university Press, 1987.

[28] Interface Between Data Terminal Equipment and Data Communication Equipment

Employing Serial Binary Interchange, Standard RS 232-C, Catalog 3, Electronic Industrial

Associations.

123

[29] J. E Olehsy and G.B Rutkowski “Microprocessor and Digital Computer Technology”

Prentece Hall, 1981.

[30] J. E. McNamara “Technical Aspects of Data Communication” Digiatal press

Bedford. 1977.

[31] Programming Industrial Control System Using IEC 1131-3. Published by: The

Institution of Electrical Engineers, London. 1995 - from 1988. British Library

Cataloguing in Publication Data. Short Run Press Ltd. Exeter. 1995.

[32] Bela G. Lipak and Kriszta Venerel (eds). “Instrument Engineer’s Handbook.

Publisher Chilton Book Company, Randar. 1982.

[33] Gerhard E. Hoemes and Melvin F. Helweel “Introduction to Boolean Algebra and

Logic design” Library of Congress Catalog . McGraw-Hill, Inc. Publication. 1964.

[34] The complete guide to ROM-Based system software “System BIOS for IBM PCs,

Compatibles and EISA Computers”, Phoenix Technologies Ltd. - 2nd Edition. Addison -

Wesley Publishing Company.

[35] Using Assembly Language

[36] Microsoft Visual C++ User Guides

[37] Microsoft Windows NT Resource Kits

[38] Microsoft Windows 95 Resource Kit

124

