CO	N	TE	NI	[S
----	---	----	----	----

CHAPTER		TITLE	PAGE No.
I	INTI SIM	1-12	
	1.1	Introduction	1
	1.2	Classification of Filters	1
	1.3	Active Filters	5
	1.4	Simulation	6
	1.5	Simulation Software	7
	1.6	Need of Simulation	9
	1.7	Requirement of Simulation	11
	1.8	Limitations of PSpice	11
II	ACT	IVE FILTERS	13-43
	2.1	Introduction	13
	2.2	Order of Filters	14
	2.3	First Order Active Filters	15
		2.3.1 First order low pass filter	
		2.3.2 First order high pass filter	
		2.3.3 First order band pass filter	
		2.3.4 First order band reject filter	
	2.4	Second Order Responses	23
		2.4.1 Second order low pass response	
		2.4.2 Second order high pass response	
		2.4.3 Second order band pass response	
		2.4.4 Second order band reject response	

CHAPTER		TITLE	PAGE No.
	2.5	Higher Order Filters	28
	2.6	Filter Approximation	29
		2.6.1 Bitterworth approximation	
		2.6.2 Chebyshev approximation	
		2.6.3 Elliptic filter approximation	
		2.6.4 Bessel's approximation	
	2.7	Comparison of Approximations	39
	2.8	Filter Sensitivity	41
III	COI SIM	MPUTER BASED CIRCUIT IULATION	44-77
	3.1	Introduction	44
	3.2	Format of Circuit Files	45
	3.3.	Format of Output Files	46
	3.4	Types of Analysis	47
		A DC analysis	
		B Transient analysis	
		C AC circuit analysis	
		E Fourier analysis	
		F Noise analysis	
		G Sensitivity analysis	
		H Parametric analysis	;
	3.5	Op. Amp. Representation in PSpice	70
		i DC linear model	
		ii AC linear model	
		iii Non linear macromodel	

CHAPTER		PAGE No.		
IV	KRO	78-106		
	4.1	Intro	oduction	78
	4.2	Salle	en Key Low Pass Filter	79
	4.3	KRO	C Low Pass Filter	81
		A)	Study of Second Order KRC Low Pass Filter With Variation of m	84
			i. Practical design	
			ii. Design using PSpice	
			iii. Conclusion	
		B)	Study of Second Order KRC Low Pass Filter With Variation of n	93
			i. Practical design	
			ii. Design using PSpice	
			iii. Conclusion	
		C)	Study of Second Order KRC Low Pass Filter With Variation of K	99
			i. Practical design	
			ii Design using PSpice	
			iii Conclusion	
	4.4.	Stud	y of KRC High Pass Filter	107-130
		A)	Study of Second Order KRC High Pass Filter With Variation of m	112
			i. Practical design	
			ii Design using PSpice	
			iii Conclusion	

CHAPTER				TITLE	PAGE No.
		B)	Stud Pass	dy of Second Order KRC High s Filter With Variation of n	119
			i.	Practical design	
			ii.	Design using PSpice	
			iii.	Conclusion	
		C)	Stuo Pass	ly of Second Order KRC High s Filter With Variation of K	125
			i.	Practical design	
			ii.	Design using PSpice	
			iii.	Conclusion	
v	STU REJ	DY O ECT F	F BAN	ND PASS AND BAND CR	131-159
	5.1	Intro	ductio	on	131
	5.2	First	Order	Band Pass Filter	132
	5.3	Seco	nd Or	der Band Pass Filter	134
	5.4	Desi	gn of]	Band Pass Filter	136
	5.5	Mult Atter	iple Foundation	eedback Band Pass Filter With	136
	5.6	Study of Q	y of B	and pass Filter with variation	139
		i.	Prac	tical design	
		ii.	Desi	ign with PSpice	
		iii	Con	clusion	

CHAPTER			PAGE No.		
	5.7	Study	145		
		A)	Stuc	ly With Variation of Q	148
			i.	Practical design	
			ii.	Design using PSpice	
			iii.	Conclusion	
		B)	Stuc	ly with Variation of R_3	154
			i.	Practical design	
			ii.	Design using PSpice	
			iii.	Conclusion	
VI	SUM	MARY	Y AN	D CONCLUSIONS	160-166
	6.1	Sum	mary		
	6.2	Cone	clusio	ons	
	REFE	CREN	CES		167-174

.