
9 The best language for server-side applications

Even if application servers make sense, what's uniquely compelling about a Java 

application server? Does it really make such a difference in bringing a product to market. 

Java developers are convinced that it does, for these reasons:

• It is a better "3GL." Java is a simpler, higher-level alternative to C++, and still 

scales to larger problems.

• It is a better "4GL." Java comes with many useful classes and it's easy to extend it 

with higher-level, reusable business abstractions.

• It is ubiquitous. Java is everywhere the I*Net is.

• It is mature. While the AFC/JFC battle wages, server-side Java is solid today.

• It is robust. On a single machine, that robustness means these immense reductions 

in time-to-market for Java developers:

o It is interpreted.

o No memory leaks.

o No memory reference errors (scribble bugs).

o When multiple components are integrated, failures can be diagnosed more 

easily — no segmentation violations.

• Neither is Java fragile on a network. Java provides these development features 

that translate into money and time saved in bringing a product to production and 

maintaining it over its lifetime:

o Its higher-level representations — business objects — like customer, 

account, money, etc., can be communicated as objects, that is, passed by 

value.

o Changing underlying representations of objects need not break remote 

applications.

Design of current Web Based Application Server 65



o It makes possible the dynamic loading of new functionality via standard 

bytecodes, which means that clients and servers can be specialized or 

updated at runtime.

o Garbage collection is distributed.

• It provides a platform for component-oriented computing. Any Java developer 

can assemble best-of-breed solutions out of reusable JavaBeans, rather than 

reengineering new applications monolithically from GUI-to-data formats.

• It is plenty fast. Much is made of the performance gap between Java and C/C++ 

native code, but for a typical distributed business application, 60-80% of the CPU 

typically goes to the DBMS and another 5-15% goes to the network. So even if 

your Java application logic is two or three times as slow (and it's not any worse 

than that), Java will — at worst - slow your application by 10-20% today. And 

Java performance is improving rapidly relative to the native-compiled 3GLs.

9.1 Characteristics of a Java application server

A Java application server brings the full power and ease-of-use of Java to an I*Net 

application server. This paper identifies the key characteristics of a Java application 

server and discusses why a Java application server makes developing and deploying 

production-quality faster and easier.

First, to define what a Java application server is, we examine what a Java application 

server must do:

• Make it easy to develop and deploy distributed Java applications.

• Scale to permit hundreds and even thousands of cooperative servers to be 

accessed from tens of thousands of clients. That requires that it must:

o Be fully multithreaded,

Design of current Web Based Application Server 66



o Be parsimonious in its consumption of network connections and other 

scarce resources, and

o Have no architectural bottlenecks that prevent linear scaling.

• Provide an integrated management environment for comprehensive view of 

application resources (for example, Java Beans, objects, events, etc.), network 

resources (DBMSes), system resources (ACLs, threads, sockets, etc.), and 

diagnostic information (unchecked exceptions, logs).

• Provide transaction semantics to protect the integrity of corporate data even as it 

is accessed by distributed business components.

• Provide secure communications, including SSL support, access control lists 

(ACLs), as well as HTTP and HOP tunneling for transfirewall communications.

These requirements are a minimum for any Java application server. More controversially, 

BEA claims that a Java application server must also do the following:

• Provide rich, very flexible application architectures without complexity. That in 

turn requires these features:

o Secure, transactional DBMS access from the client and/or server.

o Event publishing and subscription from the client and/or server.

o Remote component (Java Bean) and object invocation from client-to- 

server, server-to-client, server-to-server, and client-to-client.

• Support Java industry-standard ways of programming. Wrapping C/C++ APIs 

with Java veneers is insufficient for a Java developer who wants both the richness 

of Java and to avoid reliance on proprietary programming models. To satisfy Java 

developers, the Java application server must also offer these features:

o Database access via JDBC.

o Name system and directory access via JNDI.

Design of current Web Based Application Server 67



o Remote object invocation via RMI.

o Dynamic application partitioning via JavaBeans. 

o Event management and messaging via JMS. 

o Runtime management via JMAPI.

• Support a variety of clients and allow server-side business components to be re

used as they are accessed via HTTP, RMI, event invocation, etc.

• Be compatible with leading industry IDEs (for example, Borland JBuilder, 

WebGain VisualCafe, MS Visual J++). The application server's ease-of-use 

should be exposed via a standard IDE rather than requiring user to adopt an IDE 

proprietary to the application server.

• Be compatible with industry leading DBMSes (for example, Oracle, MS SQL 

Server, Sybase, Informix, DB2). An application server should not limit its 

database support to a single DBMS, or otherwise be DBMS-specific in such a 

way that limits its scope of use.

• Be compatible with standard Java platforms (for example, Sun, Microsoft, IBM, 

Digital, HP, Netscape, Novell, etc.). Application servers should not require the 

user to embrace JVM/JIT technology that is proprietary to the application server.

• Be packaged as embeddable infrastructure so that the application server itself can 

be easily bundled with third-party value-added solutions.

• Be written entirely (100%) in Java (both the client- and server-side), to insure the 

following:

o Complete portability.

o Complete support for all Java native features like passing objects by value, 

dynamic update of system and business programs, and.

o That Java features and capabilities can be exposed naturally and rapidly.

Design of current Web Based Application Server 68



EJB uses RMI-IIOP for communication. The main difference is in that EJB formalizes 

how to define your remote server classes and interfaces. EJB also defines how to access 

Application Server functionality. But from a communications point of view the 

differences between EJB and RIM-IIOP is small. NB. I RMI-IIOP demands a little more 

formalism than plain RMI, thus the differences between EJB and RMI is larger but still of 

the same kind.

Design of current Web Based Application Server 69


