CONTENTS

CHAPTER		TITLE	PAGE NO.
	INTRO	DUCTION	1
I	REVIEW OF	LITERATURE	19
	Α.	DIRECT INJURY	22
	В.	INDIRECT INJURY	24
		a) Solute leakage.	24
	•	b) Respiratory Upset.	25
		c) Toxins.	27
		d) Protein breakdown.	29 ′
		e) Enzyme activity.	30
		f) Biological lesions.	31
		g) Photosynthesis.	33
		h) Protoplasmic streaming	33
		i) Stimulation of Ethylene produc	ction 35
	С.	SECONDARY STRESS INJURY	36
	D.	MECHANISM OF CHILLING INJURY	37
		a) Metabolic disturbances 1	eading to
		indirect injury.	37
		i) Differences in energy of ac	tivation. 37
		ii) Membrane bound enzyme inact	ivation. 38
		b) Permeability changes.	41
		i) Increased permeability lea	ding to
		direct injury.	41
		ii) Decreased permeability le	ading to
		secondary water stress in	jury 42

CHAPTER	TITLE PAGE	NO.
	c) Mechanism of chilling injury	44
	i) Recently published hypothesis.	47
	ii) Chilling injury not associated	
	with lipid phase transition.	49
Ε.	CHILLING SUSCEPTIBILITY	50
F.	CHILLING RESISTANCE	52
	a) Increased unsaturation of fatty acid	s . 5 3
	b) Other lipid factors.	55
	c) Soluble proteins.	56
G.	HORTICULTURAL MANIFESTATION	57
н.	ALLEVIATING CHILLING INJURY	60
	a) Manipulating the storage environment	61
	b) Hypobaric storage.	62
	c) Chemical treatment.	63
I F	LANTS UNDER INVESTIGATION	65
II MATERIAI	AND METHODS	
A	MATERIAL	70
В	METHODS	72
	a) Moisture.	72
	b) Photosynthetic pigments.	72
•	i) Chlorophylls.	72
	ii) Carotenoids.	73
	iii) Absorption spectrum of photosynth	etic
	pigments.	74
	c) Carbohydrates.	74

CHAPTER		TITLE		PAGE NO	
		d)	Polyphenols.		7 7
		e)	Soluble proteins.		78
		f)	Proline.		79
		g)	Nitrate.		80
		h)	Ascorbic acid.		. 81
		i)	Enzymes.		83
		i)	Hydroxyperoxidases.		83
		1)	Peroxidase.		83
		2)	Catalase.		84
		ii)	Nitrate reductase.		86
III RES	ULTS AN	ND DIS	CUSSION		
	Α.	Mois	ture.		88
	В.	Phot	osynthetic pigments.		94
		a)	Chlorophylls.		94
		b)	Carotenoids.		103
	,	c)	Absorption spectrum	of	photosynthetic
			pigments.		108
	C.	Carb	ohydrates.		118
	D.	Poly	phenols.		128
	Ε.	Solu	able proteins.		134
	F.	Prol	ine.		142
	G.	Niti	cate.		150
	н.	Asco	orbic acid.		157
	I.	Enzy	ymes.		164
		a)	Hydroxyperoxidases		165
		i)	Peroxidase		166

CHAPTER		TITLE	PAGE NO	
	ii)	Catalase.	172	
	b)	Nitrate reductase.	177	
IV SUM	SUMMARY AND CONCLUSIONS			
	BIBI	206		

.