## CHAPTER - III

.

,

## LITHIUM CHLORIDE IN UREA-WATER SYSTEM VISCOSITY RESULTS AND DISCUSSION

#### <u>CHAPTER-III</u>

#### **RESULTS AND DISCUSSION**

The relative viscosities and densities of Lithium chloride solutions in 0%, 5%, 10%, 15% and 20% by weight of urea in urea-water mixture were determined. The relative viscosity of a solution was determined by determining its density and time of flow very accurately as described in Chapter II. The various temperatures studied were 293°, 298°, 303°, and 308°K.

The concentration range of Lithium chloride was varied from 0.1 M to 2.0 M.

Experiments were designated to include the following studies.

- 1) The effect of concentration of lithium chloride on viscosity.
- 2) The effect of urea percentage on viscosity.
- 3) The effect of temperature on viscosity.
- 4) The transport properties.

The data on determination of density, time of flow, relative viscosity and viscosity of solutions having different concentrations of LiCl and different percentages of urea by weight at 293°K, 298°K, 303°K and 308°K are given in Table 3.1 to 3.4.

•

ĉ

#### Effect of concentration of Lithium chloride on viscosity :

The results on the effect of variation of lithium chroride concentration (0.1 M to 2 M) in 0% urea water solution at 293°K are given in the Table 3.1. The relative viscosity of 0.1 M LiCl solution was 1.02 and it increased to 1.093 for 0.5 M solution and to 1.3925 for 2 M concentration i.e. the relative viscosity ( $\eta_r$ ) increases from 1.02 to 1.392 at 293°K, as the concentration of LiCl is increased from 0.1 M to 2 M. In 5% urea solution, relative viscosity changes from 1.0126 to 1.36 for same range of concentration. In 10% urea solution relative viscosity changes from 1.02 to 1.3438. In 15% urea solution relative viscosity changes from 1.0166 to 1.33 and finally in 20% urea solution it changes from 1.015 to 1.12974.

So it can be seen that as the concentration of LiCl is increased the relative viscosity increases at constant temperature.

In general, it can be said that the relative viscosity of solution increases with increase in concentration of LiCl. However, the relative increase in viscosity seems to be decreasing with increase in the weight percentage of urea in the solution. The relative viscosity ( $n_r$ ) is plotted against the concentration of LiCl in different concentrations of urea added and it is seen from these plots (Fig.3.2) that relative viscosity varies linearly with the concentration of LiCl It is further seen that the slope of the line is a function of urea concentration. The slope seems to decrease with increase in urea concentration. The plots obtained at other temperatures (298°, 303° and 308°K) are given in Fig. 3.3 to 3.5.

Similar results have been observed at other temperatures as 298°K, 303°K and 308°K.

#### 3.2 Effect of urea on viscosity :

At a given temperature  $298^{\circ}$ K and for a given concentration of lithium chloride (1.5 M), the observed relative viscosity of lithium chloride solution was :

| 1.2860 | in | 0 % | urea | solution |
|--------|----|-----|------|----------|
| 1.2670 | in | 5 % | urea | solution |
| 1.2568 | in | 10% | urea | solution |
| 1.220  | in | 15% | urea | solution |
| 1.211  | in | 20% | urea | solution |

At 293°K the relative viscosity is seen to decrease from 1.2975 to 1.2260 while at 303°K the relative viscosity decreases from 1.2770 to 1.20. At 308°K the relative viscosity decreases from 1.2625 to 1.1750. It can be seen, in general, that as the urea concentration increases the relative viscosity ( $\eta_r$ ) decreases. Similar results were obtained for other concentrations i.e. 0.1 M to 2 M Lithium chloride. The plots of  $\eta_r$  Vs concentration of urea are given in Fig. 3.21 (for 1.5 M LiCl at different urea %age ). The plots are not linear.

#### 3.3 Effect of Temperature on Viscosity :

When 1 M Lithium chloride (definate concentration) in 5% urea + Water mixture (fixed urea concentration) studied at different temperatures results obtained were At 293 1 M LiCl in 5% urea solution = 1.1851 At 298 ,, , , = 1.1680

| At | 303 | , , | • • | = 1.1547 |
|----|-----|-----|-----|----------|
| At | 308 |     |     | = 1.1488 |

Here 5% urea solutiion was taken.

The relative viscosity  $(\eta_r)$  decreases from 1.1850 to 1.1488.

 for 10% urea solution it decreases from 1.1680 to 1.1358.

 for 15%
 ,,
 1.1580 to 1.1280.

 for 20%
 ,,
 1.15 to 1.12.

 when temperature was changed from 293°K to 308°K.

Similar results were obtained for other concentrations i.e. from 0.1 M to 2 M LiCl solution.

It can be seen that the relative viscosity (  $\eta_r$ ) decreases as temperature increases. Plots of relative viscosity  $\eta_r$  Vs temperature are given in Fig. 3.22 and it is seen from figure that the plots are non-linear.

#### Applications of different equations :

The viscosity data given above have been examined in the light of the following equations.

- 1) Jones Dole equation
- 2) Vand equation
- 3) Moulik equation
- 4) Thomas equation.

52

#### 1) Jones Dole Equation :

It has been assumed that the relative viscosity of electrolyte may be represented by Jones Dole equation  $^{15}$  given below :

$$\eta_r = 1 + A \sqrt{C} + BC$$

where  $\eta_r$  is the relative viscosity of solution and C is the molar concentration.

A is the Falkenhagen coefficient  $^{19}$  that takes into account ionic interactioins.

B is the Jones Dole coefficient that is related to the size of the ions and to the different ion solvent interactions.

However, at high concentrations (  $C \ge 0.1$  M) B overweights the effect of 'A' resulting the equation

$$n_r = 1 + BC$$
 ... (1)

To test the validity of Jones Dole equation, is first to see if a straight line is obtained for the plot of  $\eta_r$  against C and the slope is calculated which gives the value of B. The intercept will be one. The satisfactory agreement between the calculated values of 'B' and that obtained by the graphical method is further test of the Jones Dole equation.

Now, in the present communication we have analysed the data in the light of equation (1). The experimental data recorded in table shows that the plots of  $n_r$  Vs C are linear over wide range of concentration of LiCl as shown in Fig. 3.2 indicating thereby that Jone Dole equation is adequate to describe the concentration effect on viscosity. The slope gave the coefficient 'B'. The values of 'B' thus obtained are given in Table No. 3.5.

The values of B calculated by least square method are also given in Table No. 3.5. As urea concentration increased from 0% to 20%, the B coefficient values at 293°K decreases from 0.1950 to 0.148  $1.mol^{-1}$ At 298 it decreases from 0.1916 to 0.141 1 mol<sup>-1</sup> At 303 it decreases from 0.19166 to 0.1375 1 mol<sup>-1</sup> At 308 it decreases from 0.17916 to 0.10 1 mol<sup>-1</sup>

As temperature was changed from 293 to 308°K, B coefficient values at 5% urea decreases from 0.175 to 0.1541. at 10% urea solution it decreases from 0.1708 to 0.1416 at 15% urea solution it decreases from 0.166 to 0.133 and 20% urea solution it decreases from 0.1418 to 0.10.

Thus the values of 'B' coefficient are all positive and found to decrease with increase in temperature as well as with urea compositions.

The intercept of all the plots is to be nearly the same and equal to unity.

The Jones Dole equation is satisfactorily applicable for the lithium concentration range from 0.1 M to 2.0 M solution for all urea + water composition.

#### 3.4.2 Vand Equation :

The viscosity data have been examined in the light of Vand equation<sup>51</sup> which may be given as

$$\ln \eta_r = \frac{2.5\phi}{1-0\phi} ....(2)$$

which is applicable for viscosity of aqueous solutions of both electro lytes and noin electrolytes at higher concentration,  $\phi$  is volume fraction and is equal to C V, V being molar volume of electrolyte in solution and Q is the interaction coefficient. The equation of Vand have been rearranged in the linear form as

$$\frac{1}{C} = \frac{(0.921)}{V} \frac{1}{\log \eta r} + Q V \qquad \dots (3)$$

The plot of  $\frac{1}{\log n_r}$  Vs  $\frac{1}{C}$  is straight line with Q V as intercept and  $\frac{0.921}{V}$  as the slope.

#### 3.6to 3.10

The plots are drawn using data given in Tables . The plots of  $\frac{1}{\log n_r}$  vs  $\frac{1}{C}$  shown in Figs. 3.6-3 pare linear. The Vand equation is applicable in the concentration range 0.4 M to 2.0 M. At lower concentrations are observed. The viscosity parameters Q and V ca<sup>-</sup>culated by graphical method are given in Tables 3.11. When temperature is increased from 293 to 308 V values of 0% urea solution decreases from 0.076 to 0.051 similar pattern is seen in 10%, 15% and 20% urea solution.

When urea concentration was changed from 0% to 20% at constant temperature (293°K), V values decreases from 0.076 to 0.06. Similar



1.1

observations were seen at other temperatures as 298°K, 303°K and 308°K Thus V values decreases with rise of temperature as well as increase in urea concentration.

3.4.3 Breslau and Miller<sup>56</sup> have suggested a relationship between V and B for uni-unit valent electrolyte.

$$B = 2.90 V - 0.0^{\circ}9$$

The ratio of B/V for LiCl is 2.56 at 0% urea and 2.46 at 20% urea at 293°K.

3) Moulik Equation :

It has been observed that the relative viscosities of the electrolytic solutions like urea-water may be represented by Moulik equation  $^{54}$  as

$$n_r^2 = M + K' C^2$$

Where M and K' are constants.

These parameters cannot be evaluated theoretically therefore, graphical testing has been performed. The same has been performed in the present work.

The applicability of Moulik equation has been tested from the linear plots of  $n_r^2$  Vs C<sup>2</sup>. The plots are drawn using the data given in Table No. 3.6. The plots of  $n_r^2$  Vs C<sup>2</sup> are shown in Fig. 3.61. The intercepts and slopes of straight line plots yield M and K' respectively.

At temp. 293°K values decreases from 0.475 to 0.2625 when urea concentration increased from 0% to 20%. (Table 3.139)

The K value decreases from 0.475 to 0.3583 when temperature increased from 293 to 308.

The M value increases from 1.075 to 1.08 at 293 when urea concentration changes from 0% to 20%.

The M values decreases from 1.075 to 1.06 when temperature changed from 293 to 208°K.

It can be shown that the content M increases with increase in urea concentration and decreases with rise of temperature. The constant K decreases with increase in temperature and concentration of urea It is seen that the change in M or K values is very small.

It can also be seen from the plots that the equation is only applicable in the concentration range of 0.3 M to 0.75 M. After this concentrations deviations are seen.

#### 4) Thomas Equation :

For higher concentration of electrolyte  $\mathsf{Thomas}^{105}$  put forwarded the equation as

 $\eta_r = 1 + 2.5\phi + 10.05\phi^2$ 

where  $\phi$  is a volume fraction given by C  $\overline{V}$  where  $\overline{V}$  is the effective rigid molar volume. The above equation may be written as

$$\frac{\eta r^{-1}}{C} = 2.5 \,\overline{V} + (10.05 \,\overline{V}^2) \,C$$

Where C is the molar concentration.

The applicability of Thomas equation can be tested from the linear plots of  $\frac{n_r^{-1}}{r}$  Vs C. Hence using the data given in Table 3.6.

 $n_r^{-1}$  / C Vs C is plotted in Fig. 3.16. It can be seen that the plots are not linear, therefore, Thomas equation is not valid for lithium chloride in the concentration range 0.1 M to 2 M.

From the results to Moulik<sup>54</sup> it also indicates that Thomas equa tion in its full form, is not valid for few electrolytes and may not be valid for many non-electrolytes.

#### B) Values from different equations :

B-values were calculated by using different equations, and shown in Table No. 3.5 . It is seen that the B-values are nearly constant.

#### V - values from different equations :

V values were calculated by using different equation and are shown in Table No. 3.11. It is seen that the values are nearly constant.

#### DISCUSSION

# The concept of structure making and structure breaking effect of solutes 102 :

The water molecules can be considered to be in dynamic equilibrium between the bulky tetrahedrally hydrogen bonded clusters and the denser monomer molecules, and represented by

The statistical degree of ice-likeness (or whatever its structure in water is) is considered to be proportional to the half life of the clusters, which is of the order of  $10^{-11}$ S in pure water<sup>106</sup> when a solute is put into water, it is assumed that the former may shift the equil/ibrium in either direction. A solute which causes a shift so as to increase the number and the average half-life of the cluster is termed a structure maker, and a solute which has an effect in the opposite direction is called a structure breaker.<sup>106</sup>

Although the concept of structure making and breaking effects of solutes is not entirely satisfactory, it has proved useful in discussing the effects of solutes on water structure. These effects can be detected experimentally by observing the changes brought about by the solutes in the properties of water, such as fluidity, reorientation time, viscosity, conductance and heat capacity. For instance, structure makers are shown to decrease the fluidity of water (by causding an increase in reorientation time and increase in viscosity) and result in positive excess partial molar heat capacities in water. The reverse is true for structure-breakers.

Frank and Wen<sup>106</sup> in order to explain these phenomena visualized a picture (see Fig. 3.1a and 3.1b) in which an ion is surrounded by concentric regions of water molecules. The intermost region 'A' consists of water molecules polarized, immobilized and electrostricted by the ion. The water molecules in the region C have the normal liquid structure which is polarized in the usual way by the ionic field which at this range will be relatively weak.

The intermediate region B is the region in which water is less ice-like, i.e. more randomly ordered than the normal water. The decreased structure in this region is presumably due to the approximate balance of two competing forces, namely the normal structureorientating influence of the neighbouring water molecules, and the radially orientating influence of the electric field of the ion, which act simultaneously on any water molecule in this region the latter ionic influence predominates in the region A and the former in region C, and between A and C there should be a region of finite with in which more orientational disorder should exist than in either A or C. Now, it was assumed in the flickering cluster model  $^{106}$ of water that the lifetime of a cluster is essentially dependent on the fluctuations of energy produced in the liquid water. An ion with its first layer of water molecule will be a disturbing centre which would both interfere with the initiation of clusters and hasten their disruption. Ions with low charge density have relatively weak





electrostatic fields which makes the region. A very small thereby causing net decrease in structure. In the case of structure-making ions of high charge density, the region A of immobilization exceeds region B which results in a net structural increase around these ions.

#### B Values or Coefficient :

To explain the nature of 'B' Cox and Wolfenden<sup>20</sup> have attributed specific additive character of 'B' depending on the constituent ion. Asmus<sup>21</sup> on the other hand suggests 'B' to be dependent on the lyotropic number and the entropy of hydration of the ionic species present in the medium.

Kaminsky<sup>103</sup> and Gurney<sup>106</sup> have suggested that 'B' (in Jones Dole eauation) is a measure of ion dipole interaction between the ion and the solvent molecules and have supported the idea of partitioning the 'B' coefficients to their ionic components assuming that the 'B' components of potassium and chloride ions are equal in potassium chloride. When such interaction is considered, the magnitude of 'B' is dependent on the manner and the extent to which the ions orient the water dipole in their cospheres at a particular temperature.

It is evident from Table 3.5 that B coefficients are all positive but small in magnitude and decrease with increase in temperature as well as with increase in urea content at a particular temperature.

B-coefficient is an adjustable parameter either positive or negative and is said to be measure of effective hydrodynamic volume of solvated ions that accounts for ion-solvent interaction.<sup>107</sup> It is also known as a measure of order or disorder introduced by ions in the solvent structure.

Recently it has been emphasized by a number of workers that dB/dT is a more important criterion for determining the solute-solvent interactions. Viscosity study of number of such solutifons has shown that structure makers will have negative values or dB/dT and structure breakers positive values. Accordingly, in the present case the negative temperature coefficient of B in 5%, 10%, 15% and 20% urea water mixture suggest that Lithium chloride behaves as a structure maker/ promoter.

#### d) Dependence of 'B' on Temperature :

According to Stokes and Mills,<sup>49</sup> the viscosity of dilute electrolytic solutions incorporates that of the solvent and the contribution from other sources. They are  $n_E$ , the positive increase due to the shape and size of the ion,  $n_A$  the increase due to the alignment or orientation of the polar molecules by the ionic field  $n_D$ , the decrease in viscosity arising out of the distortion of the solvent structure. Therefore, 'B' coefficients can be discussed in terms of these viscosity effects at different temperatures. Kiminsky<sup>103</sup> has related negative temperature coefficient of 'B' to the fact that oriented water molecules in the secondary layer will be less rigidly held due to increased thermal motion. This will give a significant decrease in  $n_A$ . However, inspite of this decrease the sum of  $n_E + n_D$  will still be larger than  $n_D$  because with increasing temperature  $n_D$  will decrease due to less competition between the ionic field and the reduced solvent structure.  $n_E$  will remain fairly constant and  $n_A$  will decrease fairly slowly so that eventually  $n_E + n_A > n_D$  and 'B' will be positive. Nightingale also suggests that hydration may increase as the water structure is broken down but it is arguable that the increased thermal motion would counteract this tendency. It may be added that there is no thermodynamic evidence

## to support increased hydration.

#### e) Dependence of B on urea content :

The decrease in 'B' coefficient with increase in urea content in the solvent mixture (Table 3.5) may be attributed to the small size of the solvent molecules and also to the weak association between water and urea through hydrogen bonding<sup>77</sup> and for solvated ions it would lead to smaller values of  $n_E$  and  $n_A$ . Consequently, the 'B' coefficient becomes smaller and smaller with the increase in urea content in the medium.

Addition of small amounts of urea to water may give rise to two effects. If the urea is accommodated in the solvent structure, it may strengthen the water structure and B value will increase with increase in urea content.

Since urea is basic and water automatically acts as an acid the three dimnsional water structure is broken down and the 'R' coeffi cient is expected to decrease with the increase in urea content. The latter is in conformity with the experimental results.

The structure-making<sup>57</sup> ions have positive ionic molar volume  $(V \neq)$  and hydration number (NB) and structure breaking ions have negative ionic molar volumes  $(V \neq)$  and hydration number in solution. Hydration number (NB) of ion can be obtained from the equation

$$V_{\neq} = V_{o \text{ ion}} + N_B V_S^o$$

where  $V_0$  ion is the free ionic volume calculated from equation  $V^0$  ion = 2.52  $r^3$  (r = ionic radius) and  $V_S$  is the molar volume of water equal to 6.62 cm<sup>3</sup> mole<sup>-1</sup>. The hydration numbers of positive and negative ions bear different linear relationship with their ionic B coefficient. This supports the idea that structure making ion have positive ionic molar volumes, positive hydration numbers and positive entropy changes while structure breaking ions have negative ionic molar volumes, and negative entropy changes in aqueous solutions.

The idea of positive and negative hydration and hence the positive and negative hydration numbers get support from the work of Angel<sup>100</sup>. The values of ionic parameters at 298°K in 0% urea water solution are given in Table 3.14. From the table it is seen that ionic parameter values of Li<sup>+</sup> ion are all positive. This supports the idea<sup>109,110</sup> that Li<sup>+</sup> ion is electrostictive structure making ion with positive ionic volume (V  $\neq$  ), hydration number (NB) and entropy change( $\Delta$ S\*).

#### 3.5 TRANSPORT PROPERTIES :

From the table No.3.14, it is seen that the energy and entropy of activation of the viscous flow of solution are more than those of solvent. When  $\Delta E^*$  and  $\Delta S^*$  of viscous flow are less than that of solvent indicates solute-solvent interaction and when  $\Delta E^*$  and  $\Delta S^*$  of viscous flow are more than that of solvent indicates little solute solvent interaction.<sup>27,28,30</sup> In our calculations  $\Delta E^*$  and  $\Delta S^*$  of viscous flow of solutions are more than that of solvents shows that there is little solute solvent interaction.

According to D.K.Das and P.B.Das $^{37}$  when  $\triangle F^*$ ,  $\triangle F^*$  and  $\triangle S^*$ values are less than that of solvent. It indicates structure breaking effect and when  $\Delta E^*$ ,  $\Delta F^*$  and  $\Delta S^*$  values are more than solvent indicates structure making effect. They have studied thermodynamic properties of cadmium nitrate and strontinum nitrate in different weight proportions of methanol at  $308^{\circ}$ K. According to them  $\Delta E^{*}$ ,  $\Delta S^{*}$ and  $\Delta F^*$  values of viscous flow of solutions are less than that of solvents indicating structure breaking effect. In our data  $\Delta E^*, \Delta S^*$  $\Delta F^*$  of viscous flow are more than that of solvent indicates and structure making effect of lithium chloride. From above results it clearly indicates that due to presence of Li<sup>+</sup>, the solvent structure is stabilised. It not only stabilises the solvent structure but also predominatesd over the structure breaking properties of its partner. The thermodynamic parameters of viscous flow of Lithium chloride in 10% urea-water solution are calculated at 298°K. The values are represented in Table 3.15. These results are in agreement with

#### ? F TRANSPORT PROPERTIES :

From the table No.3.14, it is seen that the energy and entropy of activation of the viscous flow of solution are more than those of solvent. When  $\Delta E^*$  and  $\Delta S^*$  of viscous flow are less than that of solvent indicates solute-solvent interaction and when  $\Delta E^*$  and  $\Delta S^*$  of viscous flow are more than that of solvent indicates little solute solvent interaction.<sup>27,28,30</sup> In our calculations  $\Delta E^*$  and  $\Delta S^*$  of viscous flow of solutions are more than that of solvents shows that there is little solute solvent interaction.

According to P.K.Das and P.B.Das<sup>27</sup> when  $\triangle E^*$ ,  $\triangle F^*$  and  $\triangle S^*$ values are less than that of solvent. It indicates structure breaking effect and when  $\Delta E^*$ ,  $\Delta F^*$  and  $\Delta S^*$  values are more than solvent indicates structure making effect. They have studied thermodynamic properties of cadmium nitrate and strontinum nitrate in different weight proportions of methanol at 308°K. According to them DE\*, DS\* and DF\* values of viscous flow of solutions are less than that of solvents indicating structure breaking effect. In our data  $DE^*$ ,  $\Delta S^*$ and  $\triangle F^*$  of viscous flow are more than that of solvent indicates structure making effect of lithium chloride. From above results it clearly indicates that due to presence of lit, the solvent structure is stabilised. It not only stabilises the solvent structure but also predominatesd over the structure breaking properties of its partner. The thermodynamic parameters of viscous flow of Lithium chloride in 107 urea-water solution are calculated at  $298^{34}$ . The values are represented in Table 3.15. These results are in agreement with

results of H.Macdonald. They have discussed the dependence of thermodynamic parameters of viscous flow on concentration of structuremaking electrolytes and structure-breaking electrolytes. According to them in case of structure making electrolyte  $\Delta E^*$  of viscous flow remains constant with an increase in concentration of the electrolyte,  $\Delta S^*$  decreases and  $\Delta F^*$  increases slightly. It is seen from table 3.15 that  $\Delta E^*$  of viscous flow remains constant with increase in concentration of lithium chloride,  $\Delta S^*$  decreases and  $\Delta F^*$  increases slightly. It indicates that lithium chloride is structure maker.

.

## TABLE 3.1

Viscosity data for Lithium chloride in different urea-water compositions at 293°K.

| Concentration | Density             | Av.time         | , <sup>η</sup> r,                                            | η<br>2  |
|---------------|---------------------|-----------------|--------------------------------------------------------------|---------|
| moles/litre   | g mol <sup>-1</sup> | sec.            | d <sub>c</sub> t <sub>c</sub> /d <sub>e</sub> t <sub>o</sub> | mN sm - |
|               | L11 9               | of when in when | $\mu_{10} = 0\%$                                             |         |
|               | Wit /a              | or urea in urea | ± 2° · · · · ·                                               |         |
| 0.1           | 1.05786             | 304.0           | 1.02501                                                      | 1.21712 |
| 0.2           | 1.06000             | 308.0           | 1.04124                                                      | 1.23562 |
| 0.3           | 1.06178             | 309.5           | 1.06001                                                      | 1.24375 |
| 0.4           | 1.06399             | 317.0           | 1.07754                                                      | 1.27653 |
| 0.5           | 1.06639             | 321.5           | 1.09312                                                      | 1.29764 |
| 0.75          | 1.07157             | 334.0           | 1.14522                                                      | 1.34801 |
| 1.0           | 1.07653             | 349.0           | 1.19825                                                      | 1.42202 |
| 1.5           | 1.08701             | 374.5           | 1.29756                                                      | 1.54071 |
| 2.0           | 1.09673             | 399.5           | 1.39254                                                      | 1.65621 |
|               |                     |                 |                                                              |         |
|               | wt 🎗                | of urea in urea | $+ H_2 0 = 5 \%$                                             |         |
|               |                     |                 | ۲.                                                           |         |
| :             |                     |                 |                                                              |         |
| 0.1           | 1.04365             | 289.0           | 1.01262                                                      | 1.14152 |
| 0.2           | 1.04585             | 293.0           | 1.03581                                                      | 1.16765 |
| 0.3           | 1.04831             | 300.0           | 1.05592                                                      | 1.19034 |
| 0.4           | 1.05025             | 304.0           | 1.07195                                                      | 1.20832 |
| 0.5           | 1.05241             | 308.5           | 1.08502                                                      | 1.22881 |
| 0.75          | 1.05802             | 318.4           | 1.12963                                                      | 1.27342 |
| 1.0           | 1.06321             | 332.0           | 1.18511                                                      | 1.33601 |
| 1.5           | 1.07375             | 356.5           | 1.27625                                                      | 1.43871 |
| 2.0           | 1.08361             | 375.0           | 1.36501                                                      | 1.53792 |
|               |                     |                 |                                                              |         |

717

| Concentration | Density | Av.time         | n <sub>r</sub>                                               | n<br>1 –2 |
|---------------|---------|-----------------|--------------------------------------------------------------|-----------|
| moles/litre   | g mol-1 | sec.            | d <sub>c</sub> t <sub>c</sub> /d <sub>o</sub> t <sub>o</sub> | mN sm -   |
|               |         |                 |                                                              |           |
|               | Wt % c  | of urea in urea | $+ H_2 0 = 10 \%$                                            |           |
| 0.1           | 1 02002 | 000 r           | 1 00100                                                      | 1 10410   |
| 0.1           | 1.02902 | 283.5<br>286 5  | 1.02192                                                      | 1.10413   |
| 0.2           | 1.03751 | 200.0           | 1.04001                                                      | 1 12440   |
| 0.3           | 1.03305 | 290.0           | 1.04991                                                      | 1.15449   |
| 0.4           | 1.04081 | 296.5           | 1.07002                                                      | 1.16800   |
| 0.5           | 1.04272 | 297.7           | 1.08732                                                      | 1.17487   |
| 0.75          | 1.04731 | 307.5           | 1.12803                                                      | 1.21692   |
| 1.0           | 1.05194 | 319.0           | 1.16804                                                      | 1.37009   |
| 1.5           | 1.06113 | 340.0           | 1.26375                                                      | 1.36549   |
| 2.0           | 1.07021 | 357.2           | 1.34581                                                      | 1.47943   |
|               |         |                 |                                                              |           |
|               | wt % (  | of urea in urea | $+ H_2 0 = 15 \%$                                            |           |
| 0 1           | 1.01641 | 278 0           | 1 01662                                                      | 1 06942   |
| 0.2           | 1.02041 | 282 0           | 1.03441                                                      | 1 08871   |
| 0.2           | 1.02131 | 286 0           | 1 05041                                                      | 1 10552   |
| 0.0           | 1 02431 | 289 0           | 1 06341                                                      | 1 11853   |
| 0.5           | 1 02712 | 202.0           | 1 07021                                                      | 1 12512   |
| 0.5           | 1.02201 | 292.0           | 1.0/921                                                      | 1.13012   |
| 0.75          | 1.03291 | 301.0           | 1.11864                                                      | 1.17682   |
| 1.0           | 1.03901 | 310.0           | 1.15801                                                      | 1.21903   |
| 1.5           | 1.05182 | 332.5           | 1.25834                                                      | 1.32378   |
| 2.0           | 1.06421 | 348.0           | 1.33241                                                      | 1.40165   |

| Concentration | Density             | Av.time         | Ŋr                                                           | η2                 |
|---------------|---------------------|-----------------|--------------------------------------------------------------|--------------------|
| moles/litre   | g mol <sup>-1</sup> | sec.            | d <sub>c</sub> t <sub>c</sub> /d <sub>o</sub> t <sub>o</sub> | mN sm <sup>2</sup> |
|               |                     |                 |                                                              |                    |
|               | Wt 🖁                | of urea in urea | $+ H_20 = 20 \%$                                             |                    |
|               |                     |                 | L                                                            |                    |
| 0.1           | 1.00275             | 269.0           | 1.01585                                                      | 1.02093            |
| 0.2           | 1.00523             | 273.0           | 1.03351                                                      | 1.03867            |
| 0.3           | 1.00751             | 276.0           | 1.04572                                                      | 1.05241            |
| 0.4           | 1.00979             | 279.0           | 1.06102                                                      | 1.06632            |
| 0.5           | 1.01231             | 282.5           | 1.07510                                                      | 1.08048            |
| 0.75          | 1.01806             | 239.0           | 1.10804                                                      | 1.11358            |
| 1.0           | 1.02368             | 298.5           | 1.15079                                                      | 1.15654            |
| 1.5           | 1.03514             | 314.5           | 1.22605                                                      | 1.23212            |
| 2.0           | 1.04556             | 329.5           | 1.1.2974                                                     | 1.30394            |
|               |                     |                 |                                                              |                    |

,

•

## TABLE 3.2

Viscosity data for Lithium chloride in different urea-water compositions at 298°K.

| Concentration moles/litre | Density | Av.time             | d <sub>c</sub> t <sub>c</sub> /d <sub>e</sub> t <sub>o</sub> | mN sm <sup>-2</sup> |
|---------------------------|---------|---------------------|--------------------------------------------------------------|---------------------|
|                           | y       | of urea in urea 4   | $H_2^0 = 0\%$                                                |                     |
|                           |         |                     | L                                                            |                     |
| 0.1                       | 1.05975 | 272.5               | 1.01123                                                      | 1.07668             |
| 0.2                       | 1.06048 | 276.5               | 1.03114                                                      | 1.09746             |
| 0.3                       | 1.06.2  | 280.0               | 1.05112                                                      | 1.12271             |
| 0.4                       | 1.06352 | 282.2               | 1.06531                                                      | 1.13352             |
| 0.5                       | 1.06572 | 287.4               | 1.08701                                                      | 1.15523             |
| 0.75                      | 1.07150 | 298.5               | 1.13520                                                      | 1.21336             |
| 1.0                       | 1.07622 | 311.0               | 1.18801                                                      | 1.26412             |
| 1.5                       | 1.08677 | 333.0               | 1.28601                                                      | 1.36682             |
| 2.0                       | 1.09633 | 355.0               | 1.38251                                                      | 1.46995             |
|                           | wt %    | d of urea in urea + | -H <sub>2</sub> 0 = 5 %                                      |                     |
|                           |         |                     |                                                              |                     |
| 0.1                       | 1.04385 | 259.5               | 1.01161                                                      | 1.02302             |
| 0.2                       | 1.04586 | 263.0               | 1.02721                                                      | 1.03881             |
| 0.3                       | 1.04799 | 264.5               | 1.03542                                                      | 1.04693             |
| 0.4                       | 1.05019 | 271.0               | 1.06172                                                      | 1.07491             |
| 0.5                       | 1.05241 | 275.0               | 1.08041                                                      | 1.09301             |
| 0.75                      | 1.05807 | 285.0               | 1.12505                                                      | 1.13892             |
| 1.0                       | 1.06314 | 294.0               | 1.16802                                                      | 1.18051             |
| 1.5                       | 1.07369 | 315.0               | 1.26701                                                      | 1.27731             |
| 2.0                       | 1.08356 | 335.0               | 1.35105                                                      | 1.37091             |

.

| Concentration | Density             | Av.time             | ηr                                                           | η2                  |
|---------------|---------------------|---------------------|--------------------------------------------------------------|---------------------|
| moles/litre   | g mo1 <sup>-1</sup> | sec.                | d <sub>c</sub> t <sub>c</sub> /d <sub>o</sub> t <sub>o</sub> | mN sm <sup>-2</sup> |
|               |                     |                     |                                                              | •                   |
|               | Wt %                | G of urea in urea + | $H_{2}0 = 10 \%$                                             |                     |
|               |                     |                     | -                                                            |                     |
| 0.1           | 1.02917             | 251.0               | 1.07015                                                      | 0.97618             |
| 0.2           | 1.02657             | 256.4               | 1.03401                                                      | 0.99817             |
| 0.3           | 1.03112             | 257.3               | 1.03971                                                      | 1.0045              |
| 0.4           | 1.04052             | 260.8               | 1.06125                                                      | 1.02547             |
| 0.5           | 1.04231             | 264.0               | 1.07601                                                      | 1.04076             |
| 0.75          | 1.0468              | 272.2               | 1.11432                                                      | 1.07674             |
| 1.0           | 1.05171             | 280.4               | 1.15302                                                      | 1.11369             |
| 1.5           | 1.06026             | 303.0               | 1.25681                                                      | 1.21401             |
| 2.0           | 1.06981             | 313.8               | 1.31251                                                      | 1.26961             |
|               |                     |                     |                                                              |                     |
|               | wt 🕺                | d of urea in urea + | $H_20 = 15\%$                                                |                     |
|               |                     |                     | ۲                                                            |                     |
|               |                     |                     |                                                              |                     |
| 0.1           | 1.01629             | 244.0               | 1.01702                                                      | 0.93652             |
| 0.2           | 1.01896             | 246.5               | 1.02901                                                      | 0.94861             |
| 0.3           | 1.02132             | 249.0               | 1.04012                                                      | 0.96049             |
| 0.4           | 1.02700             | 251.5               | 1.05612                                                      | 0.97553             |
| 0.5           | 1.02707             | 254.5               | 1.07001                                                      | 0.98721             |
| 0.75          | 1.03282             | 262.0               | 1.10702                                                      | 1.02201             |
| 1.0           | 1.03875             | 268.5               | 1.14001                                                      | 1.05339             |
| 1.5           | 1.05102             | 285.0               | 1.22001                                                      | 1.13139             |
| 2.0           | 1.06312             | 298.0               | 1.29251                                                      | 1.19655             |
|               |                     |                     |                                                              |                     |

| Concentration | Density | Av.time        | n <sub>r</sub><br>d_t_/d_t | n<br>mN sm <sup>-2</sup> |
|---------------|---------|----------------|----------------------------|--------------------------|
| mores/ricre   | g mor   | 3501           |                            | <u></u>                  |
|               | Wt % c  | f urea in urea | + H <sub>2</sub> 0 = 20 %  |                          |
| 0.1           | 1.00051 | 239.0          | 1.01101                    | 0.90317                  |
| 0.2           | 1.00488 | 241.0          | 1.02421                    | 0.91466                  |
| 0.3           | 1.00705 | 243.0          | 1.03512                    | 0.92421                  |
| 0.4           | 1.00961 | 248.0          | 1.05317                    | 0.94566                  |
| 0.5           | 1.01236 | 249.0          | 1.06641                    | 0.95202                  |
| 0.75          | 1.01788 | 255.0          | 1.09721                    | 0.98032                  |
| 1.0           | 1.02379 | 262.0          | 1.13501                    | 1.01301                  |
| 1.5           | 1.03501 | 267.5          | 1.21101                    | 1.08081                  |
| 2.0           | 1.04581 | 295.0          | 1.27801                    | 1.14032                  |

、

,

÷

## TABLE 3.3

Viscosity data for Lithium chloride in different urea-water compositions at 303°K.

| Concentration | Density        | Av.time             | n <sub>r</sub>                                               | η<br>_2             |
|---------------|----------------|---------------------|--------------------------------------------------------------|---------------------|
| moles/litre   | <u>g mol-1</u> | sec.                | d <sub>c</sub> t <sub>c</sub> /d <sub>e</sub> t <sub>o</sub> | mN sm <sup>-L</sup> |
|               | Wt 1           | % of urea in urea · | $+ H_2^0 = 0 \%$                                             |                     |
| 0.1           | 1.05621        | 246.0               | 1.01123                                                      | 0.97185             |
| 0.2           | 1.05837        | 250.0               | 1.03125                                                      | 0.98965             |
| 0.3           | 1.06034        | 254.5               | 1.05121                                                      | 1.00931             |
| 0.4           | 1.06244        | 255.7               | 1.05845                                                      | 1.01615             |
| 0.5           | 1.06499        | 259.0               | 1.07321                                                      | 1.03175             |
| 0.75          | 1.07016        | 269.8               | 1.12489                                                      | 1.07995             |
| 1.0           | 1.07503        | 281.5               | 1.17900                                                      | 1.13195             |
| 1.5           | 1.08565        | 302.0               | 1.27702                                                      | 1.22635             |
| 2.0           | 1.05416        | 322.0               | 1.37201                                                      | 1.31951             |
|               | wt :           | % of urea in urea ∙ | + H <sub>2</sub> 0 = 5 %                                     |                     |
| 0.1           | 1.04082        | 239.0               | 1.020741                                                     | 0.930432            |
| 0.2           | 1.04188        | 240.0               | 1.02605                                                      | 0.93521             |
| 0.3           | 1.04298        | 244.0               | 1.04425                                                      | 0.95181             |
| 0.4           | 1.04400        | 247.7               | 1.05398                                                      | 0.96532             |
| 0.5           | 1.04539        | 250.6               | 1.07490                                                      | 0.97988             |
| 0.75          | 1.04693        | 260.0               | 1.11692                                                      | 1.04731             |
| 1.0           | 1.04801        | 268.5               | 1.15471                                                      | 1.05256             |
| 1.5           | 1.05271        | 288.0               | 1.24001                                                      | 1.32749             |
| 2.0           | 1.06070        | 395.0               | 1.32749                                                      | 1.21005             |

,

| Concentration<br>moles/litre | Density | Av.time<br>sec. | ٦r<br>d <sub>c</sub> t <sub>c</sub> /d <sub>o</sub> t <sub>o</sub> | n<br>mN sm <sup>-2</sup> |
|------------------------------|---------|-----------------|--------------------------------------------------------------------|--------------------------|
|                              | 11.077  |                 |                                                                    |                          |
|                              | Wt %    | ot urea in urea | $+ H_2 0 = 10 \%$                                                  |                          |
| 0.1                          | 1.02781 | 228.0           | 1.01512                                                            | 0.87659                  |
| 0.2                          | 1.03068 | 230.2           | 1.02751                                                            | 0.88742                  |
| 0.3                          | 1.03261 | 232.0           | 1.03721                                                            | 0.89607                  |
| 0.4                          | 1.04021 | 233.2           | 1.04991                                                            | 0.90733                  |
| 0.5                          | 1.04210 | 236.7           | 1.06841                                                            | 0.92264                  |
| 0.75                         | 1.04629 | 242.0           | 1.10492                                                            | 0.95490                  |
| 1.0                          | 1.05145 | 267.4           | 1.14861                                                            | 0.99107                  |
| 1.5                          | 1.06043 | 267.4           | 1.22751                                                            | 1.06061                  |
| 2.0                          | 1.06934 | 281.8           | 1.30301                                                            | 1.12592                  |
|                              |         |                 |                                                                    |                          |
|                              | wt 🞖    | of urea in urea | $+ H_2 0 = 15 \%$                                                  |                          |
|                              |         |                 | ۷                                                                  |                          |

| 0.1  | 1.01581 | 219.2 | 1.01581 | 0.82954 |
|------|---------|-------|---------|---------|
| 0.2  | 1.01898 | 220.0 | 1.02270 | 0.83516 |
| 0.3  | 1.02001 | 223.0 | 1.03768 | 0.84740 |
| 0.4  | 1.02358 | 224.5 | 1.04833 | 0.85609 |
| 0.5  | 1.02656 | 228.0 | 1.06771 | 0.87192 |
| 0.75 | 1.03259 | 232.5 | 1.09519 | 0.89440 |
| 1.0  | 1.03845 | 240.0 | 1.13699 | 0.92851 |
| 1.5  | 1.05115 | 254.0 | 1.21803 | 0.99464 |
| 2.0  | 1.06282 | 265.5 | 1.28731 | 1.05125 |
|      |         |       |         |         |

| Concentration | Density | Av.time           | n <sub>r</sub><br>d_t_/d_t_ | n<br>mN sm <sup>-2</sup> |
|---------------|---------|-------------------|-----------------------------|--------------------------|
| moles/litre   | g mol   | sec.              | <u> </u>                    |                          |
|               | Wt 2    | of urea in urea · | + H <sub>2</sub> 0 = 20 %   |                          |
| 0.1           | 1.00247 | 217.0             | 1.01616                     | 0.81364                  |
| 0.2           | 1.00488 | 217.0             | 1.01864                     | 0.81562                  |
| 0.3           | 1.00712 | 219.0             | 1.03039                     | 0.82501                  |
| 0.4           | 1.00966 | 221.5             | 1.04501                     | 0.83652                  |
| 0.5           | 1.01186 | 223.0             | 1.05402                     | 0.84401                  |
| 0.75          | 1.01774 | 230.0             | 1.09347                     | 0.87552                  |
| 1.0           | 1.02351 | 236,5             | 1.13074                     | 0.90534                  |
| 1.5           | 1.03462 | 250.0             | 1.02011                     | 0.96742                  |
| 2.0           | 1.04546 | 260.3             | 1.27122                     | 1.01788                  |

## TABLE 3.4

Viscosity data for Lithium chloride in different urea-water compositions at 308°K.

| Concentration | Density             | Av.time             | ηr            | . <sup>η</sup> -2 |
|---------------|---------------------|---------------------|---------------|-------------------|
| moles/litre   | g mo1 <sup>-1</sup> | sec.                | dctc/deto     | mN sm -           |
|               | Wt.                 | % of urea in urea ⊣ | $-H_00 = 0\%$ |                   |
|               |                     |                     | 2             |                   |
| 0.1           | 1.05706             | 223.8               | 1.01021       | 0.88616           |
| 0.2           | 1.05912             | 227.2               | 1.03012       | 0.90061           |
| 0.3           | 1.06117             | 230.0               | 1.04512       | 0.91425           |
| 0.4           | 1.06323             | 233.4               | 1.06251       | 0.92952           |
| 0.5           | 1.06529             | 237.4               | 1.08015       | 0.94572           |
| 0.75          | 1.07093             | 245.0               | 1.12345       | 0.98281           |
| 1.0           | 1.07591             | 253.9               | 1.16805       | 1.02121           |
| 1.5           | 1.08617             | 271.5               | 1.26254       | 1.10464           |
| 2.0           | 1.09596             | 288.0               | 1.35215       | 1.18254           |
|               |                     |                     |               |                   |
|               | wt                  | % of urea in urea ⊣ | $H_20 = 5\%$  |                   |
|               |                     |                     |               |                   |
|               |                     |                     |               |                   |
| 0.1           | 1.03482             | 216.0               | 1.00751       | 0.83742           |
| 0.2           | 1.03506             | 219.5               | 1.02475       | 0.84537           |
| 0.3           | 1.04136             | 220.3               | 1.03474       | 0.85944           |
| 0.4           | 1.04401             | 223.0               | 1.04861       | 0.87101           |
| 0.5           | 1.04558             | 226.0               | 1.06582       | 0.88521           |
| 0.75          | 1.04784             | 234.0               | 1.10592       | 0.91862           |
| 1.0           | 1.05250             | 242.0               | 1.14881       | 0.95466           |
| 1.5           | 1.05365             | 262.0               | 1.24512       | 1.03423           |
| 2.0           | 1.06324             | 273.0               | 1.30441       | 1.08342           |
|               |                     |                     |               |                   |

| Concentration | Density             | Av.time         | n <sub>r</sub>                                               | η                   |
|---------------|---------------------|-----------------|--------------------------------------------------------------|---------------------|
| moles/litre   | g mol <sup>-1</sup> | sec.            | d <sub>c</sub> t <sub>c</sub> /d <sub>o</sub> t <sub>o</sub> | mN sm <sup>-2</sup> |
|               |                     |                 |                                                              |                     |
|               | Wt %                | of urea in urea | $+ H_2 0 = 10 \%$                                            |                     |
|               |                     |                 | ۷                                                            |                     |
| 0.1           | 1.02807             | 208.5           | 1.01890                                                      | 0.80599             |
| 0.2           | 1.03085             | 210.0           | 1.02900                                                      | 0.81103             |
| 0.3           | 1.03287             | 214.0           | 1.05065                                                      | 0.83112             |
| 0.4           | 1.04071             | 217.5           | 1.07514                                                      | 0.85116             |
| 0.5           | 1.04241             | 223.5           | 1.10741                                                      | 0.87281             |
| 0.75          | 1.04676             | 228.5           | 1.13692                                                      | 0.89935             |
| 1.0           | 1.05162             | 237.5           | 1.18721                                                      | 0.93572             |
| 1.5           | 1.06071             | 254.5           | 1.28312                                                      | 1.01504             |
| 2.0           | 1.06955             | 270.0           | 1.37334                                                      | 1.08784             |
|               |                     |                 |                                                              |                     |
|               | wt %                | of urea in urea | $+ H_2 0 = 15 \%$                                            |                     |
|               |                     |                 | 2                                                            |                     |
|               |                     |                 |                                                              |                     |
| 0.1           | 1.01530             | 199.5           | 1.01250                                                      | 0.75560             |
| 0.2           | 1.01772             | 200.0           | 1.01741                                                      | 0.75928             |
| 0.3           | 1.02057             | 202.0           | 1.03021                                                      | 0.76904             |
| 0.4           | 1.02505             | 203.5           | 1.04212                                                      | 0.77816             |
| 0.5           | 1.02629             | 205.5           | 1.05424                                                      | 0.78675             |
| 0.75          | 1.03217             | 211.0           | 1.08866                                                      | 0.81243             |
| 1.0           | 1.03789             | 217.5           | 1.12841                                                      | 0.84214             |
| 1.5           | 1.05083             | 227.0           | 1.19292                                                      | 0.88985             |
| 2.0           | 1.06252             | 236.0           | 1.25341                                                      | 0.93541             |
|               |                     |                 |                                                              |                     |

| Concentration<br>moles/litre | Density<br>g mol <sup>-1</sup> | Av.time<br>sec. | <sup>n</sup> r<br>d <sub>c</sub> t <sub>c</sub> /d <sub>o</sub> t <sub>o</sub> | n<br>mN sm <sup>-2</sup> |
|------------------------------|--------------------------------|-----------------|--------------------------------------------------------------------------------|--------------------------|
|                              | Wt %                           | of urea in urea | + H <sub>2</sub> 0 = 20 %                                                      |                          |
|                              |                                |                 |                                                                                |                          |
| 0.1                          | 1.00240                        | 194.7           | 1.01815                                                                        | 0.73102                  |
| 0.2                          | 1.00475                        | 195.0           | 1.01534                                                                        | 0.73394                  |
| 0.3                          | 1.00706                        | 196.5           | 1.02514                                                                        | 0.74138                  |
| 0.4                          | 1.00939                        | 198.0           | 1.03521                                                                        | 0.74861                  |
| 0.5                          | 1.01176                        | 201.0           | 1.05234                                                                        | 0.76192                  |
| 0.75                         | 1.01749                        | 205.0           | 1.08341                                                                        | 0.78131                  |
| 1.0                          | 1.02337                        | 211.5           | 1.12341                                                                        | 0.81071                  |
| 1.5                          | 1.03439                        | 219.0           | 1.17521                                                                        | 0.84852                  |
| 2.0                          | 1.04504                        | 229.0           | 1.24511                                                                        | 0.89677                  |

## TABLE 3.5

-values of lithium chloride in different urea-water compositions at different temperatures

| Mass fraction<br>of urea | Temp.<br>°K | B <sup>a</sup> | Bp     | B <sup>c</sup> /l mol <sup>-1</sup> |
|--------------------------|-------------|----------------|--------|-------------------------------------|
|                          | 293         | 0.1950         | 0.1900 | 0.1750                              |
| 0 7                      | 298         | 0.1916         | 0.1625 | 0.1541                              |
|                          | 303         | 0.1996         | 0.1375 | 0,1421                              |
|                          | 308         | 0.1791         | 0.1275 | 0.1422                              |
|                          | 293         | 0.1752         | 0.1725 | 0.1608                              |
|                          | 298         | 0.1791         | 0.1550 | 0.1395                              |
| 5 %                      | 303         | 0.1660         | 0.1325 | 0.1302                              |
|                          | 308         | 0.1541         | 0.1225 | 0.1285                              |
|                          | 293         | 0.1708         | 0.1625 | 0.1574                              |
|                          | 298         | 0.1625         | 0.1500 | 0.1477                              |
| 10 %                     | 303         | 0.1583         | 0.1225 | 0.1264                              |
|                          | 308         | 0.1416         | 0.1175 | 0.1217                              |
|                          | 293         | 0.1660         | 0.1550 | 0.1501                              |
|                          | 298         | 0.1510         | 0.1425 | 0.1291                              |
| 15 %                     | 303         | 0.1458         | 0.1151 | 0.1048                              |
|                          | 308         | 0.1330         | 0.0975 | 0.1002                              |
|                          | 293         | 0.1418         | 0.1521 | 0.1404                              |
| <i>m</i>                 | 298         | 0.1412         | 0.1475 | 0.1160                              |
| 20 %                     | 303         | 0.1375         | 0.1025 | 0.0955                              |
|                          | 308         | 0.1001         | 0.0925 | 0.0900                              |
|                          |             |                |        |                                     |

a = B values obtained from the plot of  $\eta/\eta_0$  versus C

b = B values obtained from Einstein's equation B = 2.5 V

c = B values obtained from Breslau & Miller's equation  $B = 2.90 V_{e} - 0.018$ 

## TABLE 3.6

Viscosity data for Lithium chloride in 0% urea-water solution at different temperatures.

| Tempe-<br>rature<br>(°K)                 | Concen-<br>tration<br>(C)<br>moles/lit | 1<br>C | c <sup>2</sup> | <u>1</u><br>logn <sub>r</sub> | η <sup>2</sup><br>η <sub>r</sub> | n-1 /c<br>r |  |
|------------------------------------------|----------------------------------------|--------|----------------|-------------------------------|----------------------------------|-------------|--|
|                                          |                                        |        |                |                               |                                  |             |  |
|                                          | 0.1                                    | 10.0   | 0.01           | 116.27                        | 1.0404                           | 0.2500      |  |
|                                          | 0.2                                    | 5.0    | 0.04           | 58.70                         | 1.0816                           | 0.2062      |  |
|                                          | 0.3                                    | 3.3    | 0.09           | 39.51                         | 1.1236                           | 0.2000      |  |
|                                          | 0.4                                    | 2.5    | 0.16           | 31.83                         | 1.1551                           | 0.1937      |  |
| 293                                      | 0.5                                    | 2.0    | 0.25           | 25.89                         | 1.1942                           | 0.1860      |  |
|                                          | 0.75                                   | 1.3    | 0.56           | 16.98                         | 1.3112                           | 0.1936      |  |
|                                          | 1.0                                    | 1.0    | 1.00           | 12.73                         | 1.4117                           | 0.1982      |  |
|                                          | 1.5                                    | 0.6    | 2.25           | 8.84                          | 1.6801                           | 0.2650      |  |
|                                          | 2.0                                    | 0.5    | 4.0            | 6.95                          | 1.9321                           | 0.1962      |  |
| and a second second second second second |                                        |        | <del></del>    |                               |                                  |             |  |
|                                          | 0.1                                    | 10.0   | 0.1            | 210.47                        | 1.0221                           | 0.1100      |  |
|                                          | 0.2                                    | 5.0    | 0.04           | 75.42                         | 1.7161                           | 0.1550      |  |
|                                          | 0.3                                    | 3.3    | 0.09           | 47.19                         | 1.1025                           | 0.1666      |  |
|                                          | 0.4                                    | 2.5    | 0.16           | 36.56                         | 1.1342                           | 0.1625      |  |
| 298                                      | 0.5                                    | 2.0    | 0.25           | 29.21                         | 1.1815                           | 0.1740      |  |
|                                          | 0.75                                   | 1.3    | 0.56           | 18.15                         | 1.2881                           | 0.1808      |  |
|                                          | 1.0                                    | 1.0    | 1.0            | 13.36                         | 1.3812                           | 0.1880      |  |
|                                          | 1.5                                    | 0.6    | 2.25           | 9 <b>515</b> 5                | 1.6531                           | 0.1906      |  |
|                                          | 2.0                                    | 0.5    | 4.0            | 7.10                          | 1.9112                           | 0.1912      |  |

,

| Tempe-<br>rature<br>(°K) | Concen-<br>tration<br>(C)<br>moles/li | 1<br>C<br>t | c <sup>2</sup> | 1<br>log <sub>n</sub> r | n <sup>2</sup><br>r | n−1 /C<br>r                                            |  |
|--------------------------|---------------------------------------|-------------|----------------|-------------------------|---------------------|--------------------------------------------------------|--|
|                          |                                       |             | <u></u>        |                         |                     | 971-992-974-97-98-98-982-982-982-982-982-982-982-982-9 |  |
|                          | 0.1                                   | 10.0        | 0.01           | 231.41                  | 1.0201              | 0.1000                                                 |  |
|                          | 0.2                                   | 5.0         | 0.04           | 77.89                   | 1.0609              | 0.1500                                                 |  |
|                          | 0.3                                   | 3.3         | 0.09           | 47.19                   | 1.1025              | 0.1660                                                 |  |
|                          | 0.4                                   | 2.5         | 0.16           | 40.84                   | 1.1257              | 0.1450                                                 |  |
| 303                      | 0.5                                   | 2.0         | 0.25           | 32.59                   | 1.1820              | 0.1464                                                 |  |
|                          | 0.75                                  | 1.3         | 0.56           | 19.52                   | 1.2651              | 0.1664                                                 |  |
|                          | 1.0                                   | 1.0         | 1.00           | 13.98                   | 1.3600              | 0.1790                                                 |  |
|                          | 1.5                                   | 0.6         | 2.25           | 9.41                    | 1.6307              | 0.1846                                                 |  |
|                          | 2.0                                   | 0.5         | 4.00           | 7.28                    | 1.8823              | 0.1860                                                 |  |
|                          | 0.1                                   | 10.0        | 0.01           | 231.41                  | 1.0201              | 0.1000                                                 |  |
|                          | 0.2                                   | 5.0         | 0.04           | 77.89                   | 1.1025              | 0.1500                                                 |  |
|                          | 0.3                                   | 3.3         | 0.09           | 52.31                   | 1.0921              | 0.1500                                                 |  |
|                          | 0.4                                   | 2.5         | 0.16           | 44.00                   | 1,1289              | 0.1562                                                 |  |
| 308                      | 0.5                                   | 2.0         | 0.25           | 35.00                   | 1.1664              | 0.1600                                                 |  |
|                          | 0.75                                  | 1.3         | 0.56           | 22.51                   | 1.2544              | 0.1645                                                 |  |
|                          | 1.0                                   | 1.0         | 1.00           | 15.00                   | 1.3351              | 0.1680                                                 |  |
|                          | 1.5                                   | 0.6         | 2.25           | 9.87                    | 1.5939              | 0.1750                                                 |  |
|                          | 2.0                                   | 0.5         | 4.00           | 5.45                    | 1.8225              | 0.1750                                                 |  |

MIN. COLHAPSE

,

•

## TABLE 3.7

Viscosity data for Lithium chloride in 5% urea-water solution at different temperatures.

| Tempe-<br>rature<br>(°K) | Concen-<br>tration<br>(C)<br>moles/lit   | 1<br>C<br>t | c <sup>2</sup> | <u>1</u><br>logn <sub>r</sub> | η <sup>2</sup><br>r | <sup>n</sup> −1 /C<br>r /C               |
|--------------------------|------------------------------------------|-------------|----------------|-------------------------------|---------------------|------------------------------------------|
|                          | <u></u>                                  |             |                |                               |                     |                                          |
|                          | 0.1                                      | 10.0        | 0.01           | 183.89                        | 1.0253              | 0.1269                                   |
|                          | 0.2                                      | 5.0         | 0.04           | 81.09                         | 1.0584              | 0.1792                                   |
|                          | 0.3                                      | 3.3         | 0.09           | 75.42                         | 1.0629              | 0.1869                                   |
|                          | 0.4                                      | 2.5         | 0.16           | 33.14                         | 1.1490              | 0.1797                                   |
| 293                      | 0.5                                      | 2.0         | 0.25           | 28.22                         | 1.1772              | 0.1700                                   |
|                          | 0.75                                     | 1.3         | 0.56           | 18.89                         | 1.2759              | 0.1729                                   |
|                          | 1.0                                      | 1.0         | 1.00           | 14.05                         | 1.3776              | 0.1851                                   |
|                          | 1.5                                      | 0.6         | 2.25           | 9.44                          | 1,6281              | 0.1841                                   |
|                          | 2.0                                      | 0.5         | 4.00           | 7.44                          | 1.8564              | 0.1825                                   |
|                          | an a |             |                |                               | ·····               | na an a |
|                          | 0 1                                      | 10 0        | 0 01           | 199.64                        | 1.0233              | 0.1160                                   |
|                          | 0.2                                      | 5.0         | 0.04           | 86.42                         | 1.0547              | 0.1350                                   |
| *                        | 0.3                                      | 3.3         | 0.04           | 66.93                         | 1.0712              | 0.1166                                   |
|                          | 0.4                                      | 2.5         | 0.16           | 38.45                         | 1.1272              | 0.1542                                   |
| 298                      | 0.5                                      | 2.0         | 0.25           | 29.91                         | 1.1664              | 0.1600                                   |
|                          | 0.75                                     | 1.3         | 0.56           | 22.06                         | 1.2650              | 0.1666                                   |
|                          | 1.0                                      | 1.0         | 1.00           | 14.82                         | 1.3642              | 0.1680                                   |
|                          | 1.5                                      | 0.6         | 2.25           | 9.72                          | 1.6052              | 0.1780                                   |
|                          | 2.0                                      | 0.5         | 4.00           | 7.65                          | 1,8252              | 0.1755                                   |
|                          |                                          |             |                |                               |                     |                                          |

e

:

| Tempe-<br>rature<br>(°K) | Concen-<br>tration<br>(C)<br>moles/li | 1<br>C<br>t | C <sup>2</sup> | <u>1</u><br>log <sub>ri</sub> r | n <sup>2</sup><br>r | n-1 /C<br>r |  |
|--------------------------|---------------------------------------|-------------|----------------|---------------------------------|---------------------|-------------|--|
|                          |                                       |             |                |                                 |                     |             |  |
|                          | 0.1                                   | 10.0        | 0.01           | 231.40                          | 1.0201              | 0.2074      |  |
|                          | 0.2                                   | 5.0         | 0.04           | 89.70                           | 1.0526              | 0.1302      |  |
|                          | 0.3                                   | 3.3         | 0.09           | 58,70                           | 1.0816              | 0.1106      |  |
|                          | 0.4                                   | 2.5         | 0.16           | 40.16                           | 1.1214              | 0.1349      |  |
| 303                      | 0.5                                   | 2.0         | 0.25           | 32.83                           | 1.1556              | 0.1498      |  |
|                          | 0.75                                  | 1.3         | 0.56           | 22.37                           | 1.2508              | 0.1558      |  |
|                          | 1.0                                   | 1.0         | 1.00           | 15.88                           | 1.3360              | 0.1547      |  |
|                          | 1.5                                   | 0.6         | 2.25           | 10.70                           | 1.5801              | 0.1600      |  |
|                          | 2.0                                   | 0.5         | 4.00           | 8.23                            | 1.7490              | 0.1637      |  |
|                          |                                       |             |                |                                 |                     |             |  |
|                          | 0.1                                   | 10.0        | 0.01           | 288.97                          | 1.0161              | 0.0750      |  |
|                          | 0.2                                   | 5.0         | 0.04           | 93.24                           | 1.0502              | 0.1237      |  |
|                          | 0.3                                   | 0.3         | 0.09           | 62.59                           | 1.0764              | 0.1158      |  |
|                          | 0.4                                   | 2.5         | 0.16           | 47,65                           | 1.1014              | 0.1215      |  |
| 308                      | 0.5                                   | 2.0         | 0.25           | 37.50                           | 1.1341              | 0.1316      |  |
|                          | 0.75                                  | 1.3         | 0.56           | 23.59                           | 1.2155              | 0.1412      |  |
|                          | 1.0                                   | 1.0         | 1.00           | 17.02                           | 1.3112              | 0.1488      |  |
|                          | 1.5                                   | 0.6         | 2.25           | 10.43                           | 1.5551              | 0.1634      |  |
|                          | 2.0                                   | 0.5         | 4.00           | 8.77                            | 1.6900              | 0.1522      |  |

.

## TABLE 3.8

Viscosity data for Lithium chloride in 10% urea-water solution at different temperatures.

| Tempe-<br>rature<br>(°K) | Concen-<br>tration<br>(C)<br>moles/lit | 1<br>C<br>t | c <sup>2</sup> | <u>1</u><br>logn <sub>r</sub> | η <mark>2</mark><br>η r | <sup>n</sup> -1 /C |  |
|--------------------------|----------------------------------------|-------------|----------------|-------------------------------|-------------------------|--------------------|--|
|                          |                                        |             |                |                               |                         |                    |  |
|                          | 0.1                                    | 10.0        | 0.01           | 105.81                        | 1.0441                  | 0.2190             |  |
|                          | 0.2                                    | 5.0         | 0.04           | 66.93                         | 1.0/12                  | 0.1750             |  |
|                          | 0.3                                    | 3.3         | 0.09           | 47.19                         | 1.1025                  | 0.1663             |  |
|                          | 0.4                                    | 2.5         | 0.16           | 34.03                         | 1.1449                  | 0.1750             |  |
| 293                      | 0.5                                    | 2.0         | 0.25           | 27.45                         | 1.1826                  | 0.1746             |  |
|                          | 0.75                                   | 1.3         | 0.56           | 19.54                         | 1.2656                  | 0.1707             |  |
|                          | 1.0                                    | 1.0         | 1.00           | 14.82                         | 1.3500                  | 0.1680             |  |
|                          | 1.5                                    | 0.6         | 2.25           | 9.71                          | 1,6065                  | 0.1758             |  |
|                          | 2.0                                    | 0.5         | 4.00           | 7.76                          | 1.8090                  | 0.1729             |  |
|                          |                                        |             |                |                               |                         |                    |  |
|                          | 0.1                                    | 10.0        | 0.01           | 110.79                        | 1.0424                  | 0.1000             |  |
|                          | 0.2                                    | 5.0         | 0.04           | 68.86                         | 1.0691                  | 0.1700             |  |
|                          | 0.3                                    | 3.3         | 0.09           | 58.85                         | 1.0813                  | 0.1323             |  |
|                          | 0.4                                    | 2.5         | 0.16           | 38.88                         | 1.1257                  | 0.1525             |  |
| 298                      | 0.5                                    | 2.0         | 0.25           | 32.68                         | 1.1513                  | 0.1520             |  |
|                          | 0.75                                   | 1.3         | 0.56           | 21.27                         | 1.2416                  | 0.1524             |  |
|                          | 1.0                                    | 1.0         | 1.00           | 16.17                         | 1.3294                  | 0.1530             |  |
|                          | 1.5                                    | 0.6         | 2.25           | 10.80                         | 1.5310                  | 0.1712             |  |
|                          | 2.0                                    | 0.5         | 4.00           | 8.76                          | 1.7226                  | 0.1562             |  |

.

| Tempe-<br>rature<br>(°K) | Concen-<br>tration<br>(C)<br>moles/lit | 1<br>C<br>t | c <sup>2</sup> | 1<br>log <sub>l r</sub> | n <sup>2</sup><br>r | <sup>n</sup> -1 /C |  |
|--------------------------|----------------------------------------|-------------|----------------|-------------------------|---------------------|--------------------|--|
|                          | 0.1                                    | 10.0        | 0.01           |                         |                     |                    |  |
|                          | 0.1                                    | 10.0        | 0.01           | 80.82                   | 1.0399              | 0.1373             |  |
|                          | 0.2                                    | 5.0         | 0.04           | 63 37                   | 1 0752              | 0.1222             |  |
|                          | 0.3                                    | 3.3         | 0.09           | 44 00                   | 1 1022              | 0.1247             |  |
|                          | 0.4                                    | 2.5         | 0.16           | 35.00                   | 1 1406              | 0.1260             |  |
| 303                      | 0.5                                    | 2.0         | 0.25           | 23 00                   | 1 2208              | 0.1200             |  |
|                          | 0.75                                   | 1.3         | 0.56           | 16 61                   | 1 2102              | 0.1496             |  |
|                          | 1.0                                    | 1.0         | 1.00           | 10.01                   | 1 5400              | 0.1516             |  |
|                          | 1.5                                    | 0.6         | 2.25           | 0.50                    | 1.5400              | 0.1510             |  |
|                          | 2.0                                    | 0.5         | 4.00           | 8.04                    | 1.7030              | U. 1525            |  |
|                          | 0.1                                    | 10.0        | 0.01           | 122.33                  | 1.0381              | 0.1890             |  |
|                          | 0.2                                    | 5.0         | 0.04           | 73.10                   | 1.0652              | 0.1450             |  |
|                          | 0.3                                    | 3.3         | 0.09           | 80.82                   | 1.0586              | 0.1688             |  |
|                          | 0.4                                    | 2.5         | 0.16           | 47.50                   | 1.0880              | 0.1875             |  |
| 308                      | 0.5                                    | 2.0         | 0.25           | 38.27                   | 1 <b>.1</b> 178     | 0.2149             |  |
|                          | 0.75                                   | 1.3         | 0.56           | 24.72                   | 1.2047              | 0.1825             |  |
|                          | 1.0                                    | 1.0         | 1.00           | 18.10                   | 1.2895              | 0.1872             |  |
|                          | 1.5                                    | 0.6         | 2.25           | 12.07                   | 1.5284              | 0.1887             |  |
|                          | 2.0                                    | 0.5         | 4.00           | 9.63                    | 1.6129              | 0.1866             |  |

## TABLE 3.9

Viscosity data for Lithium chloride in 15% urea-water solution at different temperatures.

| Tempe-<br>rature<br>(°K) | Concen-<br>tration<br>(C)<br>moles/li | 1<br>C<br>t                              | c <sup>2</sup>                                             | 1<br>logn <sub>r</sub> | η <sup>2</sup><br>r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>n</sup> -1 /C<br>r |                                                                                                                 |
|--------------------------|---------------------------------------|------------------------------------------|------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|
|                          | <u></u>                               | n an | s/, <u>w · s · s − s - s - s - s - s - s - s - s - s -</u> |                        | tinn an the state of the state |                         | *****                                                                                                           |
|                          | 0.1                                   | 10.0                                     | 0.01                                                       | 139.85                 | 1.0334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1662                  |                                                                                                                 |
|                          | 0.2                                   | 5.0                                      | 0.04                                                       | 67.12                  | 1.0710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1745                  |                                                                                                                 |
|                          | 0.3                                   | 3.3                                      | 0.09                                                       | 47.19                  | 1.1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1698                  |                                                                                                                 |
|                          | 0.4                                   | 2.5                                      | 0.16                                                       | 37.11                  | 1.1320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1580                  |                                                                                                                 |
| 293                      | 0.5                                   | 2.0                                      | 0.25                                                       | 30.24                  | 1.1642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1582                  |                                                                                                                 |
|                          | 0.75                                  | 1.3                                      | 0.56                                                       | 20.54                  | 1.2512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1582                  |                                                                                                                 |
|                          | 1.0                                   | 1.0                                      | 1.00                                                       | 15.62                  | 1.3428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1588                  |                                                                                                                 |
|                          | 1.5                                   | 0.6                                      | 2.25                                                       | 10.31                  | 1.5625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1722                  |                                                                                                                 |
|                          | 2.0                                   | 0.5                                      | 4.00                                                       | 8.07                   | 1.7689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1662                  |                                                                                                                 |
|                          |                                       |                                          | #******                                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                       | 1997 - 1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - |
|                          | 0.1                                   | 10.0                                     | 0.01                                                       | 145.05                 | 1.0322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1700                  |                                                                                                                 |
|                          | 0.2                                   | 5.0                                      | 0.04                                                       | 83.38                  | 1.0567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1450                  |                                                                                                                 |
|                          | 0.3                                   | 3.3                                      | 0.09                                                       | 52.33                  | 1.0920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1333                  |                                                                                                                 |
|                          | 0.4                                   | 2.5                                      | 0.16                                                       | 42.25                  | 1.1151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1400                  |                                                                                                                 |
| 298                      | 0.5                                   | 2.0                                      | 0.25                                                       | 34.03                  | 1.1449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1400                  |                                                                                                                 |
|                          | 0.75                                  | 1.3                                      | 0.56                                                       | 92.65                  | 1.2254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1426                  |                                                                                                                 |
|                          | 1.0                                   | 1.0                                      | 1.00                                                       | 17.57                  | 1.2996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1400                  |                                                                                                                 |
|                          | 1.5                                   | 0.6                                      | 2.25                                                       | 11.50                  | 1,4884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1466                  |                                                                                                                 |
|                          | 2.0                                   | 0.5                                      | 4.00                                                       | 8.97                   | 1.6701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1462                  |                                                                                                                 |

,

| Tempe-<br>rature<br>(°K) | Concen-<br>tration<br>(C)<br>moles/li          | 1<br>C<br>t | c <sup>2</sup>                           | <u>1</u><br>log <sub>n</sub> r | η <sup>2</sup><br>r | n -1 /C<br>r |  |
|--------------------------|------------------------------------------------|-------------|------------------------------------------|--------------------------------|---------------------|--------------|--|
| <b>4</b>                 | 9, 19, 19, 19, 19, 19, 19, 19, 19, 19, 1       |             | 4-14-14-14-14-14-14-14-14-14-14-14-14-14 | <u>94489-949-0</u>             |                     |              |  |
|                          | 0.1                                            | 10.0        | 0.01                                     | 154.65                         | 1.0301              | 0.1581       |  |
|                          | 0.2                                            | 5.0         | 0.04                                     | 116.27                         | 1.0402              | 0.1135       |  |
|                          | 0.3                                            | 3.3         | 0.09                                     | 63.37                          | 1.0751              | 0.1256       |  |
|                          | 0.4                                            | 2.5         | 0.16                                     | 49.11                          | 1.0986              | 0.1208       |  |
| 303                      | 0.5                                            | 2.0         | 0.25                                     | 39.50                          | 1.1236              | 0.1354       |  |
|                          | 0.75                                           | 1.3         | 0.56                                     | 25.37                          | 1.1990              | 0.1269       |  |
|                          | 1.0                                            | 1.0         | 1.00                                     | 17.93                          | 1.2927              | 0.1369       |  |
|                          | 1.5                                            | 0.6         | 2.25                                     | 12.07                          | 1.4641              | 0.1453       |  |
|                          | 2.0                                            | 0.5         | 4.00                                     | 9.11                           | 1.6572              | 0.1436       |  |
| <b></b>                  | <u>an - an -</u> |             |                                          |                                |                     |              |  |
|                          | 0.1                                            | 10.0        | 0.01                                     | 231.40                         | 1.0221              | 0.1250       |  |
|                          | 0.2                                            | 5.0         | 0.04                                     | 132./1                         | 1.0351              | 0.08/0       |  |
|                          | 0.3                                            | 3.3         | 0.09                                     | 77.89                          | 1.0692              | 0.1000       |  |
|                          | 0.4                                            | 2.5         | 0.16                                     | 55.32                          | 1.0861              | 0.1050       |  |
| 308                      | 0.5                                            | 2.0         | 0.25                                     | 43.02                          | 1.1130              | 0.1084       |  |
|                          | 0.75                                           | 1.3         | 0.56                                     | 27.91                          | 1.1793              | 0.1182       |  |
|                          | 1.0                                            | 1.0         | 1.00                                     | 19.11                          | 1.2723              | 0.1284       |  |
|                          | 1.5                                            | 0.6         | 2.25                                     | 13.23                          | 1.4161              | 0.1286       |  |
|                          | 2.0                                            | 0.5         | 4.00                                     | 10.13                          | 1.5750              | 0.1263       |  |

.

### TABLE 3.10

Viscosity data for Lithium chloride in 20% urea-water solution at different temperatures.

| Tempe-<br>rature<br>(°K) | Concen-<br>tration<br>(C)<br>moles/lit | 1<br>C<br>t                            | c <sup>2</sup> | <u>1</u><br>logn <sub>r</sub> | n <sup>2</sup><br>r                                                                                                 | <sup>n</sup> -1 /C |  |
|--------------------------|----------------------------------------|----------------------------------------|----------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------|--|
|                          | <u> </u>                               | ************************************** |                |                               | 9999 - Andrew Angele Angele - Angele -<br>- |                    |  |
|                          | 0.1                                    | 10.0                                   | 0.01           | 154.60                        | 1.0301                                                                                                              | 0.1585             |  |
|                          | 0.2                                    | 5.0                                    | 0.04           | 70.92                         | 1.0672                                                                                                              | 0.1675             |  |
|                          | 0.3                                    | 3.3                                    | 0.09           | 52.31                         | 1.0921                                                                                                              | 0.1524             |  |
|                          | 0.4                                    | 2.5                                    | 0.16           | 38.88                         | 1.1257                                                                                                              | 0.1525             |  |
| 293                      | 0.5                                    | 2.0                                    | 0.25           | 31.83                         | 1.5556                                                                                                              | 0.1502             |  |
|                          | 0.75                                   | 1.3                                    | 0.56           | 22.45                         | 1.2276                                                                                                              | 0.1440             |  |
|                          | 1.0                                    | 1.0                                    | 1.00           | 16.47                         | 1.3010                                                                                                              | 0.1507             |  |
|                          | 1.5                                    | 0.6                                    | 2.25           | 11.30                         | 1.5030                                                                                                              | 0.1506             |  |
|                          | 2.0                                    | 0.5                                    | 4.00           | 8.84                          | 1.6832                                                                                                              | 0.1483             |  |
|                          | 0 1                                    | 10.0                                   | 0.01           | 221 40                        | 1 0201                                                                                                              | 0.1000             |  |
|                          | 0.1                                    | 10.0                                   | 0.01           | 231.40                        | 1.0201                                                                                                              | 0.1000             |  |
|                          | 0.2                                    | 5.0                                    | 0.04           | 9/.08                         | 1.0482                                                                                                              | 0.1200             |  |
|                          | 0.3                                    | 3.3                                    | 0.09           | 61.73                         | 1.0///1                                                                                                             | 0.1166             |  |
| 000                      | 0.4                                    | 2.5                                    | 0.16           | 42.50                         | 1.1088                                                                                                              | 0.1325             |  |
| 298                      | 0.5                                    | 2.0                                    | 0.25           | 36.02                         | 1.1363                                                                                                              | 0.1320             |  |
|                          | 0./5                                   | 1.3                                    | 0.56           | 24.87                         | 1.2034                                                                                                              | 0.1293             |  |
|                          | 1.0                                    | 1.0                                    | 1.00           | 18.18                         | 1.2881                                                                                                              | 0.1350             |  |
|                          | 1.5                                    | 0.6                                    | 2.25           | 12.07                         | 1,4771                                                                                                              | 0.1400             |  |
|                          | 2.0                                    | 0.5                                    | 4.00           | 9.38                          | 1.6332                                                                                                              | 0.1390             |  |

,

| Tempe-<br>rature<br>(°K) | Concen-<br>tration<br>(C)<br>moles/lit | 1<br>C | c <sup>2</sup> | <u>1</u><br>logn <sub>r</sub> | η<br>n <sub>r</sub> | η -1 /C<br>r /C |  |
|--------------------------|----------------------------------------|--------|----------------|-------------------------------|---------------------|-----------------|--|
|                          | 0.1                                    | 10.0   | 0.01           | 010 00                        | 1 0000              |                 |  |
|                          | 0.1                                    | 10.0   | 0.01           | 210.00                        | 1.0322              | 0.1616          |  |
|                          | 0.2                                    | 5.0    | 0.04           | 129,00                        | 1.0363              | 0.0932          |  |
|                          | 0.3                                    | 3.3    | 0.09           | 80.54                         | 1.0588              | 0.1013          |  |
|                          | 0.4                                    | 2.5    | 0.16           | 52.31                         | 1.0920              | 0.1125          |  |
| 303                      | 0.5                                    | 2.0    | 0.25           | 43.78                         | 1.1109              | 0.1080          |  |
|                          | 0.75                                   | 1.3    | 0.56           | 27.30                         | 1.1837              | 0.1246          |  |
|                          | 1.0                                    | 1.0    | 1.00           | 18.81                         | 1.2851              | 0.1307          |  |
|                          | 1.5                                    | 0.6    | 2.25           | 12.61                         | 1.4421              | 0.1333          |  |
|                          | 2.0                                    | 0.5    | 4.00           | 9,63                          | 1.6129              | 0.1356          |  |
| <b></b>                  | 0.1                                    | 10.0   | 0.01           | 040 70                        | 1 01 11             | 0.1000          |  |
|                          | 0.1                                    | 10.0   | 0.01           | 248.73                        | 1.0141              | 0.1800          |  |
|                          | 0.2                                    | 5.0    | 0.04           | 154.65                        | 1.0302              | 0.0750          |  |
|                          | 0.3                                    | 3.3    | 0.09           | 93,24                         | 1.0501              | 0.0833          |  |
|                          | 0.4                                    | 2.5    | 0.16           | 57.30                         | 1.0832              | 0.0875          |  |
| 308                      | 0.5                                    | 2.0    | 0.25           | 45.42                         | 1.1067              | 0.1040          |  |
|                          | 0.75                                   | 1.3    | 0.56           | 29.91                         | 1.1612              | 0.1060          |  |
|                          | 1.0                                    | 1.0    | 1.00           | 20.31                         | 1.2314              | 0.1200          |  |
|                          | 1.5                                    | 0.6    | 2.25           | 14.27                         | 1.4347              | 0.1166          |  |
|                          | 2.0                                    | 0.5    | 4.00           | 10.71                         | 1.5376              | 0.1200          |  |

### TABLE 3.11 A

V-values of lithium chloride in different urea-water compositions at different temperatures

| Mass fraction<br>of urea | Temp.<br>°K                                     | ٧ <sup>a</sup>      | v <sup>b</sup> c                      | ۸ <sub>c</sub> |
|--------------------------|-------------------------------------------------|---------------------|---------------------------------------|----------------|
|                          | 293                                             | 0.0761              | 0.0665                                | 0.0781         |
| 0 %                      | 298                                             | 0.0650              | 0.0592                                | 0.0762         |
|                          | 303                                             | 0.0550              | 0.0552                                | 0.0760         |
|                          | 308                                             | 0.0512              | 0.0551                                | 0.0710         |
|                          | 293                                             | 0.0691              | 0.0612                                | 0.0701         |
|                          | 298                                             | 0.0620              | 0.0541                                | 0.0712         |
| 5 %                      | 303                                             | 0.0531              | 0.0511                                | 0.0661         |
|                          | 308                                             | 0.0491              | 0.0505                                | 0.0612         |
|                          | 293                                             | 0.0651              | 0.0601                                | 0.0684         |
|                          | 298                                             | 0.0602              | 0.5712                                | 0.0651         |
| 10 %                     | 303                                             | 0.0491              | 0.0491                                | 0.0632         |
|                          | 308                                             | 0.0471              | 0.0481                                | 0.0561         |
|                          | 293                                             | 0.0621              | 0.0571                                | 0.0661         |
| 1                        | 298                                             | 0.0572              | 0.0501                                | 0.0602         |
| 10 %                     | 303                                             | 0.0461              | 0.0421                                | 0.0581         |
|                          | 308                                             | 0.0391              | 0.0402                                | 0.0531         |
|                          | 293                                             | 0.0601              | 0.0542                                | 0.0592         |
| 20 <sup>g</sup>          | 298                                             | 0.0591              | 0.0461                                | 0.0561         |
| 20 %                     | 303                                             | 0.0412              | 0.0391                                | 0.0552         |
|                          | 308                                             | 0.0371              | 0.0372                                | 0.0400         |
| V <sup>a</sup> V value   | es calculated by                                | using Vand equ      | ation                                 |                |
| h                        | $\frac{1}{C} = \frac{0.0921}{V} \frac{1}{\log}$ | - + QV<br>r         |                                       |                |
| $V_e^{D} = V$ value      | s calculated by                                 | Breslau & Mill      | er equation                           | ,              |
| ۷ <sub>e</sub>           | = - 2.5C + [(2                                  | $(.5C)^2 - 40.20$ C | <sup>2</sup> (1- <sup>n</sup> rel ) ] | 1/2            |
|                          | 20                                              | .10 C <sup>2</sup>  |                                       |                |

V = V values calculated by Einstein's equation : E = 2.5 V

### TABLE 3.11 b

# Q values of lithium chloride in urea-water solution at different temperatures

| Temperature |        | Mass fra | ction of ure | a      |       |
|-------------|--------|----------|--------------|--------|-------|
| °K          | 0 %    | 5 %      | 10 %         | 15 %   | 20 %  |
| 293         | 12.92  | 21.42    | 22.05        | 22.72  | 25.42 |
| 298         | -19.58 | 7.04     | 15.38        | 16.66  | 17.85 |
| 303         | -39.16 | -30.30   | -23.50       | -20.48 | 18.18 |
| 308         | -55.86 | -49.18   | -35.71       | -34.60 | 75.00 |
|             |        |          |              |        |       |

## TABLE 3.12

# B/V values of lithium chloride in urea-water solution at different temperatures

| Temporature<br>°K |      | Mass fro | action of ure                                                                                                  | a    |      |
|-------------------|------|----------|----------------------------------------------------------------------------------------------------------------|------|------|
|                   | 0 %  | 5 %      | 10 %                                                                                                           | 15 % | 20 % |
| 293               | 2.56 | 2.53     | 2.59                                                                                                           | 2.64 | 2.46 |
| 298               | 2.94 | 2.85     | 2.70                                                                                                           | 2.60 | 2.35 |
| 303               | 3.97 | 3.37     | 3.21                                                                                                           | 3.16 | 3,28 |
| 308               | 3.50 | 3.12     | 2.97                                                                                                           | 3.37 | 2.68 |
|                   |      |          | n na a Managaran na ang ang kana na ka |      |      |

## TABLE 3.13.a

## K-values of lithium chloride in urea-water solution at different temperatures

| Temperature |        | Mass frac | tion of urea |        |        |
|-------------|--------|-----------|--------------|--------|--------|
| ° K         | 0 %    | 5 %       | 10 %         | 15 %   | 20 %   |
| 293         | 0.4750 | 0.3463    | 0.3016       | 0.2916 | 0.2625 |
| 298         | 0.4416 | 0.3000    | 0.2833       | 0.2660 | 0.2437 |
| 303         | 0.4083 | 0.2833    | 0.2750       | 0.2500 | 0.2375 |
| 308         | 0.3583 | 0.2666    | 0.2583       | 0.2166 | 0.2125 |
|             |        |           |              |        |        |

TABLE 3.13.b

## M-values of lithium chloride in urea-water solution at different temperatures

| Temperature |        | Mass frac | tion of urea | ,<br>,<br>, |        |
|-------------|--------|-----------|--------------|-------------|--------|
| °K          | 0 %    | 5 %       | 10 %         | 15 %        | 20 %   |
| 293         | 1.0750 | 1.1000    | 1.1000       | 1.0801      | 1.0800 |
| 298         | 1.0650 | 1.0902    | 1.0801       | 1.0751      | 1.0701 |
| 303         | 1.0601 | 1.0871    | 1.0652       | 1.0652      | 1.0601 |
| 308         | 1.0601 | 1.0701    | 1.0501       | 1.0520      | 1.0572 |
|             |        |           |              |             |        |

~

### Table 3.14

Free energy, energy and entropy of activation for viscous flow of Lithium chloride solution at  $298^{\circ}K$  ( C = 1 mol/lit)

| Wt. % urea<br>urea-4 <sub>2</sub> 0 | in                 | ∆E*<br>K.cal | ∆ <sup>F*</sup><br>K.cal | ∆S*<br>K.cal |  |
|-------------------------------------|--------------------|--------------|--------------------------|--------------|--|
| 0 %                                 | Solvent<br>(water) | 3.884        | 2.187                    | 5.690        |  |
|                                     | LiC1               | 4.222        | 2.453                    | 5.936        |  |
| 5%                                  | Solvent            | 4.212        | 2.421                    | 6.010        |  |
|                                     | LiC1               | 4.470        | 2.540                    | 6.476        |  |
| 10 %                                | Solvent            | 4.422        | 2.507                    | 6.920        |  |
|                                     | LiC1               | 4.714        | 2.560                    | 7.224        |  |
| 15 %                                | Solvent            | 4.612        | 2.521                    | 7.016        |  |
|                                     | LiC1               | 4.829        | 2.670                    | 7.244        |  |
| 20 %                                | Solvent            | 4.821        | 2.060                    | 7.419        |  |
|                                     | LiC1               | 5.012        | 2.720                    | 7.691        |  |

.

## Table 3.15

## Transport properties of viscous flow of Lithium Chloride in 10% urea-water solution at 298°K

| Concentration | ∆ E*  | ∆ F*  | ∆ S*   |  |
|---------------|-------|-------|--------|--|
| moles/litre   | K.cal | K.cal | e.u.   |  |
|               |       |       |        |  |
| 0.10          | 4.712 | 2.550 | 7.2550 |  |
| 0.20          | 4.710 | 2,552 | 7.2416 |  |
| 0.30          | 4.710 | 2.554 | 7.2348 |  |
| 0.40          | 4.711 | 2.556 | 7.2315 |  |
| 0.50          | 4.710 | 2.558 | 7.2284 |  |
| 0.75          | 4.711 | 2,559 | 7.2264 |  |
| 1.00          | 4.714 | 2.560 | 7.2240 |  |
| 1.50          | 4.714 | 2.562 | 7.2210 |  |
| 2.00          | 4.698 | 2.564 | 7.1610 |  |
|               |       |       |        |  |



## FIG. NO. 3.2



۰,

TUÛ





FIG. NO. 3.5







FIG. NO. 3.7



FIG. NO. 3.8







FIG. NO. 3.10







**±**10



T.I.I.





FIG. NO. 3.16



FIG. NO. 3-17









FIG. NO. 3.22