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Section II

g-ldeala In O^kstarlbutlve semilattices

Tor convenience we repeat the definition of a 
0*distributive semilattice.

A neat semilattice < 8, /\ > with o is said to be 
0-distributive if a a ^ * 0, a /\ x2 » 0, .... » Of
a, Xy ... xn f S (n finite) and XjV^v ... vx, exists in 
S then aA(*i v x2 v ... vx„) * 0.

Throughout this section we denote a 0-distributive 
semilattice by 8.
We define

Definition 2.1 g-ideal in 8 « An ideal I in 8 is said to 
be an g~ideal if x f X implies that (xf*<£ I

note that Jayaram [ G ] has also defined 
g-ideals in O-distributive semilattices. But the definitions 
of Ideals and o-distributivity used in [ G ] are different 
lxample 2.2«
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In the Odistributive semilattice S represented 
by Figure-I, the following are a-ideals.

* ‘a" {*•*•} -13- H'
I4 ■ <^0, •*>#£# d,ej-

Remark 2.3 : Obviously every a-ideal is an ideal but 
every ideal need not be an a-ideal. This we illustrate in 
the following example s

Example 2.4 s

Figure-II
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In the O-distributive semilattice sketched in the 

Figure-II, ^°* is an i<3eal but not an «**iaeal*

Consider the ideal# I * -^O, a, c, d»e# f J- in the 

following o-distributive semilattice whose diagramatic 

representation is as shown in Figure-rill.

a k

Ficrure-III

Here I is a prime ideal but not an a-ideal. 

for minimal prime ideal we have the following t

Theoream 2.5 : Every minimal prime ideal in S is an 

a-ideal.

Proof - Let M be any minimal prime ideal in S and

x 4- M. As M is minimal prime ideal, S-M is maximal filter
ctwl S-l*1

(See Result 1.2.2). Since S-M is maximal f literAthorefero 

there exists y f S-M such that xAy » o (See Result 1.2.3).
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Now ifrxf (x)** then zaY ■ 0 (since y f (x)*). But 
then z a y f M and M is prime ideal will imply z t M, Thus 
<x)**C M for every x in M proving that M is an a-ideal.//

For any prime ideal P in S define,

0(P) » ^ x f S! XAy • 0 for some y 4*}
we now prove that o(P) is an a-ideal

Theorem 2.6 * For any prime ideal P in S, o(P) is an 
a-ideal.

Proof - Claim-I o(P) is an ideal in S

(i) Let, a ^ b and b f o (?). s)
b ( 0(P) implies that bAy « 0 for some y ff P.
As a $ b we get a Ay » Os Hence a f 0(P).
Thus a $ b and b f O(P) «=> a f 0 (P).

Let a^,a2, ... an be the elements of O(P) such 
that aj v a2 v ... v an exists in S. Then by the 
definition of 0(P) we have a^ A Pj * 0, a2 Ap2 * 0...
••• anAPn * 0 where Pi# P2# are not in p*
As P is prime, Pj p2 .... pn £ P.
ai A Pi * 0 <1 $ i $ n) will imply 

al A (pi A p2 •* * A pn} " 0
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^2 A A P2 A * • • A Pn) * ®

an A (px A p2 A • • • • A Pn) * 0.

As S is 0-distributive we get,

(ajv 82V .... vaQ) A (p^ a P2A •••• APj * 0. But

?1 A P2A .... APn 0 P proving that ax v a2 v ...

... va f O (p). Thus by (i) and (ii) we get O(P) is an 
ideal in S.

Claim-II O(P) is an a«-ideal in S

Let x f O(P). Then xAy “ 0 for some y jK P. Hence 
y f (x) . Therefore for any z f (x) , z A y * 0. But
then z f 0(P). This proves that (x)** c 0(P) for x f 0(P). 
Hence 0(P) is an a-ideal in S. f[

As for any prime ideal P in S, 0(P) ^ P we have 
the following corollary.

Corollary 2.7 t Bvery prime ideal in S container? an 
a-ideal.

For an ideal I in S define,

It is clear that I* not necessarily be an ideal in S. But
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when I' is an ideal we have

Theorem 2.8 s For any ideal I in S if I' is an ideal in 

S then I' is the smallest a-ideal containing I.

Proof (I) I* is an avideal in S.

Let x f I *. Then by the definition of I' there exists 

a f I such that * f (a)**. Therefore (x)**^ (a)**. Hence 

for any "t 4* (x)** we have "t (■ (a) • Hence (x) £E: !*•

Thus Xf I' implies that (x)** cr i* proving that I* is 

an a-ideal in S.

(II) I* is the smallest a-ideal containing I.

As a f (a)** for any a in S we get 1^1'. Let J be any 

a-ideal in S such that I s J. If Xf I* then Xf (a)**

for some a f I. Hence cc. f (a) for some a f J, But since 

J is an a-ideal, a f J implies that (a)**c: J. Therefore 

x f J. Thus x f I* *=> X f J proving that 11 ci J.

Hence from (I) and (II) we get I* is the smallest a-ideal 

containing I. JJ

For any filter F in S define,

we now prove that 0(F) is an a-ideal in S
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Theorem 2.9 s For any filter F in S, 0(F) is an a-ideal

Proof (I) 0(F) is an idea! in S
cocoes).

(i) Let xx < x2 and x2 4* 0(F)A Then x2 A y * 0 for some

y f F implies that x^a y * 0. Hence x^ f o(F)

(ii) Let Xj, x2, .... xR 4* 0(F) such that xx v x2 v ...

... vxr exists in S. Then x^ a yj * 0 for some

yjL f F (1 c ^ n ) • As y1# y2, .... yn f F,

yl A y2A**** AYn ** p* Therefore

*i a (yiAY2 a .... a yn) * o 

x2 a (y^A y2 a • •. • a yn) * o

xn A(yx a y2A ....Ayn) - o

But S being a o-distributive, we get

(XjVX2 v......... vxn) a (y^Ay2A .... Ayn) » O. Hence

X1 VX2V ..........^ ^ 0(F).

Thus from (i) and (ii), 0(F) is an ideal in S. 

(II) o(F) is an a-ideal in S.

Let X 4* O (F). Then x A f * 0 for some f f F.
‘At 'At

Hence f f (x) . If y 4* (x) then y a £ ■ 0.



17

This in turn implies that y fr 0(F). Thus y f (x) implies 
that y f 0(F) i.e. (x>** S o(F) for x f O(F) proving that 

0(F) is an a-ideal in S,

For any proper a-ideal I in S we have I OD * 0 where
io 9 .

D denotes the set of all dense elementsAi.e. D ■ 1 df S / (d) *
“ . This is proved in the following

Theorem 2.10 s Any proper a-ideal in S does not contain 
a dense element.

Proof Let I be proper a-ideal in S and let d be dense 
element in S. If possible suppose that d f I. Then I 
being an a-ideal (d) ^ I. Hence S ^ I (since (d) “ J

(d) * S). This contradicts that I is proper. Hence d fi.
Thus proper a-ideal does not contain a dense element.

Now we state crucial result about the prime 
a-ideals.

Theorem 2.11 : Let I be an annihilator ideal and F be a
a

filter in S such that IflF * 0, Then there exists primeA
a-ideal P containing I and disjoint with F.

Proof s As I is an annihilator ideal in S, I - A* for 
some A £ S. Further I H F * 0 implies that A*f|F =

0 (a)* n F * 0 
a4* A
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(since A* * 0 (a)* ) iiCflce 0 E (®) 0 f] ** 0.a f A a 4* A

This implies that (a)*H F * 0 for some a 4* A.

Consider the family rjL of all filters in S 
containing F and disjoint with (a)*. Then obviously F f ^ 

Hence by Zone's lemma there exists maximal element M in 
such that F S- M and (a)* H M * 0

Claim-I a f M

If a if M then the filter generated by M U <£a^ intersects 
(a)*. Hence there exists an element b in S such that 
b ^ c A a for some c f M and b Aa » 0. But this gives 
c a a * 0 i.e. c f (a) which is a contradiction since 
M H (a)* * 0, Hence a f M.

Claim-II M is maximal filter.
Let z f S such that z if M. As the filter generated by
M U -£z^ intersects (a)* there exists an element b in 
(a)* such that b £ f a z for some f f F. Now 0 ■ b Aa
f A z a a gives f A z /\ a * 0. But as f f M , a f M we 
have f a a f M. Thus for z if M there exists f a a in M such 
that (f A a) A z * 0. Hence M is maximal filter (See Result 
1.2.3).

Thus we have shown that there exists maximal filter 
M in S such that P c m and (a)* ft M * 0. But then A*f|M * 0,



19

Q. Ck
Since M isA maximal filter, S-M isminimal prime ideal

A A

(See Result 1.2.2). Thus we have A c s - M and 

F H (S-M) » 0. By Theorem 2.5, S-M is a prime a-ideal.

This completes the proof. //

A relation between a-ideal and annihilator ideal 

is an follows.

Theorem 2.12 : Every annihilator ideal in S is an a-ideal.

Proof Let I be any annihilator ideal in S. Then I = I**. 

If x f I then x I**. This implies that y (* (x)* for all

y f I*. Hence I* SEE (x)* gives (x)** f= I** ■ I. Thus 

(x)**^ I for x f I, proving that I is a-ideal. //

Remark 2.13 s Every a-ideal need not be an annihilator 

ideal. For example if I is the proper dense a-ideal then 

I will not be an annihilator ideal.

There are some 0-distributive semilattices in which 

every a-ideal is an annihilator ideal. For this consider 

the following example.

mi m
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Example 2.14 :

a

Pipure-IV

In the semilattice represented by Figure-IV, 
a-ideals are, Ij, I2, I3, I4, I5, Ig and I7

where.

and
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Consider an a-ideal#
I3 - {o,c}
I** - (I* )*

- < )*

- i°•c}
- *3

Hence I3 is an annihilator ideal. Similarly it can 
be verified that the remaining a-ideals are also annihilator 
ideals.

In the following theorem we study 0-distributive 
semilattices in which every a-ideal is an annihilator ideal.

Theorem 2.15 : If each a-ideal is an annihilator ideal in 
S then every minimal prime ideal is nondense.

Proof By Theorem 2.5. every minimal prime ideal M is an 
a-ideal. Hence by assumption M is an annihilator ideal and

•Jf iffhence M » M . Let if possible suppose that M is a dense 
ideal. Then M* * ==> M** * * * S. Hence M = S
which contradicts that M is proper. Hence M is nondense. //

A property of a dense ideal is established in the 
following theorem :
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Theorem 2.16 s A dense ideal I contains a dense element 
if I* * |x f S / x f (a)** for some a f I ^ is an ideal 

in S and each a-ideal is an annihilator ideal.

Proof - If possible assume that I f| D ■ 0j where D is the 
set of all dense elements in S. Claim that I' f| D = 0, If 
I' f) D 4 0 then there exists an element d in I'nD. But 
then d f (a)** for some a f I. Hence (a)*** = (a)* £1>(d)*

^ -Xy since d f D. Hence (a) * i.e. a f D. This
in turn Implies that a f I 0 D » 0, a contradiction. Hence 
the claim.

As I* is an ideal in S, by Theorem 2.8 I* is an 
a-ideal. By data I* is an innihilator ideal. Since D is 
filter in S (See Result 1.2.5), there exists maximal filter 
M in S such that D M and I'fl D « 0 (See the proof of 
Theorem 2.11). Denote by P * S - M. Then P is a minimal 
prime ideal in S (See Result 1.2.2). Hence P is a nondense 
(See Theorem 2.15).

Now ISP **=> P*S: I* = , since I is a dense
ideal by data. This given P* * p is a dense

ideal. This contradicts the fact that P is a nondense ideal
proven -thqf-

Therefore I HD / 0 4-re^ I contains a dense element.

Remark 2.17 s When S becomes lattice, I• is an a-ideal 
[ G ] . Hence the converse of Theorem 2.16 is always
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true for a O-distributive lattice.

S is said to be auasicomplemented if for any x f S 
there exists y f S such that (x)** * (y)* [ B ].

We characterize quasicomplemented semilattice in 
the following :

Theorem 2.18 * Following statements are equivalent j

1)
2)

3)

S is quasicomplemented 
For any a-ideal J in S,

J = U £(f)* J f f F(J)J- ? 
whetre,

F(J) * £x f s J (z)* £= (x)** for some z

For any a-ideal J in S there exists a semifilter 
F in S such that J * U ^(f)* j f f p J.

Proof - (1) ===> (2)

Let w f U {iff f f f F(J )J . Then wax = 0 for some 
x f F(J). This implies that wax « 0 and (Z)* (x)** for
some z f J. Hence w f (x)* ^ (z)** As J is an a-ideal and 

z f J i*|ei$efc that (z)**£: J. Thus w f (z)** j proving 
that U £(f)*/ ff F(I) j- ^ j.

Now let x J. Then S being quasicorapleroented there 
exists y f S such that (x)** * (y)*. But as x f (x)**, we 
get x f (y)*. Hence XAy * 0. As (x)*^ (y)** and x f J, 
we get y f F&). Hence x fo ^(f )* / f f F (J) 1 proving
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that J&O ^(f)* f f f*F(J)J- . By combining both the 
inclusions we get, J * U £{f)* / f f F(J)^for any 
oc-ideal J in S.

(2) ===> (3)

Let J be any a-ideal. Then by assumption we have, 
J * U <^(f)* f f f P(J)J- . Only it remains to prove that, 
F(>J) = -£x f S J (z)*«£ (x)**, z f jJ- is a semifilter.
Let xi < x2 and xl f F(J). Then (z)~ ^ (x^)** for some

„ **z f J. But Xj £ X2 implies that (xi)"^ <x2)**. Therefore
(z )* (3^** for z f J. Hence x2 f P(J) proving that F(J)
is a semifilter.

(3) ===> (l)

^ ‘AtLet x f S. Then (x) is an a-ideal. Hence by 
assumption there exists semifilter P such that (x) *
® ^(f )* j f f F J. . As x f (x)**, we get x a f * 0 for 
some f f P. Let y f (x) . Then y /\ z * 0 for all z f (x) .
As y f (x) , we get y/\f * 0 proving that y f (f) . Hence 
(*)** £ (£)*.

Now obviously (x)** * U 5 (f)*/ f f F j. Implies that 
(x) ^ (f) . Hence (x)* * (f)*. But this in turn implies
that S is quasicomplemented. //



25

We know that,
0 (F) = f S / x a £ * 0, for some f f F 

where, P is any filter in S. But then by the definition of 
0(F) we get.

0(F) - U £ (fl* / f f Pa­

using above characterization as every filter is also semi­
filter we have the following :

{n s t^e have r-a(f)
Corollary 2.19 s If any a-ideal I a Ou*'j for some filter 
P in S then S is quasicomplemented.


