


~ideals in O-@istributive semilattices

Por convenience we repeat the definition of a

O=distributive semilattice.

A meet semilattice < 8, A > with O is said to be
o-disirimtivc if aA Xy =0, AaAXy) ™0, cocc AAX, = 0y
8 Xy, eeo Xp €S (n finite) and X} VXV oo VX, exists in
S then aA(x) v X, ¥ ¢eo vXy) = O,

Throughout this section we denote a O-distributive
semilattice by 8.
We define

Definition 2,1 a=ideal in 8 + An ideal I in 8 is said to
be an a-ideal 1f x ¢ I implies that (xf*< 1

Note that <, Jayaram [ G ] has also defined
a=ideals in O-distributive semilattices. But the definitions
of ideals and O-distributivity used in[ G ] ere aifferent

Example 2,2;
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In the O-distributive semilattice S represented

by Figure-I, the following are a=-ideals.
Il ’{O‘a‘b} Y] 12 = {0,&8} e I3 = {O},
I, = {o. a&brc;.d.e}

Remark 2.3 ¢ Obviously every a-ideal is an ideal but

every ideal need not be an a-ideal, This we illustrate in

the following example :

Example 2.4 :

Figure-II



12

In the O-distributive semilattice sketched in the
Figure~I1I, {o. a} is an ideal but not an a~ideal.

Consider the ideal, I = {o. a,c,d.e,f} in the
following O-distributive semilattice whose diagramatic

representation is as shown in FiguresIIIl.

e b

(8)

Figure-III

Here I is a prime ideal but not an a-ideal, .°

For minimal prime ideal we have the following :

Theorem 2.5 : Every minimal prime ideal in S is an

a""ideal .

Proof - Let M be any minimal prime ideal in S and

x &M, As M is minimal prime ideal; S=M is maximal filter
and X¢ S-M

(See Result 1.,2,.2), Since S~M is maximal filterh-bhe-t&oae

there exists y € S-M such that xAy = 0 (See Result 1,2.3),
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Now 1f:aé (x)** then zAy = 0 (since y ¢ (x)*). But
then zA v ¢ M and M is prime ideal will imply z & M. Thus

(x)**C M for every x in M proving that M is an a~ideal.//

For any prime ideal P in S define,

O(P) = {x (-S/ XAy = 0 for some y ¢P}

We now prove that O(P) 1is an q~ideal

'rhegrém 2,6 :' For any prime ideal P in S, O(P) is an

a=ideal.
Proof - Claim-I 0(P) is an ideal in s

(1) Let, agbandb ¢0 (P). (abes)
b ( 0(P) implies that bAy = 0 for some y £ P.
As a ¢ b we get aAy = 0: Hence a ¢ O(P).

Thus a ¢ b and b ¢ 0(P) ==> a ¢£0 (P).

(11) Let a,, 35, «+. @, be the elements of 0(P) such
that a; v Ay V ... V @, exists in S, Then by the
definition of o0(P) we have ) APy =0 a,Ap, = O...
cee 3 NP, = 0 where Pys Py se+.P, are not in P,
As‘ P is prime, Py Py ... P, £p,

a4 AP =0 (1 <1< n) will imply

31/\(91 /\pz e e Apn)go
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a8y APy APaA  eee AP, =0

an/\(pl/\pz/\ ev s e /\pn) '0.
As S is O-distributive we get,
(alv azv sses Van) A (pl N pz/\ ofuo /\pn) = O. But
Py APaA eees APy € P proving that a; v az v ...

«so va_ &0 (p). Thus by (1) and (i1i) we get o(P) is an
igeal in S,

!

Claim=-II o0(P) is an aq~ideal in S.

Let x ¢ O(P). Then xAy = 0 for some y ¢ P. Hence
y & (x)*. Therefore for any z ¢ (x)**, z Ay = 0, But
then z ¢ O(P). This proves that (x)** < o(P) for x ¢ o(P).

Hence O(P) is an a=-ideal in S'_l[.

As for any prime ideal P in S, 0{(P) < P we have

the following corollary.

Corollary 2.7 : Every prime ideal in S containg:~ an

a’ideal.

For an ideal I in S define,

4

I'-{x (-S/ x & (a)** for some a (-I}

It is clear that I' not necessarily be an ideal in S, But

““H' ﬁAi ,"A"‘gi\jg KHP;-», '
el RAGRUTK ST Y jen
BHIVAJ UiveRsITY. xot.x.n;;siﬁ.n
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when I' is an ideal we have

Theorem 2.8 : For any ideal I in S if I' is an ideal in

S then I' is the smallest a-ideal containing I.

Proof (I) I' is an arideal in S.

Let x ¢ I', Then by the definition of I' there exists
a ¢ I such that x ¢ (a)**. Therefore (x)¥'= (a)**. Hence

for any T ¢ (x)** we have t ¢ (a)**. Hence (x)*"= 1°.

Thus X é I' implies that (x)** < I' proving that I' is

an a~1ideal in S,

(II) I*' is the smallest a-ideal containing I.
As a ¢ (a)** for any a in S we get 1< I', Let J be any

a-ideal in S such that I = J. If X ¢ I' then X ¢ (a)**

for some a ¢ I. Hence = ¢ (a)*" for some a ¢ J, But since
J is an a-ideal, a € J implies that (a)**g J. Therefore

x €J. Thus x € I' ==> 2 & J proving that I' <~ J.

Hence from (I) and (II) we get I' is the smallest a-ideal
containing I. a4

For any filter F in S define,

o(F) = {x (-S/ XAyYy=0 for some y GF}

We now prove that O(F) is an a-ideal in S.
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Theorem 2.9 : For any filter F in S, O(F) is an a-ideal

Proof

(1)

(i1)

(1) o(P) is an ideal in S

C"u"xlee).
Let x, < X; and x, & O(F), Then x; A y = 0 for some

y €F implies that x, Ay = 0. Hence x; & O(F)

Let X,, Xpseeee X € o(F) such that x; v x3 Vv ...

ces VX exists in S. Then Xy AYy = 0 for some

y; ¢F (1 ¢ <n). As Yy Y20 e+ ¥p ¢F,
Y1 A YoAeeee A¥p ¢ P. Therefore
X A (YIAYZ/\ cses AYp) =0

X, A (yy\ Yo A eese AYqy) =0

- G W S

xn A(Yl A YzA cooo/\Yn) = 0

But S being a O-distributive, we get

(xlvxz V eecvee vxn) /\ (Yl/\YZ/\ eveoe /\yn) = o. Hence

xl VX2v ss e e Vxn GO(F).

Thus from (i) and (ii), O(F) 1is an ideal in s.

(I1) o(F) is an a~-ideal in s,

Let X ¢ O(F). Then x A £ = 0 for some f ¢ F.

Hence f ¢ (x)*. If v ¢ (x)** then vy A £f=0,
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This in turn implies that y ¢ o(F). Thus y ¢ (x)** implies
that y € O(F) i.e. (x)** = o(F) for x & O(F) proving that

O(F) is an gq~ideal in S. //

For any proper a-ideal I in S we have IND = & where
in 9
D denotes the set of all dense elements,\i.e. D -{d(— S/ (c’!)*'r -

= {o}} . This is proved in the following

Theorem 2,10 : Any proper a-ideal in S does not contain

a dense element,

Proof Let I be proper a=-ideal in S and let 4 be dense
element in S, If possible suppose that @ ¢ I, Then I
being an a-ideal (d)**s; I. Hence S = I (since (&)* = {O}

*%

(d) = S). This contradicts ‘that I is proper., Hence 4 £ I.

Thus proper a-ideal does not contain a dense element. ﬂ

Now we state crucial result about the prime

a~ideals.,

Theorem 2.11 : Let I be an annihilator ideal and F be a

Q
filter in S such that INF = @#. Then there exists Aprime

a=~ideal P containing I and disjoint with F,

Proof : As I is an annihilator ideal in S, I = A* for

some A<= S, Further INF = @& implies that A*f\ P =

Na*nNr=¢
aé A
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(since A" = N (a)* ) Hence N [(a)*n F] = @.
a ¢a a ¢A

This implies that (a)*NF = & for some a € A.

Consider the family '} of all filters in S
containing F and disjoint with (a)*. Then obviously F ¢ J»
Hence by Zone's lemma there exists maximal element M in

such that F S M and (a)* N M=¢g
Claim-I  a €M

If a €M then the filter generated by M U{a} intersects
(a)*. Hence there exists an element b in S such that
b>c Aa for some c €M and b A a = 0, But this gives

¢ ~a=201i.e. ¢ ¢ (a)* which is a contradiction since

M N(a)* = #. Hence a & M,

Claim-II M is maximal filter.
Let z ¢S such that z # M, As the filter generated by
MU {z} intersects (a)* there exists an element b in
(a)* such that b >f Az for some £ ¢F. Now O = bAa >

e

f AzAnagives fAz Ana=0,But as £ €M, a &M we
have £ Aa € M, Thus for z £ M there exists f A a in M such

that (£ A a) Az =0, Hence M is maximal filter (See Result
1 0203) .

Thus we have shown that there exists maximal filter

M in S such that P < M and (a)* N M = #. But then A*NM = ¢,
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12} Q
Since M isAmaximal filter, S-M isAminimal prime ideal
(See Result 1.2.2). Thus we have Afgrs - M and
F N (s-M) = ¢4, By Theorem 2,5, S-M is a prime a-ideal.

This completes the proof. //

X .

A relation béﬁween a~ideal and annihilator ideal

is an follows.

Theorem 2.12 : Every annihilator ideal in S is an a-ideal,

Proof Let I be any annihilator ideal in S, Then I = .

If x ¢ I then x € I, This implies that y ¢ (x)* for all

vy €1*. Hence I*< (x)* gives (x)** = 1*™ = I, Thus

(x)**g; I for x ¢ I, proving that I is a-ideal, //

Remark 2.13 : Every a—-ideal need not be an annihilator

ideal. FPor example if I is the proper dense a=ideal then
I will not be an annihilator ideal.,

There are some O-distributive semilattices in which

every a-ideal is an annihilator ideal. For this consider

the following example,

sAfE. BALe 0TS KBARDEKED VIPBARY
WAL

oy R Tl AT T U':"“ﬂ..
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Example 2,14 :

O

Piqure-1V

In the semilattice represented by Figqure-IvV,

a~ideals are, I!.’ 12, 13, 14,‘15, 16 and 17

where,
I, = {o}
I, = {o,a} . Iy = {o,c} . I =’{o,d}
IS = {O,c,d} P

6= {o,a.b.c}

and I-, = {o, a,b,c, d, e}
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Consider an a=ideal,

I3 = {0, c}
* *
"= (1)

= ( {0,2,4} y*
= {o, c}
I

3

Hence I, is an annihilator ideal. Similarly it can

be verified that the remaining a-ideals are also annihilator

ideals.

In the following theorem we study O-distributive

semilattices in which every a-ideal is an annihilator ideal.

Theorem 2.15 : If each g-ideal is an annihilator igdeal in

S then every minimal prime ideal is nondense.

Proof By Theorem 2.5, every minimal prime ideal M is an
a-ideal., Hence by assumption M is an annihilator ideal and
hence M = M**. Let if possible suppose that M is a dense
ideal. Then M" = {0} ==> M** = {0} * = s, Hence M = s

which contradicts that M is proper. Hence M is nondense. //

A property of a dense ideal is established in the

following theorem :
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Theorem 2.16 : A dense ideal I contains a dense element

i£1' ={x (—S/ x ¢ (a)** for some a (-I} is an ideal

in 8 and each g-ideal is an annihilator ideal.

Proof - If possible assume that IN D = #; where D is the
set of all dense elements in S. Claim that I'n D = ¢, If
I'ND ¥ # then there exists an element 4 in I'ND. But

then d ¢ (a)** for some a ¢ I. Hence (a)*** = (a)* C,-?,(d)"r =

{o} ; since d ¢ D. Hence (a)* = .{0} i.e. a ¢ D. This
in turn implies that a ¢ IND = #, a contradiction. Hence

the claim,

As I' is an ideal in S, by Theorem 2.8 I' is an
a-i1deal, By data I*' is an innihilator ideal. Since D is
filter in S (See Result 1.2,5), there exists maximal filter
M in s such that D= M and I'N D = @ (See the proof of
Theorem 2.,11). Denote by P = S - M, Then P is a minimal
prime ideal in S (See Result 1.2.2). Hence P is a nondense

- (See Theorem 2.15),

Now ISP ==> P*< 1" = {0} , since I is a dense
ideal by data. This given P* = {0}. i.e. P is a dense
ideal., This contradicts the fact that P is a nondense ideal.

proven that
Therefore I ND # # ive, I contains a dense element,

Remark 2.17 : When S becomes lattice, I*' is an a=ideal

[ G ] . Hence the converse of Theorem 2.16 is always
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true for a O-distributive lattice.

S is said to be cquasicomplemented if for any x ¢ S

there exists y €5 such that (x)** = (p)* [ B 1.

we characterize quasicomplemented semilattice in

the following :

Theorem 2,18 1 Following statements are equivalent :

1) S is quasicomplemented
2) For any a=-ideal J in s,
g=u (e / £ ('F(J)} :
whese,

F(I) = {x (-s/ (2)* € (x)** for some z ea}

3) For any a~ideal J in S there exists a semifilter
F in S such that J = U {(f)* / £ (-F}

Proof - (1) ===> (2)

Letw ¢U {(f)*/ £ (-F(J)} . Then wAx = 0 for some
x €F(J). This implies that wAXx = 0 and (2)* = (x)** for
some z ¢£J. Hence W ¢ (x)*= (2)*% As J is an a-ideal and
z &J w‘e}_aet' that (z)**< J. Thus w ¢ (z)** < J proving
that U §(6)* / £6F(1) <o,

Now let x € J. Then S being quasicomplemented there

exists y €S such that (x)** = (y)*. But as x ¢ (x)**, we
get x ¢ (y)*. Hence XAy = 0. As (x)*g- (v)** and x & J,

we get vy ¢ F@). Hence x ¢ U {(f)*/ £6F (J)} proving
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that J= U {(f)*/ £ ¢ F(J)} . By combining both the
inclusions we get, J = U {(f)“r / £ € F(J)} for any
a-ideal J in s,

| Let J be any a~ideal. Then by assumption we have,
J=1U {(f)*/ £ .(-F(J)} + Only it remains to prove that,
F(J) ={x ¢ S/ (z)*_c;_ (x)**, =z (-J} is a semifilter,
Let X3 < X2 and x; ¢F(J). Then (z)" = (xl)** for some
z £€J. But xj & xp implies that (xl)**g:_ (x2)**. Therefore
(z)* = (:Q** for z ¢ J. Hence x, ¢ F(J) proving that F(J)

is a semifilter.

(3) ===> (1)

Let x ¢ S. Then (x)** is an a-ideal. Hence by
assumption there exists semifilter F such that (x)** =
> ] {(f)*/ £ (-F} . A8 x & ()*, we get x A £ = 0 for
some £ ¢ F, Let vy ¢ (x)**. Then YyAz=0 for all z & (x)*.
As y ¢ (x)*, we get yA £ = 0 proving that y ¢ (£)*. Hence

(x)** < (£)*.

g

Now obviously (x)’“r = U {(f)*/ £ (-F} implies that
(x)**g (£)*. Hence (x)* = (£)*. But this in turn implies

that S is quasicomplemented. //
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we know that,
o(F) ={x ('S/ xAf = 0, for some £ (-F}
where, F is any filter in S, But then by the definition of

o(F) we get,

O(F) =U {(ﬂ*/ £ (-r}

Using above characterization as every filter is also semi-

filter we have the following :
in & we have I =0(F)
Corollary 2.19 : If any a-icdeal I A L. for some filter

F in S then S is quasicomplemented.



