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Section-III1

Characterizatibn of a~ideals in a O-distributive semilattice.

Throughout this section S denotes a O-distributive

semilattice.

Let aL be the set of all minimal prime ideals in a
O-distributive semilattice. For a subset @ of m, defire
as usual kernel of (P by

Kernel of (P =K ((P) = ﬁ{R /R (-(P}

For a subset A of S define the hull of A as,

Hull of A = h (a) = {M(rq/ AQM} .

Let vp denotes the hull~-kernel topology on me First we
prove two lemmas that we need for characterizing a-igeals

in 8.

Lemma 3,1 : For any x € S,

(x)* = n{M (-uL /x {‘M}
Proof - Lety ¢ (x)*. Then x A Y = 0, For any minimal
prime ideal M we have, x Ay € M. If x £M then y ¢ M,
Therefore v ¢ N {M / x £ Mj . Thus y ¢ (x)* implies that
y ¢ n{M /x (‘M} proving that (’x)*g ﬂ{M /x (‘M} . Now
let if possible, (x)*— n {n /x ¢N.} Then there exists
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z (-n{M /x #M} such that z # (x)*. Hence x » z # O,
b
But then zAXx ¢ F, for some maximal filter F (See Result

1.2,6), Here z & F. But then S-F is a minimal prime ideal

not containing z(See Result 1,2,2), This contradicts with
the fact that, 2z (’ﬂ{M/ x (‘M}. Hence (x)'< N {M/x #M}

is not possible. Therefore (x)* = ﬂ{ M/ x £ M¢ .,/

Denote h({x}) = h(x).
as (x)* = niM(-nL/x (‘M}, we get (x)* = k[ n, = hix) ].

In the following lemma we give a necessary and

sufficient condition for h(x) = h(y) where x ¥ y in 8.

Lemma 3.2 : For any X, vy in S, h (x) = h(y) if and only
1f (x)* = (p)*

Proof - Let h(x) = h(y). Then m - h(x) = m;,~ h (y).
Hence n[ nL- hix) ] = N ["L- h (y) ). This implies

that n{M(-nL/ M (‘h(x)} = nim (-nL/n ¢n(y)
Hence ﬂ.{h‘\{-nb/ xi‘M}- n{M é-nb/y (IM}.

This in turn implies that (x)* = (y)* (by Lemma 3.1).

Conversely let (x)* = (y)*. Then by Lemma 3,lwe
get n{n €m [ x {‘M} = n{M ""L/ Y #m}. Hence
h[nSLM (-nL/x (‘M}.] -h[n{u (-uL/y (‘M} ] i.e.
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h [ K{M (-nblx (‘M}] =h|[ x{s (-n;,/y (‘M}]. But asT‘

is hull-kernel topology we get, h [K{m ¢ HL/x (‘M} ] =
{M (-uL/ x (‘M} and h [ K{M (v:mL/y (‘Mj] =
{M (-rq,/y ﬁnj.
Thus we get, (x)* = (¢)* -==>{M (-ub/x {‘Mjs {M ('nLIy ?M}
But this in turn implies that,
m - {M (-nL/x (‘M} =m- {M ém vy (‘M}.
i.e, {M (-nL/x (-M} = {M (-nL}y (-M}.

Therefore h(x) = h(y). This completes the proof of if past.//

Now we state our main result

Theorem 3.3 : For any ideal I in S, the following

conditions are equivalent :
(1) I is an a-ideal.

(2) I U (x)**
x &1

(3) For x, v €5, (x)* = (y)* and x ¢ I ===> vy ¢I.

(4) For x, vy €S, h(x) = h(y) and x ¢I ===> y &I,

Proof (1) ===> (2)
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*
(x)* < I, Hence U (x)

*k
<
xéI

I. As x € (0)*" always

I=U (x)**. Therefore by combining both the inclusions
xé I

we get, I =U (x)**
xé I
(2) ===> (1)
By (2) we have, I = U (x),**. This implies that,
xé I
(x)**<= 1 for each x ¢ I, Therefore I is an a-ideal.

(2) ===> (3)

Let (x)* = (y)* (x,v ¢ S) and x ¢ I. We want to
prove that y ¢ I. Assume that y ¢I. Then by (2) we get,

v (lu(_ (£)**. This implies that y # (£)*" for all t ¢ I.
téI

)**

AS x ¢ I we get, v ¥ (x)**. Hence yaz # O for some z ¢ (x)*.

But (x)* = (y)*. Therefore z ¢ (x)* implies that z & (y)*
i.e. yanz = O which is a contradiction. Hence y # I is not

possible. Therefore y ¢ I.
(3) ===> (2)

For any x ¢ S we know that, x ¢ (x)"“r always. Hence

*%

I <Uu (x)*. Now let y €U (x) ., Theny & (x)** for

xéI xe I
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some x ¢ I. This implies that, y A 2z = 0 for all z ¢ (x)*.

Now z & (x)* implies y A 2z = 0., But then z ¢ (y)* and hence
(x)*< (y)*. Therefore (x)* ¥ (y)“' = (y)*. But

(x)* ¥ (y)* = (xAy)* (See Result 1.2,7). Hence (xAY)* =
(y)*. As xAy < x and x ¢ I we get xAy € I. Using (1)

we get y ¢ I. This proves that U“x)**ga I. Combining
Xe 1

both the inclusions we get, I = Uéﬁx)**.
xel

(3) =m==> (4)

tet h(x) = h(y) and x ¢ I. ZThen We want to prove
that y € I, Since h(x) = h(y) therefore by Lemma 3,2,
(x)* = (y)*. Thus h(x) = hly) ==> (x)* = (y)*. Hence by

using (3) we get, v ¢ I.
(4) ===> (3)

Let (x)* = (y)* and x ¢ I. Then we want to prove
that y ¢ I. Since (x)* = (y)* therefore again by Lemma 3,2
we get h(x) = h(y). Thus (x)* = (y)* ==> h(x) = h(y). Hence

by using (4) we get, v ¢ 1I.

Thus (1) <==> (2) <==> (3) <==> (4), completing

the proof of Theorem, Y44



