


31

Section IV

The o-map

In this section we change our setting from O-distri-
butive semilattice to O-distributive lattice for the study
of a=-ideals. Throughout this section L will stand for
O-distributive lattice, As L is o-aistributive lattice,
the set of annihilators of the type {x} *a )" (x €1)
will form a lattice called as lattice of annulets of L in
‘this direction weig‘gate}

Theorem 4.1 : A, (L) = {(x)*/ x € L} is a lattice under

the binary operations /\ and ¥ which are defined as,
)* A (' = (xvy)* and
X)* ¥ P = (xay)*

First we establish a relation between the set of

all ideals I(L) of L and the set of all filters }(AO(L))
of the lattice A, ().

Theorem 4,2 : For any ideal I in L,

{(x)* / x é I} is a filter in A4 (L)
Proof Let F = {(x)* /x ¢ I}

(1) Let (x)*< (y)* and (x)* ¢F (x,y €L )
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as (x)* &F, there exists t ¢ I such that (x)* = (v)*.
Then by assumption () < (y)*. Hence (t)*\'l (y)*=== (y)*.
Therefore ('c/\y)1|Ir = (y)*. as tAy £y and t €¢I we get
t Ay € I. Hence (ta y)* ¢ F. Therefore (y)*(-F. Thus

(xX)* < (7)*, (X)* €F ==> (y)*¢F.

(11) Let (x)*, (¥)* ¢F (x,y (L). As (x)F ¢ F there

exists t ¢ I such that (x)* = (t)* and as (y)* €F there
exists s €I such that (y)* = ( s R | being an ideal
t €I, s €I imply t vs €¢I, Hence (t vs )* ¢€F. This
implies that (£)* A (8)" ¢F i.e. (X)* A (M* €F.

Thus (x)*, (9)* ¢F ===> ()*A (p)* €F.
From (1) and (ii) we get, F is a filter in A, (L). //

In the reverse direction we have the following

theorem : !

Theorem 4.3 : For any filter F in A (L),

{x (—L/(x)* (»F}is an ideal in L,

Proof Dermote J = iLx (-L/ (x)* ¢F }

(1) Let x < yandy ¢€J (x,y €L).

Since x <y, x vy = y and hence (x v y)* = (y)* is in F.

Thus we get (x)*/.\ (y)* €F ana (x)* A n* < (x)*.
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F being a filter, (x)* ¢ F, Hence x ¢J. Thus x < y and y

y €3 ===> x £J.

(11) ©Let x, y ¢J . Hence (x)*, (y)* & F ma=> (x)"/) ()* ¢F

==a=> (x v y)* ¢F

==m> X vy €J
Thus x, v ¢J ==> x vy ¢J.

By (1) and (11), we get J is an ideal in L. //

Define the map,

a : I(L) --==> F(A, (L) ), T €I(L) by,

« (1) = {(x)*/ x 4-1}

Qa
By Theorem 4.2, a is Awell defined map. Now we prove «

is an isotone map.

Theorem 4.4 : For any two ideals I} and I in L,

I, €1, === &) < alIy).

S

Proof (2)* ¢ a(I;) ===> (z)* (-{(x)*/ x (-:1}

===> (2)* = (y)* for some y & I

===> (z)* = (y)* for some y ¢ I,
(since I, < 15 )
===> (2)* ¢ a (I,)

Hence a(I,) < «lIy) //
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Define the map, |
B 3 }(AO(L) ) ==> 1(L), F (-}(AO(L) ) by,
8 (F) -={x ¢ L / (x)* (-r}

By theorem 4.3, B is well defined map.

Clearly B is an isotone map.

As a s I(L)

> F(a,(L) ) and

B : F(Aj(L) ) =——=> I(L), the composition map
goa maps I(L) into I(L).

Theorem 4.5 : The map, Boa: I(L) —> I(L) is a closure

operator.

- Proof 1) I < poal(I)
For 1f z ¢ I then (z)* ¢ «(I) and hence z ¢ Boa (I).

i1) I =3 ===> goxk (I) = pox (J)
Let z € poa (I). Then (2)* ¢ a(I). Since the map
a is an isotone map by Theorem 4.4, therefore

(z)* € «(J). This implies that z ( Boa(J). Hence

1< J ===> goa(l) < poa(J).

111) Box [ pox (I)] = Boa(I) for some ideal I in L.
Obviously o< (1) = pox[pox(I)] (by (1) )

Next let z ¢ Bo« [BoK(I)]. Then (2)* ¢ « [3oo<(I)]

implies (2)* = (y)* for some y & Boa(I) and hence



35

(z)* € a(I) (since y & poa(I) ==> (n* ¢ a(I) ) proving
that z & poua(I). Hence Boa [Boa(I) ]J=pgoa(I). Thus by

combining both the inclusions we get
Boa(I) = Boa [Boa(1)].

From (i), (ii) and (iii) we get, Box : I(L) =——> I(L) is

a closure operator. //

As by (i11) in the Theorem 4.5, Boa [poa(I) ] =
Boa(I) we observe that, there are some ideals I in L for
which Boa(I) = I (and also there are some ideals I in L for
which Boa(I) # I). This we illustrate by the following example.

Example 4,6 : Consider the O-distributive lattice L sketched

in the following diagram :

— S —
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Consider the ideal, I, = {o,c] .
« (1) ={<o)*. (c)*}

={u {o = b}}
Boa (1)) =Jo,cf . Then Boa(Iy) =T)
Now consider the ideal, I, = {o.a}
a(ty) = $©@% @7
= {L. {o,c}}
Boa (1) = So, a,b} |

Here poa(Iz) # I,

Now we prove our main result

Ideal I in L for which Boa (I) = I is nothing but an

a=ideal,

Theorem 4,7 ¢+ For an ideal I in L the following conditions

are equivalent.

(1) I} "9 '«in':o(:idmﬁ. i - FEmT oo AR e

(2)  pox (I) = I.
Proof. (1) ===> (2)

Let I be any a~ideal, By Theorem 4.5 we have

I < poall). Next let z ¢ 8 oe<(I). Then (z)* € &a(I).
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And therefore (z)* = (y)* for some y ¢ I. I being an
a-ideal, this will imply z & I proving that goa(I) = I.

Hence goa(I) = I.
(2) ===> (1)

Let (x)* = (y)* and x ¢ I. Since x ¢ I we get,

(x)* ¢ a(I). But then (v)* € a(I) which in turn implies
that y ¢ Boa(I) = I (by assumption). Thus (x)* = (y)*
and x €I ===> vy ¢ I, proving that I is an a~ideal (See

Theorem 3.3). //

Combining Theorem 3.3 and Theorem 4.7 we have the

following :

Corollary 4.8 : For any ideal I in L the following

conditions are equivalent.

(1) I is an a=ideal.

(2) I=u (x)**.
x €1

(3) For x, v ¢1, (x)* = (V)* and x €¢I ===> y ¢ I,

(4) For x, vy €L, h(x) = h(y) and x ¢I ==> vy ¢1I,

(5) Boa (I) = I,
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Remark 4,9 : For any ideal I in L, Boa(I) is always an

a-ideal in L (See Theorem 4.5).
Let I, and I, be any two a-ideals in L, Define,

I;® I, =Boa (I} ¥ Ip)

Then obviously the set of all avideals in L, I (L) is
a lattice under (A) and .

Define the map,

;1 (L) ——> A, (L) ) by,
3@ = {* [ x (-I} f.e. @ is the

restriction of the map a to the set Ia(L) .

Further we have,

Theorem 4,10 : The map « : Ia(L) — '}(AOIL) ) |

is an isomorphism,

Proof As a and B are isotone maps, it follows that both

- -1
a and @ are 1isotone maps. As for any I ¢ Ia(L),
-1 |
pot(I) = I. We get ¢ (a(1) ) = Bla(I) ) = (Boa)(I) = I
--1 -
and hence ¢« is an onto map. This prove§ that o is an

isomorphism (See Result 1,2.8).
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