CHAPTER - II

HANKEL TYPE TRANSFORM OF DISTRIBUTIONS AND ITS PROPERTIES

.

CHAPTER - II

2.1 Introduction :

In this chapter we construct a testing function space $H_{a,b,\lambda,\mu}$, its dual space $H_{a,b,\lambda,\mu}'$ and extend the Hankel type transformation defined by the equation (1.1.3) to a certain class of generalized functions and study some properties of it.

For real numbers λ , μ and positive numbers a, b, we construct a testing function space $H_{a,b,\lambda,\mu}$ which contains the kernel $(u/x)^{\lambda/2} (v/y)^{\mu/2} J_{\lambda}(2\sqrt{ux}) J_{\mu}(2\sqrt{vy})$ as a function on $o \langle x \langle \infty, o \langle y \langle \infty |$ for each fixed u and v.

The Hankel type transform F(u,v) of a distribution f in the dual space $H'_{a,b,\lambda,\mu}$ is defined by

 $F(u,v) = h'_{\lambda,\mu} (f) = \langle f(x,y), (u/x)^{\lambda/2} (v/y)^{\mu/2} J_{\lambda} (2\sqrt{ux}) J_{\mu} (2\sqrt{vy}) \rangle$ for suitably restricted u and v.

Let I denotes the open, rectangle ($o < x < \infty$, $o < y < \infty$). D(I) is the space of all smooth functions on I having compact support on I and D'(I) is the dual space of Schwartz distributions on I.

2.2 The Testing Function Spaces $H_{a,b,\lambda,\mu}$ and Their Duals

Let λ , μ be any real numbers and a, b are positive real numbers. Then $H_{a,b,\lambda,\mu}$ can be defined as the space of all complex-valued smooth functions $\phi(x,y)$ defined on I such that for each $k_1, k_2 = 0, 1, 2, 3, \ldots$

$$T_{k_{1},k_{2}}(\emptyset) = T_{k_{1},k_{2}}^{\lambda,\mu,a,b}(\emptyset) = \sup_{\substack{o \leq x \leq \infty \\ o \leq y \leq \infty}} \left| e^{-ax-by} \Delta_{\lambda,\mu,x,y}^{k_{1},k_{2}} \emptyset(x,y) \right|$$

$$(2.2-1)$$
where $\Delta_{\lambda,\mu,x,y}^{k_{1},k_{2}} = \Delta_{\lambda,x}^{k_{1}} \Delta_{\mu,y}^{k_{2}}$ and

whe

and

$$\Delta_{\lambda,x} = D_{x}x^{-\lambda+1} D_{x}x^{\lambda}, \quad \Delta_{\mu,y} = D_{y}y^{-\mu+1} D_{y}y^{\mu}$$

re $D_{x} = \frac{\partial}{\partial x}$, $D_{y} = \frac{\partial}{\partial y}$.

Clearly $H_{a,b,\lambda,\mu}$ is a linear space over the field of complex numbers. Moreover, $\left\{ \begin{array}{c} T_{k_{1}}^{\lambda}, \mu, a, b \\ k_{1}, k_{2} \end{array} \right\} \stackrel{\infty}{\underset{k_{1}}{}_{k_{2}} = 0}$ is a multinorm on H_{a,b,λ,μ}

Indeed, for any complex number β and $\emptyset \in H_{a,b,\lambda,\mu}$

$$T_{k_{1},k_{2}}^{\lambda,\mu,a,b}(\beta\emptyset) = |\beta| T_{k_{1},k_{2}}^{\lambda,\mu,a,b}(\emptyset) .$$
Also, for each $\emptyset_{1}, \emptyset_{2} \in H_{a,b,\lambda,\mu},$

$$T_{k_{1},k_{2}}^{\lambda,\mu,a,b}(\emptyset_{1} + \emptyset_{2}) \leqslant T_{k_{1},k_{2}}^{\lambda,\mu,a,b}(\emptyset_{1}) + T_{k_{1},k_{2}}^{\lambda,\mu,a,b}(\emptyset_{2})$$

Hence, each $T_{k_1,k_2}^{\lambda,\mu,a,b}(\emptyset)$ is a seminorm, and in addition $T_{0,0}^{\lambda,\mu,a,b}(\emptyset)$ is a norm on $H_{a,b,\lambda,\mu}$. We assign to $H_{a,b,\lambda,\mu}$, the topology generated by the multinorm $\{T_{k_1,k_2}^{\lambda,\mu,a,b}\}_{k_1,k_2=0}^{\infty}$ and this makes $H_{a,b,\lambda,\mu}$ a countably multinormed space. Moreover, $H_{a,b,\lambda,\mu}$ is a Hausdorff locally convex topological vector space that satisfies the first axiom of countability. The dual space $H_{a,b,\lambda,\mu}^{\prime}$ consists of all continuous linear functionals on $H_{a,b,\lambda,\mu}$. The dual is a linear space to which we assign the weak topology generated by the multinorm $\{f_{\beta}\phi(f)\}_{\beta}$, where $f_{\beta}\phi(f) = |\langle f, \beta \rangle|$ and \emptyset varies through $H_{a,b,\lambda,\mu}$.

A sequence $\{ \emptyset_m \}_{m=1}^{\infty}$ converges in $H_{a,b_{4}\lambda,\mu}$ to \emptyset if and only if for each pair of nonnegative integers k_1 and k_2 , $T_{k_1,k_2}^{\lambda,\mu,a,b}$ ($\emptyset_m - \emptyset$) $\rightarrow 0$ as $m \rightarrow \infty$. A sequence $\{ \emptyset_m \}_{m=1}^{\infty}$ is a Cauchy sequence in $H_{a,b,\lambda,\mu}$ if and only if

 $T_{k_1,k_2}^{\lambda,\mu,a,b}$ ($\emptyset_m - \emptyset_n$) $\rightarrow 0$ for every k_1,k_2 as m and n tend to infinity independently.

Lemma 2.2-1

 $H_{a,b,\lambda,\mu}$ is complete and therefore a Fre'chet space. <u>Proof</u> :

Let $\{ \emptyset_m \zeta_{m=1}^{\infty} \}$ be a Cauchy sequence in $H_{a,b,\lambda,\mu}$. Then by equation (2.2-1), we have a uniform Cauchy sequence $\{ \Psi_m \zeta_m^{\infty} \}_{m=1}^{\infty}$ on I for each k_1 , k_2 where

$$\Psi_{m}(x,y) = e^{-ax-by} \Delta_{\lambda,\mu,x,y}^{k_{1},k_{2}} (\phi_{m}(x,y))$$
 (2.2-2)

By Cauchy criterion, $\{\Delta_{\lambda,\mu,x,y}^{k_1,k_2}, \psi_m\}$ converges uniformly to $\{\Delta_{\lambda,\mu,x,y}^{k_1,k_2}, \psi\}$ on I, for all k_1, k_2 . Hence, by standard theorem [1, p.402] there is a smooth function $\emptyset(x,y)$ on I such that $\Psi_m(x,y) \rightarrow \Psi(x,y)$ uniformly on I and $\Delta_{\lambda,\mu,x,y}^{k_1,k_2}, \Psi_m(x,y)$ $\Rightarrow \Delta_{\lambda,\mu,x,y}^{k_1,k_2}, \Psi(x,y)$ where $\Psi(x,y) = e^{-ax-by} \Delta_{\lambda,\mu,x,y}^{k_1,k_2} (\emptyset(x,y))$ (2.2-3)

Since γ_m (x,y) is a uniform Cauchy sequence then for each ϵ > 0, there is an integer N_{k_1} , k_2 such that

$$\begin{array}{c|c} \sup \\ \circ < x < \infty \\ \circ < y < \infty \end{array} \left| \begin{array}{c} \gamma_m(x,y) - \gamma_n(x,y) \\ \end{array} \right| < \varepsilon \\ \end{array}$$

for every m,n > N_{k_1}, k_2

Taking the limit as $n \rightarrow \infty$, we have

 $\begin{array}{c|c} \sup \\ \circ \langle x \langle \infty \\ \circ \langle y \langle \infty \end{array} & \left| \begin{array}{c} \psi_{m}(x,y) - \psi(x,y) \\ \otimes \langle y \langle \infty \end{array} \right| & \leqslant \varepsilon, m \rangle N_{k_{1},k_{2}} \\ \text{Thus, for each } k_{1},k_{2} \\ \end{array} \\ \begin{array}{c} \chi_{\lambda,\mu,a,b} \\ T_{k_{1},k_{2}} & \left(\begin{array}{c} \phi_{m} - \phi \end{array} \right) \rightarrow 0 \quad \text{as } m \rightarrow \infty \end{array} . \end{array}$ $\begin{array}{c} (2.2-4) \\ ($

Finally, because of the uniformity of the convergence and the fact that each $\mathcal{V}_{m}(x,y)$ is bounded on I, there exists a constant $C_{k_{1},k_{2}}$ not depending on m such that

21

$$|\gamma_m(x,y)| \leq c_{k_1,k_2}$$
 for all (x,y) .

Therefore, from (2.2-4), we get

$$\begin{array}{c|c} \sup \\ \circ < x < \infty \\ \circ < y < \infty \end{array} \middle| \mathcal{Y}(x,y) \bigg| \leq \varepsilon + c_{k_1,k_2} \end{array}$$

which shows that $\Psi(x,y)$ is bounded on I. Hence, a function $\mathscr{O}_{(x,y)}$, which is the limit of a given sequence $\{\mathscr{O}_{m}\}$ is a member of $H_{a,b,\lambda,\mu}$. Thus the sequence $\{\mathscr{O}_{m}\}$ converges in $H_{a,b,\lambda,\mu}$ to the unique limit \mathscr{O} . Hence $H_{a,b,\lambda,\mu}$ is complete. Since $H_{a,b,\lambda,\mu}$ is countably multinormed space which is complete, then $H_{a,b,\lambda,\mu}$ is a Fréchet space. $H_{a,b,\lambda,\mu}$ is complete and hence $H'_{a,b,\lambda,\mu}$ is complete.

<u>Theorem 2.2-1</u>: $H_{a,b,\lambda,\mu}$ is a testing function space. <u>Proof</u>: Clearly, $H_{a,b,\lambda,\mu}$ satisfies the first two conditions of testing function space. Now we shall prove the third. Let $\{ \emptyset_m \}_{m=1}^{\infty}$ converge in $H_{a,b,\lambda,\mu}$ to zero. In view of (2.2-2) and the seminorms defined in (2.2-1), it follows by induction on k_1 , k_2 that, for each pair of k_1 , k_2 , $\{ D_x^{k_1} D_y^{k_2}(\emptyset_m^{*}) \}_{m=1}^{\infty}$ converges uniformly to zero function on every compact subset of I.

This completes the proof of the Theorem 2.2-1.

Now we list some properties of these spaces.

(i) Let
$$\lambda, \mu = \frac{1}{2}$$
. For a fixed complex number (u,v) belonging
the strip

$$\mathcal{L} = \left\{ (u,v) \in \mathbb{C}^2 / u, v \neq 0 \text{ or a negative number} \right\},$$

$$(u/x)^{\lambda/2} (v/y)^{\mu/2} J_{\lambda} (2\sqrt{ux}) J_{\mu} (2\sqrt{vy}) \in H_{a,b,\lambda,\mu}$$

Indeed, by the analyticity of

$$\overline{w}_{-\lambda}^{-\lambda} z_{-\mu}^{-\mu} J_{\lambda} (w) J_{\mu} (z)$$
, w, $z \neq 0$ it follows that
 $(u/x)^{\lambda/2} (v/y)^{\lambda/2} J_{\lambda} (2\sqrt{ux}) J_{\mu} (2\sqrt{vy})$ is smooth on I.

Also, in view of the property

$$\Delta_{\lambda,\mu,x,y}^{k_{1},k_{2}} [(u/x)^{\lambda/2} (v/y)^{\mu/2} J_{\lambda} (2\sqrt{ux}) J_{\mu}(2\sqrt{vy})]$$

= $(-1)^{k_{1}+k_{2}} u^{k_{1}} v^{k_{2}} (u/x)^{\lambda/2} (v/y)^{\mu/2} J_{\lambda}(2\sqrt{ux}) J_{\mu}(2\sqrt{vy}) (2.2-5)$

and the fact $| e^{-ax-by}(2\sqrt{ux})^{-\lambda}(2\sqrt{vy})^{-\mu}J(2\sqrt{ux})J_{\mu}(2\sqrt{vy})|$ is bounded for $0 \le x \le \infty$, $0 \le y \le \infty$, $(u,v) \in --$ [4], the quantities

 $\begin{array}{c} {}^{\lambda,\,\mu,\,a\,,b}_{k_1,\,k_2} \left[\left({}^{u/x} \right)^{\lambda/2} \left({}^{v/y} \right)^{\mu/2} \right]_{\lambda} \left({}^{2}\sqrt{ux} \right) \, J_{\mu} (2\,\sqrt{vy}) \, \left] \\ \text{are finite for all } k_1^{},\,k_2^{} = 0,\,1,\,2,\,\ldots\,. \quad \text{Thus, our} \end{array}$

assertion is verified.

(ii) Let $\lambda \ge -\frac{1}{2}$, $\mu \ge -\frac{1}{2}$. For a fixed complex number (u,v) belonging to the strip $-\Lambda = \{(u,v) \in C^2 / u, v \neq 0 \text{ or a negative number}\}$,

 $D\left[\left(\frac{u}{x}\right)^{\lambda/2}\left(\frac{v}{v}\right)^{\mu/2}J_{\lambda}\left(2\sqrt{ux}\right)J_{\mu}\left(2\sqrt{vy}\right)\right]\in H_{a,b,\lambda,\mu}$ where $D = \frac{\partial}{\partial u}$ or $\frac{\partial}{\partial v}$. Hence, $T_{k_1,k_2}^{\lambda,\mu,a,b}$ [D($\frac{u}{x}$)^{$\lambda/2$}($\frac{v}{y}$)^{$\mu/2$} J_{λ}($2\sqrt{ux}$) J_{μ}($2\sqrt{vy}$)]< $\angle \infty$ for any fixed (u,v) in \frown . Let 0 < c < a, 0 < d < b. Then $H_{c,d,\lambda,\mu} \subset H_{a,b,\lambda,\mu}$, (ïii) and the topology of $H_{c,d,\lambda,\mu}$ is stronger than the topology induced on it by ${}^{\prime}H_{a,b,\lambda,\mu}$. This follows from the inequality $\mathsf{T}_{k_1,k_2}^{\lambda,\mu,a,b}(\emptyset) \leqslant \mathsf{T}_{k_1,k_2}^{\lambda,\mu,c,d} (\emptyset)$ for $\emptyset \in H_{a,b,\lambda,\mu}$. Let $o < e^{-ax-by} < e^{-cx-dy}$ on I. Then $|e^{-ax-by} \Delta_{\lambda,u,x,v}^{k_1,k_2}(\phi(x,y))| \leq$ $\leq e^{-cx-dy} \Delta_{\lambda=u,x,y}^{k_1,k_2} (\phi(x,y))$ so that, $T_{k_1,k_2}^{\lambda,\mu,a,b}(\emptyset(x,y)) \leqslant T_{k_1,k_2}^{\lambda,\mu,c,d}(\emptyset(x,y))$. Thus, our assertion is implied by the last inequality. Hence, the restriction of $f \in H_{a,b,\lambda,\mu}^{'}$ to $H_{c,d,\lambda,\mu}$ is in $H_{c,d,\lambda,\mu}$

(iv) D(I) C $H_{a,b,\lambda,\mu}$, and the topology of D(I) is stronger than that induced on it by $H_{a,b,\lambda,\mu}$. Hence, the restriction of f \in H'a,b, λ,μ to D(I) is in D'(I). Thus, members of H'a,b, λ,μ are distributions in Zemanian's sense [5, p.39].

(v) Let f(x,y) be locally integrable function on I and such that $\int_{0}^{\infty} \int_{0}^{\infty} e^{ax+by} |f(x,y)| dxdy < \infty$.

Then f generates a regular generalized function in $H'_{a,b,\lambda,\mu}$ defined by

$$\langle f, \emptyset \rangle = \int_{0}^{\infty} \int_{0}^{\infty} f(x,y) \emptyset (x,y) dxdy$$
 (2.2.6)

Indeed,

$$|\langle f, \emptyset \rangle| = \left| \int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x,y)}{e^{-ax-by}} e^{-ax-by} \left| \int_{0}^{\infty} \frac{g(x,y)dxdy}{e^{-ax-by}} \right| \right|$$
$$\leq T_{0,0}^{\lambda,\mu,a,b} \left(\emptyset(x,y) \right) \int_{0}^{\infty} \int_{0}^{\infty} \left| \frac{f(x,y)}{e^{-ax-by}} \right| dxdy$$

which shows that (2.2-6) truly defines a functional f on $H_{a,b,\lambda,\mu}$. This functional is clearly a linear one. Moreover, if $\{ \emptyset_m \}_{m=1}^{\infty}$ converges in $H_{a,b,\lambda,\mu}$ to zero, then $T_{o,o}^{\lambda,\mu,a,b}(\emptyset_m) \rightarrow 0$. So that $|\langle f, \emptyset_m \rangle| \rightarrow 0$. Thus, f is also continuous on $H_{a,b,\lambda,\mu}$. Hence, f generates a regular generalized function in $H_{a,b,\lambda,\mu}^{i}$.

(vi) For each $f \in H_{a,b,\lambda,\mu}^{\prime}$, there exist a nonnegative integer r and a positive constant C such that, for all

AFTE CHARTER STREET STREET

$$|\langle f, \emptyset \rangle| \leq C \max_{\substack{0 \leq k_1 \leq r \\ 0 \leq k_2 \leq r}} T_{k_1, k_2}^{\lambda, \mu, a, b} (\emptyset)$$

The proof of this statement is similar to that of [6, Theorem 3.3-1].

2.3 The Distributional Hankel Type Transformation

Let $-\frac{1}{2} \leqslant \lambda \lt \infty$, $-\frac{1}{2} \leqslant \mu \lt \infty$, a, b > 0. In view of note (iii) Sec. 2.2, to every $f \in H'_{a,b,\lambda,\mu}$ there exist the unique reals δ_f , $\varrho_f > 0$ (possibly $\delta_f = \infty$, $\varrho_f = \infty$) such that $f \in H'_{c,d,\lambda,\mu}$ if $c \lt a \lt \delta_f$, $d \lt b \lt \varrho_f$ and $f \notin H'_{c,d,\lambda,\mu}$ if $c > \delta_f$, $d > \varrho_f$. We define the $(\lambda,\mu)^{\text{th}}$ order Hankel type transform $h'_{\lambda,\mu}f$ of f as the application of f to the kernel

$$(u/x)^{\lambda/2} (v/y)^{\mu/2} J_{\lambda}(2\sqrt{ux}) J_{\mu}(2\sqrt{vy})$$
; i.e.

 $F(u,v) = \langle f(x,y), (u/x) \rangle \langle v/y \rangle^{\mu / 2} J_{\lambda}(2\sqrt{ux}) J_{\mu} (2\sqrt{vy}) \rangle, \qquad (2.3-1)$

where $(u,v) \in \mathcal{L}_{f} = \{(u,v) \in C^{2} / u, v \neq 0 \text{ or a negative number } \}$.

The right hand side of (2.3-1) has a sense because, by note (i),

$$(u/x)^{\lambda/2}(v/y)^{\mu/2}J_{\lambda}(2\sqrt{ux})J_{\mu}(2\sqrt{vy}) \in H_{c,d,\lambda,\mu}$$

for every $c \langle a \langle \delta_{f} \rangle$, $d \langle b \langle \delta_{f} \rangle$ and $(u,v) \in \mathcal{N}_{f}$. If

f(x,y) satisfies the conditions of note (v), Sec.2.2 for every $c\,\swarrow\,a\,\not<\,\delta_f$, $d\,\lt\,b\,\lt\,\rho_f$, then we may write

$$F(u,v) = (h_{\lambda,\mu}f)(y) = \int_{0}^{\infty} \int_{0}^{\infty} (u/x)^{\lambda/2} (v/y)^{\mu/2} .$$

$$J_{\lambda}(2\sqrt{ux}) J_{\mu}(2\sqrt{vy})f(x,y)dxdy, (u,v) \in -f_{f} . (2.3-2)$$

Lemma 2.3-1 : Let a, b, 6_f and ρ_f be fixed real numbers such that $0 < a < 6_f$, $0 < b < \rho_f$. For all (u,v) in the strip $- = \{(u,v) \in C^2 / u, v \neq 0 \text{ or a negative number}\}$, for $0 < x < \infty$, $0 < y < \infty$ and for $\lambda \ge -\frac{1}{2}$, $\mu \ge -\frac{1}{2}$,

$$e^{-ax-by} \left(2\sqrt{ux}\right)^{-\lambda} \left(2\sqrt{vy}\right)^{-\mu} J_{\lambda} \left(2\sqrt{ux}\right) J_{\mu} \left(2\sqrt{vy}\right) \left| \langle A_{\lambda,\mu} \right|$$

where $A_{\lambda,\mu}$ is the constant with respect to u,v,x and y.

<u>Proof</u>: $w^{-\lambda}z^{-\mu}J_{\lambda}(w)J_{\mu}(z)$ is entire and hence bounded on any bounded domain. Moreover, from the asymptotic expansion of $J_{\lambda}(w)J_{\mu}(z)$ as $|w| \rightarrow \infty$, $|z| \rightarrow \infty$, we see that there exists a constant $C_{\lambda,\mu}$ such that, for |w|>1, |z|>1,

$$|w^{-\lambda}z^{-\mu}J_{\lambda}(w)J_{\mu}(z)| \langle C_{\lambda,\mu}|w|^{-\lambda-\frac{1}{2}}|z|^{\mu-\frac{1}{2}} (e^{-Imw} + e^{-Imw})$$

-Imz Imz Imz -Imw Imw -Imz Imz $(e + e) <math>\langle C_{\lambda,\mu} (e + e) (e + e)$

Consequently, there exists another constant $A_{\underline{\lambda},\underline{\mu}}$ such that, for all w, z,

$$w^{-\lambda}z^{-\mu}J_{\lambda}(w)J_{\mu}(z) \langle A_{\lambda,\mu}(e^{-Imw} + e^{Imw})(e^{-Imz} + e^{Imz})$$

It follows that, for x, y, u, v, and $\lambda,\ \mu$ restricted as stated,

$$\begin{vmatrix} e^{-ax-by} & (2\sqrt{ux})^{-\lambda} & (2\sqrt{vy})^{-\mu} & J_{\lambda} & (2\sqrt{ux}) & J_{\mu} & (2\sqrt{vy}) \end{vmatrix} < \leq A & (e^{-(a\sqrt{x} + Im\sqrt{u})\sqrt{x}} + e^{(Im\sqrt{u} - a\sqrt{x})\sqrt{x}}) & . \\ & \cdot & (e^{-(b\sqrt{y} + Im\sqrt{v})\sqrt{y}} + e^{(Im\sqrt{v} - b\sqrt{y})\sqrt{y}}) < A_{\lambda,\mu} \end{vmatrix}$$

Hence the proof.

We shall now prove the analyticity theorem for the generalized Hankel type transform.

Theorem 2.3-1. If
$$(h'_{\lambda,\mu}f)(u,v) = F(u,v)$$
 for $(u,v) \in - f_{f}$,
then $F(u,v)$ is analytic in u and for fixed v , $(u,v) \in - f_{f}$,
 $\frac{\partial}{\partial u} F(u,v) = \langle f(x,y), \frac{\partial}{\partial u} [(u/x)^{\lambda/2}(v/y)^{\mu/2} J_{\lambda}(2\sqrt{ux}) J_{\mu}(2\sqrt{vy})] \rangle$
(2.3-3)

 $\begin{array}{rl} \underline{\mathrm{Proof}} &: \ \mathrm{Let} & (\mathrm{u},\mathrm{v}) \ \mathrm{be} \ \mathrm{an} \ \mathrm{arbitrary} \ \mathrm{but} \ \mathrm{fixed} \ \mathrm{point} \ \mathrm{of} \ \mathbf{f}^{*} \\ \\ \mathrm{Since} & (\mathrm{u}/\mathrm{x})^{2} & (\mathrm{v}/\mathrm{y})^{\frac{\mu}{2}} \ \mathrm{J}_{\lambda}(2 \ \sqrt{\mathrm{ux}}) \ \mathrm{J}_{\mu} \ (2 \ \sqrt{\mathrm{vy}}) \\ \\ &= \frac{\partial}{\partial \mathrm{u}} \left[(\mathrm{u}/\mathrm{x})^{\lambda/2} (\mathrm{v}/\mathrm{y})^{\frac{\mu}{2}} \mathrm{J}_{\lambda}(2 \ \sqrt{\mathrm{ux}}) \ \mathrm{J}_{\mu}(2 \ \sqrt{\mathrm{vy}}) \right] \in \mathrm{H}_{\mathrm{a},\mathrm{b},\lambda,\mu} \end{array}$

for fixed $(u,v) \in \mathcal{N}_{f}$, the right-hand side of the equation (2.3-3) has meaning. Fix v. With u as center, construct two concentric circles of radii r and r_1 such that both circles are in \mathcal{N}_{f} . Let $r < r_1$. Let $|\Delta u|$ be a nonzero/

E LIBRA

complex increment in u-plane such that $|\Delta u| < r$. Consider $\frac{F(u + \Delta u, v) - F(u, v)}{\Delta u} - \langle f(x, y), \frac{\partial}{\partial u} [(u/x)^{\lambda/2} (v/y)^{\mu/2}] \cdot \int_{\lambda} (2\sqrt{ux}) J_{\mu} (2\sqrt{vy})] \rangle = \langle f(x, y), \forall \Delta u (x, y) \rangle$ (2.3-4) where

$$\begin{split} \mathcal{Y}_{\Delta_{\mathrm{U}}}(\mathbf{x},\mathbf{y}) &= \frac{1}{\Delta_{\mathrm{U}}} \left\{ \left[\left(\frac{\mathbf{u} + \Delta_{\mathrm{U}}}{\mathbf{x}} \right)^{\lambda/2} \left(\frac{\mathbf{y}}{\mathbf{y}} \right)^{\mu/2} J_{\lambda} \left(2 \sqrt{(\mathbf{u} + \Delta_{\mathrm{U}})\mathbf{x}} \right) \right\} \\ \cdot J_{\mu}(2\sqrt{vy}) \left] - \left[\left(\frac{\mathbf{u}}{\mathbf{x}} \right)^{\lambda/2} \left(\frac{\mathbf{y}}{\mathbf{y}} \right)^{\mu/2} J_{\lambda} \left(2\sqrt{ux} \right) J_{\mu}(2\sqrt{vy}) \right] \right\} \\ - \frac{\partial}{\partial \mathbf{u}} \left[\left(\frac{\mathbf{u}}{\mathbf{x}} \right)^{\lambda/2} \left(\frac{\mathbf{y}}{\mathbf{y}} \right)^{\mu/2} J_{\lambda} \left(2\sqrt{ux} \right) J_{\mu} \left(2\sqrt{vy} \right) \right] . \end{split}$$

Our theorem will be proven when we show that (2.3.4) converges to zero as $|\Delta u| \rightarrow 0$. This can be done by showing that $\Upsilon_{\Delta u}(x)$ converges in $H_{a,b,\lambda,\mu}$ to zero as $|\Delta u| \rightarrow 0$. Using the fact that

$$\Delta_{\lambda,x}^{k_{1}} (\emptyset(x,y)) = (-1)^{k_{1}} u^{k_{1}} (\frac{u}{x})^{\lambda/2} (\frac{v}{y})^{\mu/2} J_{\lambda} (2\sqrt{ux}) J_{\mu} (2\sqrt{vy})$$
(2.3-5)

and by interchanging differentiation on u with differentiation on x, we may write $\triangle_{\lambda,x}^{k_1} \gamma_{\Delta_u}(x,y)$ using Cauchy's integral formulas [3] as follows :

$$\Delta_{\lambda,x}^{k_{1}} \mathcal{A}_{\Delta u}^{(x,y)} = \eta^{k_{1}} (-1)^{k_{1}} \left[\frac{1}{2\pi i} \int \frac{(\eta/x)^{\lambda/2} (\gamma/y)^{\mu/2} J_{\lambda}^{(2\sqrt{\eta x})} J_{\mu}^{(2\sqrt{\eta y})}}{(\eta - u - \Delta u) \Delta u} \right]$$

$$\cdot d\eta - \frac{1}{2\pi i} \int_{c} \frac{(\eta/x)^{\lambda/2} (\nu/y)^{\mu/2} J_{\lambda}^{(2\sqrt{\eta x})} J_{\mu}^{(2\sqrt{\eta y})}}{(\eta - u) \Delta u} d\eta -$$

$$\begin{split} &-\frac{1}{2\pi i} \int_{\mathbf{C}} \frac{(\eta/x)^{\lambda/2}(v/y)}{(\eta-u)^2} \frac{J_{\lambda}(2\sqrt{\eta}x)}{J_{\mu}(2\sqrt{v}y)} \frac{J_{\mu}(2\sqrt{v}y)}{d\eta} d\eta \\ &= \frac{(-1)^{k_1}}{2\pi i} \int_{\mathbf{C}} \frac{[(\eta-u) - (\eta-u-\Delta u) - (\eta-u-\Delta u)]}{(\eta-u-\Delta u)(\eta-u)^2} \\ &\cdot \eta^{k_1} (\eta/x)^{\lambda/2} (v/y)^{\mu/2} J_{\lambda} (2\sqrt{\eta}x) J_{\mu} (2\sqrt{v}y) d\eta \\ &= \frac{(-1)^{k_1}}{2\pi i} \int_{\mathbf{C}} \frac{\Delta_u}{(\eta-u)^2(\eta-u-\Delta u)} \eta^{k_1} (\frac{\eta}{x})^{\lambda/2} (\frac{v}{y})^{\mu/2} J_{\lambda}(2\sqrt{\eta}x) (J_{\mu}(2\sqrt{v}y) d\eta \\ &\cdot \eta^{k_1} (\eta/x)^{\lambda/2} (v/y) \frac{J_{\lambda}}{(\eta-u)^2(\eta-u-\Delta u)} \eta^{k_1} (\frac{\eta}{x})^{\lambda/2} (\frac{v}{y})^{\mu/2} J_{\lambda}(2\sqrt{\eta}x) (J_{\mu}(2\sqrt{v}y) d\eta \\ &- Now, \text{ for all } \eta \in \mathbf{C} \text{ and } o < x < \infty, o < y < \infty, \\ &\downarrow e^{-ax-by} \Delta_{\lambda,x}^{k_1} Y_{\Delta_u}(x,y) \Big| \leq \frac{|\Delta_u|}{2\pi} \int_{\mathbf{C}}^{1} \frac{\eta+1}{(\eta-u)^2(\eta-u-\Delta u)} \\ &\cdot \int e^{-ax-by} (2\sqrt{\eta}x)^{-\lambda} (2\sqrt{v}y)^{-\mu} J_{\lambda}(2\sqrt{\eta}x) J_{\mu}(2\sqrt{v}y) \Big| d\eta \\ &= \frac{\xi}{k_1^2} \frac{k_1^2 \Delta u}{r_1^2(r_1-r)} \\ Here, A_{\lambda,\mu} be a bound on $\int e^{-ax-by} (2\sqrt{\eta}x)^{-\lambda} (2\sqrt{v}y)^{-\mu}. \\ J_{\lambda}(2\sqrt{\eta}x) J_{\mu} (2\sqrt{v}y) \Big| \text{ and } K \text{ is a constant independent of} \\ u \text{ and } x. Moreover, $\exists \eta - u - \Delta u \end{bmatrix} > r_1 - r > 0 \text{ and} \\ &\natural \eta - u \end{bmatrix} = r_1. Thus, \text{ as } |\Delta u| \to 0, Y_{\Delta u} (x,y) \text{ converges to} \\ zero \text{ in } H_{a,b,\lambda,\mu}. Consequently, \\ &\leq f(x,y), Y_{\Delta u} (x,y) > 0 \text{ as } |\Delta u| \neq 0. \end{split}$$$$

•

ı,

30

.

. •

Theorem 2.3-2 If
$$(h'_{\lambda,\mu}f)(u,v) = F(u,v)$$
 for $(u,v) \in \mathcal{N}_f$,
then $F(u,v)$ is analytic in V and for fixed u , $(u,v) \in \mathcal{N}_f$

$$\frac{\partial}{\partial v} F(u,v) = \langle f(x,y), \frac{\partial}{\partial v} \left[\left(\frac{u}{x}\right)^{\lambda/2} \left(\frac{v}{y}\right)^{\mu/2} J_{\lambda}(2\sqrt{ux}) J_{\mu}(2\sqrt{vy}) \right] \rangle$$
(2.3-6)

<u>Proof</u> : The proof of this theorem is very similar to that above and Theorem 1 [5].

Theorem 2.3-3. If $(h'_{\lambda,\mu}f)(u,v) = F(u,v)$ for $(u,v) \in -f_{f}$, then F(u,v) is analytic on $-f_{f}$ and $DF(u,v) = \langle f(x,y), D[(\frac{u}{x})^{\lambda/2}(\frac{v}{y})^{\mu/2} J_{\lambda}(2\sqrt{ux}) J_{\mu}(2\sqrt{vy})] \rangle$ (2.3-7)

where $D = \frac{\partial}{\partial u}$ or $\frac{\partial}{\partial v}$.

<u>Proof</u>: By the Theorems 2.3-1 and 2.3-2, at every point $(u',v') \in \frown_{f}$, each of the functions F(u,v') and F(u',v) is analytic in the single variable u and v respectively. Therefore, invoking the Hartog's theorem [2, p.140], we see that F(u,v) is analytic on \frown_{f} .

<u>Theorem 2.3-4</u>. (Boundedness of F(u,v)). If $F(u,v) = (h'_{\lambda,\mu}f)(u,v)$ for $(u,v) \in -f_{f}$, then F(u,v) is bounded on any subset $-f_{f}' = \{(u,v) \in C^{2}/u, v \neq 0 \text{ or a} \}$ negative number $\{ f_{f} = (u,v) \in C^{2}/u, v \neq 0 \}$ or a $| F(u,v) | \leq |u|^{\lambda} |v|^{\mu} P_{a,b}(|uv|)$ 31

SARE PARARATER EMAROLIAN TOAM

where $P_{a,b}(|uv|)$ is a polynomial in uv depending on a and b. <u>Proof</u>: In view of a general result [5. Theorem 1.8.11], there exists a constant C > 0 and a nonnegative integer r such that

$$\left| \begin{array}{c} F(u,v) \right| = \left| \left\langle f(x,y), \ \emptyset \ (x,y) \right\rangle \right| \\ \leq \left| \left\langle \sum_{k_{1} \leq r}^{max} \sum_{0 \leq x < \infty}^{sup} \right| e^{-ax-by} \\ e^{-ax-by} \\ \left| \left\langle \sum_{k_{2} \leq r}^{k_{1},k_{2}} \left[\left(\frac{u}{x} \right)^{\lambda/2} \left(\frac{v}{y} \right)^{\mu/2} \right]_{\lambda} \left(2 \sqrt{ux} \right) J_{\mu} \left(2 \sqrt{vy} \right) \right] \right| \right\} \\ By (2.2-5), the right hand side is equal to \\ C \left\{ \left| \left\langle \sum_{k_{2} \leq r}^{max} \right| e^{-ax-by} \right|_{\lambda} + \mu \left| \left| \left\langle \sum_{k_{2} \leq r}^{k_{1}+\lambda} \right|_{k_{2}+\mu} \right|_{\lambda} \right|_{\lambda} \left(2 \sqrt{ux} \right) - J_{\mu} \left(2 \sqrt{vy} \right) \right| \right\} \\ \cdot \left(2 \sqrt{ux} \right)^{-\lambda} \left(2 \sqrt{vy} \right)^{-\mu} J_{\lambda} \left(2 \sqrt{ux} \right) - J_{\mu} \left(2 \sqrt{vy} \right) \right| \right\} \\ since for all u, v in - \hat{f}_{f}, \\ \left| e^{-ax-by} \left(2 \sqrt{ux} \right)^{-\lambda} \left(2 \sqrt{vy} \right)^{-\mu} J_{\lambda} \left(2 \sqrt{ux} \right) J_{\mu} \left(2 \sqrt{vy} \right) \right| \right| \leq \left| \left\langle A_{\lambda,\mu} \right| \left| 4 \right| \right|,$$

where $A_{\lambda,\mu}$ is constant with respect to u, v, x and y, and the theorem follows.

REFERENCES

C1 J	Apostol, T.M.	:	Mathematical Analysis, Addison- Wesley, Reading, Mass., (1957).
[2]	Bochner, S. and Martin, W.T.	:	Several Complex Variables, Princeton University Press, Princeton, N.J., (1948).
[3]	Churchill,R.V.	•	Complex Variables and Applications, 2nd ed., McGraw-Hill, New York, (1960), p.120.
[4]	Koh, E.L. and Zemanian,A.H.	:	I-Transformations of Generalized Functions, SIAM J.Appl.Math., Vol.16, (1968), p.945-957.
C5J	Zemanian, A.H.	:	Generalized Integral Transformations John Wiley & Sons, (1968).
E6]	Zemanian, A.H.	:	Distribution Theory and Transform Analysis, McGraw-Hill, New York (1965).

. . .

33

,