CHAPTER - II

HANKEL TYPE TRANSFORM OF
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PROPERTIES
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CHAPTER == II

2.1 Introduction :

In this chapter we construct a testing function space

, its dual space H and extend the Hankel

L}
H
3,b,A, a,b,A, B
type transformation defined by the equation (1.1.3) to a
certain class of generalized functions and study some

properties of it,

For real numbers A, M and positive numbers a, b; we
construct a testing function space H_ | AR which contains the
? b} ]
kernel (u/x)>‘/2 (v/y))‘t/2 JA(Z\/ux) Ju(2 Yvy) as a function on

o<x€®, o0<y< ® for each fixed u and v.

The Hankel type transform F(u,v) of a distribution f in

is defined by

!
th? dual space Ha,b,A,p

)

Fluw) = i (6) = Lo0ay), (/M2 M2 (2 Ja0) 5 (2 J7))
for suitably restricted u and v .

set ‘
Let I denotes the open,rectangie (0{x<®, o<y<ow).
D(I) is the space of all smooth functions on I having compact
support on I and D'(I) is the dual space of Schwartz distribu-

tions on 1.
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2.2 The Testing Function Spaces H and Their Duals
a,b,A,

Let A, B be any real numbers and a, b are positive real

numbers, Then H can be defined as théuépace of all

3,b,A, 1

complex-valued smooth functions @(x,y) defined on I such that
for each kl' k2 =0, 1, 2, 3, ...

a b k,,k
T (@) = Tr 3, - sup -ax=-by 1'72

klykz kl’k2 (¢) O<X<QD e AK,“,X,Y¢(X’Y)
0LYL ® ’

< (¢ ] .00(202“1)

k,,k k k
where 1772 = A}\lx 2 and

Ay X,y ! By

-A+1 A - P+l P
A - =
A, X D_x D.x ﬁip’y DYY DyY
d K
where D = - ) b = —
B3x Y vy
Clearly Ha,b,A,p is a linear space over the field of complex
numbers, Moreover, {‘TA'“'a'b-? © is a multinorm on
kl’kz J kl,k2=O
Ha,ba,p
Indeed, for any complex number B and ¢ € Ha,b,x,p
K,H.a,b }\,p,a,b

T (Bg) = 18BIT g) .

Also, for each ¢l’ ¢2 € H, 4 T
? k] ?

T)\.U,a,b (¢ ¢)< As”,asb(Q ) A,H,a,b (¢ )
+ T + T
*kl’kZ 1 27 kl’kQ 1 kl’kZ 2
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A‘lu’a,b
Hence, each Tk K (#) is a seminorm, and in addition
1'72
A,ula’b . W .
0,0 @) is a norm on Ha,b,A,u' e assign to Ha,b,h,u' the
topology generated by the multinorm {Tt’uéa'b © and
1'72 k.,k,=o

172

this makes H a countably multinormed space, Moreover,

a'b’A)p

H is a Hausdorff locally convex topological vector

a’bikip’ .
space that satisfies the first axiom of countability. The dual

J
a’b9)\ip -
The dual is a linear space to which we assign the

space H consists of all continuous linear functionals on

Ha,boA, b

weak topology generated by the multinorm {“% ¢(f)3 g where

Y0 = | £, 83| and § varies through H,

@©

A sequence {’%“anzl converges in Ha,b;x,p to @ if and

only if for each pair of nonnegative integers kl and k2,

TQ;?QZ’b ( ¢m -@) 3 0 as mH o0 .

@ . . .
A sequence { ¢m31n=l is a Cauchy sequence in Ha,b,x,p if
and only if
Tﬁ’péa’b ( ¢m - ¢n) 5> O for every kl,k2 as m and n tend

1’72
to infinity independently.

Lemma 2,2-1

H is complete and therefore a Fre'chet space.

a,b,A,H
Proof

Let.‘{¢m% sil be a Cauchy seguence in H Then by

a,b,A, B °
equation (2.2-1), we have a uniform Cauchy sequence {5f%% ™
m=1

on 1 for each kl, k2 where
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k., k ‘
~ax=-by 1,72 :
. = , A7 (@ (x,y) ) - (2.2-2)
\rm (X,Y) € Ay By X,Y m .
k k

By Cauchy criterion g}ﬁk e y‘y, 3 converges uniformly to

%:Zkk 'Ky ‘7”3 on I, for all k_ ,k Hence, by standard

Ay B XsY 12
theorem [1, p.402] there is a smooth function @(x,y) on I such
kpoko (x,y)
that \p'(x,y)’~$“f'(x,y) uniformly on I and Z&A X,y Fm Y
ek _
' V-)AA%}L,Z M (x where
i -ax=-by k,,k
Y y) = e A L2 gtoy)) (2.2-3)

'4Since-ﬂkm (x,y) is a unlform Cauchy sequence then for each

€>» 0, there is an integer Nk K such that
1'72
sup X, - , €
0L x< 0o Y SR R L2 |
0 y<® ’
for every m,n > Nkl’k2 .
Taking the limit as n 3 o®, we have
sup
0ix oo | FntY) = (xy) 4‘6, m> Nkl,k2 . (2.2-4)
oy
Thus, for each kl,k2
AyBya,b ,
Tkl’k2 ('¢m~¢)~>0as m—)oo

Finally, because of the uniformity of the convefgence and
the fact that each “fh(x,y) is bounded on I, there exists a

constant C not depending on m such that
kpoko ;_

W
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~ | C, for all X,y).
RO R )

Therefore, from (2.2-4), we get

sup
04x Lo

0Ly ®

$E+ 0k

\”f%x,y)
1172

which shows that “¥(x,y) is bounded on I. Hence, a function
@{x,y), which is the 1limit of a given sequence §:¢m-§ is a

‘member of H Thus the sequence i¢m§converges in

a,blk’p ‘

Ha,b,x,p to the unique limit @, Hence Ha,b;x,p is complete,
Since H is countably multinormed space which is
aiblk!p’
complete, then Ha,b,x,p is a Frechet space, Ha,b,x,p is
t
complete and hence Ha,b,k,u is complete,

Theorem 2,2-1 : H is a testing function space,

a,b,A,p

Proof : Clearly, H satisfies the first two conditions

a,b,}\,}l
of testing function space, Now we shall prove the third,

a,b,\, 1 to zero, In view of

Let {%3 ::‘:1 converge in H

(2.2-2) and the seminorms defined in (2,2-1), it follows by

induction on kl’ k2 that, for each pair of kl, k2,

kl k2 @ ‘

{_Dx Dy (¢$) converges uniformly to zero function on every
m=1

compact subset of I,

This completes the proof of the Theorem 2,2-1,

Now we list some properties of these spaces,
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(i) Let A, My~ % . For a fixed complex number (u,v) belonging

the strip

L = {(u,v) e C2 / u, v #0 or a negative numberg ,

A/2 w/2 — .
(u/x) v/) Iy (2K I, (2 ) € H,

Indeed, by the analyticity of

w:A z-g jk (w) jp (z), w, z#0 it follows that
S N B
(u/x))‘/2 (v/y)‘/2 Iy (2 Jux) Ju (2 J;;) is smooth on I -

Also, in view of the property

ky.k A/2 W/2 .
R (CVO RN C7 O N NIV I M EIN . B
Ay By X,y

BTN (u/x)A/2<v/y>P/2Jh(2\/Gi)Ju(z\/U?) (2,2-5)
and the fact \ e"ax-by(z\/Gi)“x(z\/3§)-pjx(2.JGX)Ju(z\/Vy}\
is bounded for o(x<{®, o0ly<low, (u,v) e [4],

the quantities

A, B,a,b \/2 B/2

Tk, L/ w3, (2 vux) J,(2/9y) ]

are finite for all k k, =0,1, 2, .... « Thus, our

1’ "2
assertion is verified,

N

(ii) Let A‘; - , M 2 - % . For a fixed complex number

(u,v) belonging to the strip 4+ = %:(u,v) € 2 / u,v #oor a

negative number~3 ,
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DL (F)T 9 2V 3, 2/ T8 Hy
n D -é-.. or 'é" ¢
where S dv

Ay H,3,D A2 K

2 el
Hence, Tk [D () (F) 52 J(2vvy) 1<

2

{ o for any fixed (u,v) in -,

(i) Let o «c (a, 0<£d<b, Then H H

C ,
Ctdi)\’p‘ a’bﬁk’p

and the topoclogy 6f H. 4 A is stronger than the topology

) B

induced on it by 'H This follows from the inequality

a,b,A, 1
A’}’L’a’b( ) 4 A’u’c‘)d (g)
T @ T
kl,k2 N kl’k2 ,
for @ € Ha,b,x,u'

Let o <‘e—ax-by e e XY on 1

k. ,k :
—ax-b 1’
Then \ e~ 8%x-bY Zlk,uyg,y (B(x,y)) ‘ fé

-cx=-dy . k,,k |
1772
<l R ERI I
A, H,a,b AyB,c,d ,
$o that, Tk]_’k2’ (WX’Y))STkl,kZ (¢(Xa‘/)) .

Thus, our assertion is implied by the last inequality.

Hence, the restriction of f € H to H is

a,b,)\,}l C;dg)\sp

in Hc,d,x,p .

(iv) D(1) C H , and the topology of D(I) is stronger
a’b’)\’p '

than that induced on it by H, b, b Hence, the restriction of
1 ] 1 .



f’ = Hafb97\sp‘

1

H are distributions in Zemanian's sense [5, p.39].

'a,b,?\,#

(v) Let f(x,y) be locally integrable function on I

00 0o
such that _S S eax+by \f(x,Y)\ dxdy {0
5 0

Then f generates a regular generalized function in

'
H

N defined by
CQ s )
1, ¢>== j  £ f(x,y) @ (x,y) dxdy
Q o
Indeed,
T f(x,y) -ax=-b
‘<:f,¢:>! = \ 5 S‘ _aQbe e @#(x,y)dxdy l
| © o
<T}\ap"avb (¢(X )) CD ? f(X, ) dXd
R o,0 AL o-ax-by | Y
’ [¢] (¢]

which shows that (2.2-6) truely defines a functicnal f on

H

oo
if §;¢m§ - converges in Ha,b,A,p to zero, then

T)\pra’b (¢ ) _> 0 . SO tha‘tl<f’ ¢m>) -) O . ThUS, f

0,0 m

also continuocus on H

to D(I) 1is in D (I). Thus, members of
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and

(2.2.6)

. « This functional is clearly a linear one., Moreover,
3,b,A,n

is

Hence, f generates a regular

a,b, A, p "
generalized function in Hé,b,A,p .
1
(vi}) For each f € H , there exist a nonnegative
» a,b,A, B

integer r and a positive constant C such that, for all

\

o
[ A L AR A

arm T -

4 FRE A S

E T e

oo
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geHa;b,A,u,

.’ ) )\,p.,a,b

| L5 9D1(E e ok, @
oéklér 1772
oékzér

The proof of this statement is similar to that of

[ 6, Theorem 3,3-1].

2.3 The Distributional Hankel Type Transformation

Let - % L ALoo, - % L p < oo, a, b> 0 ., In view
1

a,b,A,p
the unique reals 6f "Qf > O (possibly 6f = 0, Q; = )

of note (iii) Sec. 2.2, to every f € H there exist

t

such that f e hc,d,k,p

if ccacé, , d{b{Q, and

)th

' N
f ¢ HC,d,}\,p if C> 6f) d>ef . We define the (}\,}L order

' .
Hankel type transform h f. of { as the gpplication of f +to

A, B
the kernel :
A/2 K/2 _ _
(u/x) (v/y) 5 (2 /ux) 3, (2 Ay) 5 e
A2 ng2 _ _
Fu,v) = £(x,y), (u/x)- "(V/Y)M# Jy(2 vux) I, (2 /59) 7

(2.3-1)

where (u,v) €-fl‘f = {‘u,v) e c2 /Ju,v# O or a

negative number ? .
J

The right hand side of (2,3-1) has a sense because, by note (i),

(U/X>K/2(v/y)p/2JA(2vJG;)JP(Z-JGQ) € He g.a,p

for every c <a4<6f , d b <_Qf and (u,v) E-JLf . If
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f(x,y) satisfies the conditions of note (v), Sec,2.2 for
every cfac6y , d<b<g; , then we may write
®

A/2 B/2
F(u,v) = (hk’pf)(y) = ‘X S. (u/x)  (v/y) .

c 0

- 3\ (2 Vux) J(2 Ay) E(x,y)dxdy, (uv) 8 g (503-2)

Lemma 2,3-1 : Let a, b, 6f and O¢ be fixed real numbers
such that o<a <6f , 04b&egg . For all (u,v) in the strip
N\ = %}u,v) e 2 / u, v # 0 or a negative numberfg , for

1 1
odxd®m, o0<y¢® and for ?\3-—-2- y B -3,
j =-ax-by
e

-A - w |
(2 /6%) (29 3, (2480 1,02 A | KA,

where AA " is the constant with respect to u,v,x and y .
?
Proof : w'Az‘uJA(w)Jp(z) is entire and hence bounded on any

bounded domain, Moreover, from the aéymptétic expansion of

JA(W)JH(Z) as | w|l = @, \z\ 3 00, we see that there exists

a constant CA I such that, forfiwip), (z|>1 ,
1 1 -Imw Imw
-A- A5, TH
| whzBn (03 (2) | £y Ly 1w™™2 2] 2 (e e ).
-Imz Imz C-Imw Imw ~Imz Imz
- (e + e );(CA " (e + e ) (e + e )

Consequently, there exists another constant A such that,

AR

for all w, z,
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+

(e“'ImW +

eImw) (e-Imz eImz )

\ w“Az-pJA(w)J;(z)} £

A
Ay B
It follows that, for x, y, u, v, and A, W restricted as stated,

- _by
\ . ax

—A . _ p ) e v
(2 k) (2Vvy) T, (2 V0%) Iy 2V | <
(I - aVR) YR

+ e ) .

~(a/x + Im Ju) J/x
£ A (e

. (e e

-(byy + Im V) Yy  (ImyV - bvy) vy
+ VKA b

Hence the proof.

Ne shall now prove the analyticity theorem for the generalized

Hankel type transform,

Theorem 2. 3-1 . If (h; pf) (u,v) = F(u,v) for (u,v) €~J1.f',

Rhen F(u,v) is analytic in u and for fixed v, (u,v) € ~“~f ,

A2 W2
- Fuw) =Ly, [ v 2 VRV T

u
(203"3)
Proof : Let (u,v) be an arbitrary but fixed point of—fl—f.
(A=1)2 /2
Since {u/x) (v/y) J,\,(f yUx) Iy (2 vvy)

= %; [(U/X)}‘-/Z(V/y)W?'JA(2 Vix) Iy 2 VI T € H, b x e

for fixed (u,v) €-Jﬁ—f , the right-hand side of the equation
(2.3-2) has meaning. Fix v, With u as center, construct

two cohcentric circles of radii r and such that both

r
1
circles are in <., Let r{r). Let | Ayl
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complex increment in u-plane such that\llu\< r . Consider

A/2 B/2
F(u +8u,v) - F( d .
. - L f(x,y), = [ (u/x) (v/y)

3, 260 3, 20 1) = LEay), Yay, (hy) ) (2.3-4)

where .

a o = s § LR M0 e e
3,2 1 - [ (%)”2 <§>W2 Iy (2Vux) J;‘;\/W) }'} -

-0 (5)"/2(5)”/2 3y (2 /ax) I3, (2) ]

Our theorem will be proven when we show that (2,3,4) converges
to zero as | Bu| 5 0. This can be done by showing that‘\ﬁau(x)
converges in H&,b;&,p to~zero as |Bu|_ 3. Q. U;ing the fact
that T

k NS
AL By = (-1 Ly U NN CAVIREMEAVIT

(2.3-5)

and by interchanging differentiation on u with differentiation
k
on x, we may write ‘Axlx ﬁﬁ&u(x,y) using Cauchy's integral

formulas [3] as follows :

K1 (x,y) k) ko (n/ )}\/2( / )u/2 (2v/x)J , (2/vy |
AP VA A B GO Bl e S ) vy 3 2Ty, (2/vy)
¢‘ (n - u - Bu)hu
Sl ¢ M2 g 2 v 3,2 )
c (n - u) Bu
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S (n/x) M2 (v/y) ¢a J, (2 /1x) J,(2 JVvy)
\ dn
C

(n-—U)

) |
(-1) 1 S [(n-u) = (n=u=28u) = (n-u- Au) ]
c ‘ ¢n-u-4u(n-u?

k A/2 /2 _ —
nh ) ) I (2 VAR) I (2 VAY) dn

(-1) ! A k A2 B2
- _ S u2 7 1) T I (o/m%) (T (2/vy)dn -
(-w)*(n-u-Bu) YA g “

Now, for all 1 € C‘ and 0¢x L0, 0Ly K00,

-ax-by kK, | bk #Al 3 A+p
e A}Hx“/z\u(x,y), é‘gn‘gn v o2

& (=¥ (n-u= Bu)

_-ax-b A —p
| & v 2 ) <2J’“)J(2f'\ dn
L K\Au; Ah ’
rl (rl-r)

Here, )\ " be a bound on \e-ax-by (2 \/'ﬁ?t:')"A (2.,/?17)"”.
‘ J}\(Z V) Jp (2 /vy) l and K 1is a constant independent of
u and x ., Moreover, | n - u - Aul > ry, - >0 and
| n - u) =r, . Thus, as | Au| 50, "f’Au (x,y) converges to

zero in Hj boA, B Consequently ,

<f(X,Y), Y/Au (X7Y)> ") O as \AU‘ 7 o .
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 Theorem 2.3-2 .If (h, .f) (u,v) = F{u,v) for (u,v) € -,

1
Ay B

" then F(u,v) is analytic in ,V and for fixed u, (u,v) € Ng,

. u A2 /2 .
d = S My .
& Fuw) = Le0ay) 55 [Q (@ 3,2 /60 3,24 15

(2,3-6)
Proof : The‘proof of this theorem is very similar to that

above and Theorem l [5],

Theorem 2,3-3, If (hi “_f) (u,v) = F(u,v) for (u,v) € gy

then -F(u,v) 1is analytic on -“_ and

f
A2 B2 -
u v :
DF(u,v) =<:f(x,y), DL(3) (?) JA(Z Jux)Ju(2~va) ]:> (2.3-7).
3 5

= == or =— .
where D S W
Proof : By the Theorems 2,3-1 and 2,3-2, at every point

(ut,v') € sy each of the functions F(u,v') and F(u',v) is
analytic in the single variable u and v respectively, Therefore,
invoking the Hartog's theorem [2, p.140], we see that

F(u,v) 1is analytic on T

Theorem 2,3-4. (Boundedness of F(u,v) ). If

F(u,v) = (h'h pf) (u,v) for (u,v) € - , then F(u,v) is
bounded on any subset -fM; = iﬁu,v) e CZ/~u,v # 0 or a
negative numberxg of afkf according to

’ F(u,v)’ »é- fuy \v‘p Pa,b (tuv])
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where P, (fuv]) 1is a polynomial in uv depending on a and b ,
?

Proof : In view of a general result [ 5, Theorem 1,8,11],

there exists a constant C» O and a nonnegative integer r

such that
| Fluv) | = | {EGay), 8 ()]
Z max Sup ,;ax._by
= ékléro<x<a> e
°$k24? 0L YL @

A
iy [ @7 @/ se v | 3 .
By (2.2-5), the right hand side is equal to

max sup ~
clo€ki&T odxgoo | =@X=by A+ p kyHA o kyty

e 2. u \ .
ogkzér 0L Yy 00

-z - ; |
(2 /%)~ (249) 3y (2 VAR, (2J_,\7Sr)l 3 :

. 1]
since for all wu, v in J”Lf ,

-ax-by . =A =} — '
| e 2 /) 2 (Vi) 3, 2 | <

<AL 41

where AA,u is constant with respect to u, v, x and vy, an ok
the theorem follows,
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