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CHAPTER — II

2.1 Introduction :

In this chapter we construct a testing function space
IhL K , „ , its dual space H . . „ and extend the Hankel a,D,AiH a,b,A , H

type transformation defined by the equation (1.1.3) to a 

certain class of generalized functions and study some 

properties of it.

For real numbers A, ^ and positive numbers a, b; we

construct a testing function space ^ ^ which contains the
kernel (u/x)^/2 (v/y)^2 J. (2 ,/ux) J,,(2 V'vy) as a function on

a p
o<x<oo, o<y<oo for each fixed u and v.

The Hankel type transform F(u,v) of a distribution f in
t

the dual space H , , is defined byd» r

F(u,v) = h^ (f) = <f(x,y), (u/x)^/2(v/y)^i/2Jx(2y{rx)J}i(2N/^r))>

for suitably restricted u and v .

set
Let I denotes the openK rectangle (o<x<oo, o<y<oo).

D(I) is the space of all smooth functions on I having compact 
support on I and D'(I) is the dual space of Schwartz distribu­

tions on I.
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2.2 The Testing Function Spaces H, , » „ and Their Dualsa»D» a » f

Let X, ji be any real numbers and a, b are positive real 

numbers. Then HQ b ^ can be defined as the space of all 
complex-valued smooth functions 0(x,y) defined on I such that 

for each k^, k2 = 0, 1, 2, 3, ...

Tk k WKl’ 2
yA i P'1 a » b _ Sup
k U O < X < 00kl,k2

^ 00 

where

o< y< oo

k„a"1’"2 = A A 2
A,P,x,y p.y

,-ax-by krk2 0(Xfy) 
A.P.x.y

...(2.2-1)
and

a -A+l A
A = D x D xA, x x x

-|i+i n
A>*,y = V V

where D "bx
D = —Y ^sy

Clearly Ha b ^ is a linear space over the field of comple x
numbers. Moreover, S yA,P, a,bD 00

L krk2 J krk2=o is a multinorm on

Ha>b,\, M. *

Indeed, for any complex number 0 and 06 H ,« »0, A i r

K,\i,a,b A,P,a, b
T, (00) = 1 0 1 Tk ^ (0) .kl,k2 ‘12

Also, for each 0^, 02 6 Ha b ^ ^ ,
A,P,a,b _ , A,p,a,b A,}i,a,b

C2Tkrk2 (h + ^)4\,k2 Wi>+ \,k2 <*2>
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l'"2 -J
and

^ »P > a ( b
Hence, each T, , (0) is a seminorm, and in addition

K1 i
X.P.a.b
To,o W) 15 a norm on Ha,b,\,^ We assign t0 Ha,b,\,|*' the 
topology generated by the multinorm tTk;rCbj “

this makes H_ , . a countably mullinUi„itu mo.ucwvc.L.,a »o,A » p
H_ , . , is a Hausdorff locally convex topological vectora » D » A. , P
space that satisfies the first axiom of countability. The dual 

«space H. , . consists of all continuous linear functionals on a , o, a , p
Ha b \ p * The c!ua'1' a ttnear space to which we assign the 
weak topology generated by the multinorm 0(f)^ , where

^ (f) = J 4^f, $y J and 0 varies through Ha b \ p *

A sequence f 0 2 00 converges in H, u . ,, to 0 if and 1 mj m=1 * a , b*A , p
only if for each pair of nonnegative integers and k2,

TX,P,a,b ( 0 0) ^ 0 as m 4 oo
kl ’ K2 m

H.A sequence £ 0m ^ °° is a Cauchy sequence in “a b \ p 

and only if

if

(0 -0)4 0 for every k, ,k„ as m and n tendKf, m n l
to infinity independently.

Lemma 2.2-1

H , % ,, is comolete and therefore a Fre'chet space, a,b,\ , p
Proof :

Let T 0 Z °° be a Cauchy sequence in H , . ... Then by " m J m= i a , o,a,pm=l
equation (2.2-1), we have a uniform Cauchy sequence ^ 
on I for each k^, k2 where

co
m=l
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X (x-y)
i k, k0•ax-by ^ 1, 2

*,^,x,y
(0m (x , y) ) (2.2-2)

C A ^1 ’ O
By Cauchy criterion, l^.t.xTv'K.i converges uniformly to

J A * ’ 2 on for klfk . Hence, by standard
L \,y,x, y J 1 ^
theorem [1, p.402] there is a smooth function 0(x,y) on I such

that V> (x ,y) —>'Y'' (x ,y) uniformly on I and A * ^ T^rn' m A ,P,x ,y
"*A h’k2 y-(x<y)

\,^,x,y ,y'

Y^(x,y) = e

where 

ax-by . k.,kA 1’ 2 (0(x,y) ), \,H,x,y (2.2-3)

/

Since ^ (x,y) is a uniform Cauchy sequence then for each
i \

6> O, there is an integer N, , such that
^1 * k2

sup
O < X < 00
o < y < oo

- T„ <

for every m,n > ^

Taking the limit as n oo , we have

sup
o < x < oo
o £ y < oo 
Thus, fo 

^ »1^* a , b

(x , y) -^(x,y) 4e’m>\.k2 •

Thus, for each

Tkl,k2 ( 0m - 0 ) -^ 0 as m 4 oo.

(2.2-4)

Finally, because of the uniformity of the convergence and
the fact that each *Y'"m(x,y) is bounded on I, there exists a

constant C, , not depending on m such that 
1 ’ 2



22

for all (x,y). 

Therefore, from (2.2-4), we get

\Ym (X'Y) | < S'k2

sup
O <X 400
0<y< 00

Y(*,y) kl'k2

which shows that 'V/(x,y) is bounded on I. Hence, a function 
0^x,y), which is the limit of a given sequence ^ 0m ^ is a

member of H a b \ * Thu's tl>e sequence £0m^ converges in

Ha b \ p to unifiue limit 0. Hence Hfl b ^ ^ is complete. 

Since H3 K , .. is countably multinormed soace which is3 » D»A , p
complete, then H, . . ,, is a Frechet space. H„ , . „ is

complete and hence H’ , . is complete.3 »D > a , p

Theorem 2,2-1 : H u , „ is a testinq function space. ------------- 3,d,a,p
Proof : Clearly, H3 K . satisfies the first two conditionso * O,4 ,
of testing function space. Now we shall prove the third.

Let f 00 converge in H, , . „ to zero. In view of 
m=1 y 31 b,X,

(2.2-2) and the seminorms defined in (2.2-1), it follows by 

induction on k^, k2 that, for each pair of k^, k2,

C ^1 ~7 ®^ Dx Dy (0m)j converges uniformly to zero function on every 

compact subset of I. t

This completes the proof of the Theorem 2.2-1.

Now we list some properties of these spaces,
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(i) Let 77 . For a fixed complex number (u,v) belonging
the strip

-TL = ^(u,v) 6 C2 / u, v / 0 or a negative number^ ?
A/2 ja/2 _ __(u/x) (v/y) (2 yux) (2 /^) 6 . .

Indeed, by the analyticity of
z-p j j (z)t w, z / 0 it follows that

“ • K H-

(u/x)*/2 (v/y)^2 (2 /ux) (2 Xy) is smooth on I •

Also, in view of the property 
k, ,k0 \/2 ]i/2

A [(u/x) (v/y) Jx (2 >/ux) J (2 s/vy) ]A.H.x.y A ^
k k A/2 ]i/2 __= (-1) 1 2 u 1 v 2 (u/x) (v/y) J^(2 x/ux)J^(2 \fvy) (2.2-5)

, -ax-by _ -A. -p . »and the fact e (2yux) (2 x/vy) J (2 ,/ux) J (2 \/vy) ]
A H

is bounded for o^x<oo, 0 4 y <C °° » (u,v) 6 ^ [4],
the quantities

\,>,a,b K/2 V/2 _
Tk1,k2 t (u/x) (y/y) (2>/ux) J^(2 >/vy) ]

are finite for all k^, k2 = 0, 1, 2, .... . thus, our 
assertion is verified.

(ii) Let A ^ - 77 , H ^ ^ , For a fixed complex number
O 2(u,v) belonging to the strip -A~ = } (u,v) 6 C / u,v /oor a 

negative number ^ ,
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h/2 u/2D [ ( 7 ) t 7 ) \ (2 7ux) (2 7^) ] S H8ibiXj
y

b bwhere D = ~ or -x bu bv
\ , u, a , b 'K/2 v P02 —. —-

Hence, Tk^,k2 [ ^ ( "Jc ^ ^ y ) \/ux) Jy(2 \/vy) j<

-/ oo for any fixed (u,v) in -Tt- .

(an Let o<c<a, o<d4b. Then «Cidiii|1 C HJiM])1 , 

and the topology of H . . is stronger than the topology
induced on it by Ha,b,\,U . This follows from the inequality
\,p,a,b \.K.c,d
Tk k m 4 Tk k (0)kl ’ K2 ^ K1 ’ K2

for 0 £ Ha,b,X,H •

r + , -ax-by y -cx-dyLet o e 7 e 7

k. , k,

on I .

Then | (0(x,y)) ] ^

-cx-dy . k. , k e A\,H,x,y (0(x’y))

\,u,a,bSo that, T, , (0(x,y))^Tk k (0(x,y)) .K1’K2 ^ 1’ 2

Thus, our assertion is implied by the last inequality.
tHence, the restriction of f 6 H , . to H , , „ isa , b,\, p. c,d,\,p.

in Hc,d,X,p *

(iv) D(I) C H u \ tl » and "the topology of D(l) is stronger

than that induced on it by H, K , ... Hence, the restriction ofci , D , A , }*
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f e h’ , „ to D( I) is in D (I). Thus, members of a, d,a , h
H , x are distributions in Zemanian’s sense [5, p.39].

(v) Let f(x,y) be locally integrable function on I and 

oo co ,such that j j eax y | f(x,y) j dxdy ^ oo . 
o o

Then f generates a regular generalized function in

d9fined by

00 00
<^f, j f(x,y) 0 (x,y) dxdy . (2.2_6)

o o

Indeed,

Kf^>|

CD 00
f f f(x.y) -ax-by 
J J -ax-by e 0(x,y)dxdy
o o e

/ TX’^’a,b (0(x,y))
oo oo
5 5

o o

U*.y)
e-ax-by dxdy

which shows that (2.2-6) truely defines a functional f on

, . This functional is clearly a linear one. Moreover, a , d , a , ^
converges in H , , ,, to zero, thena,b,a , H

To’o,a,b ~> 0 * So that|<f> 0ni> ] -> 0 • ^us, f is

also continuous on ba b \ \i * Hence, f generates a regular
generalized function in HI . . ,, .a,b,A , ^

t
(vi) For each f 6 H, K . , there exist a nonnegativea 9 u, A, 9 r
integer r and a positive constant C such that, for all
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0 e ha,b,K,

|<f- 0>UC max
o 4 k1 ^ r
°4k2ir

Tkrk2 (0)

The proof of this statement is similar to that of 

[ 6, Theorem 3.3-1].

2.3 The Distributional Hankel Type Transformation

Let -*|^.\<oo, - i y. p < oo, a, b )> 0 . In view

f
of note (iii) Sec. 2.2, to every f G H, , , there existd O > A. > r
the unique reals 6^ , ^ y 0 (possibly 6^. = oo , ^ = oo) 

such that f € Hc d ^ p_ if c <a j d/b<^ and

f ^ d \ p if c> . We define the (\,p)"*'*1 order

Hankel type transform h' f. of f as the application of f to
^ j r

the kernel
h/2 p/2 _ __

(u/x) (v/y) J^(2 7ux) (2 /vy) ; i.e.

F(u,v) =<^f(x,y), (u/x). (v/y) J^(2 Jvx) (2 Vvy) / ,

(2.3-1)

whe re (u , v) 6 ^ = !^( u , v) S C2 / u , v / 0 or a

negative number '> .
j

The right hand side of (2.3-1) has a sense because,’ by note (i),

(u/x)^2( v/y) ]l^2JK (2 0ux) 3^(2 Vvy) 6

for every c < a < 6f , d < b 4of and (u,v) 6 -h-f . If
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f(x,y) satisfies the conditions of note (v)t Sec.2.2 for 
every c ^ a < of , d 4 b < , then we may write

00 00
X/2F(u,v) = (hXi|1f)(y) = J \ (u/x) (v/y) H/2

o o
. Jx(2 /ux) J^(2 yvy)f(x,y)dxdy, (u,v) 6 -^-f .

Lemma 2.3-1 : Let a, b, 6^ and be fixed real numbers

such that o4a<6^ , o4b<^ . For all (u,v) in the strip

^(u,v) 6 / u, v 4 0 or a negative number^ , for-TV
4x<00, o < y < co and for X ^ ^ ^ ^ t

e‘ax*by(2 yinrf \2 y^-)'11 J. (2 j„(2 I < a

where A* is the constant with respect to u,v,x and y .
Ajr

Proof ; w"*z“^J, (w) J,.(z) is entire and hence bounded on any
A r

bounded domain. Moreover, from the asymptotic expansion of 

Jx(w)JJi(z) as | w | -> oo , | z | oo , we see that there exists

a constant C, such that, for j w |>1, \z|>l ,A> r
j w-V\(w)J(1(z) | CCXi|1|w|^-J IzJ11"5 (e'ImW Imw

+ e )

-Imz Imz • Imw Imw
( e .+ e )/cx,p ( e + « ) ( e

-Imz Imz 
+ e )

Consequently, there exists another constant A. such that,At r
for all w, z,
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» -uT / \r / \\ / a / -Imw, Imwx > -Imz , Imz \ j w Az rj^(w) J (z) I < ^ (e + e ) (e + e ) .

It follows that, for x , y , u , v, an d K, y restricted as stated,

. -ax-by -u1 • (2 Tux)
__(2\/vy) (2 n/ux) (2 Jvy) | <

(a s/x + Im vTT) x/>T (Im x/u" - a n/x) yr
^ A (e + e ) .

(b 7y + Im -/v) /y (Im yTT - b -/y) V7
* (e + Q KAx •. u

Hence the proof.

We shall now prove, the analyticity theorem for the generalized 
Hankel.type transform.

Theorem 2.3-1 . If (h f) (u,v) = F(u,v) for (u,v) 6 ,. & > r *
•t^hen F(u',v) is analytic in u and for fixed v, (u,v) S »

bu
- >, \/2 ji/2 xF(u,v) =.</f(x,y), [(u/x) (v/y) J^(2 Jm) J^(2 s/7y) ])>

(2.3-3)
Proof : Let (u,v) be an arbitrary but fixed point of

U-r/2 n/2 _
Since (u/x) (v/y) J, (2 -/ux) J (2 yvy)A,-j_ H

= |_ [(u/xj^v/y)^.!^ vATx) V^y)] e HajbiX>(i

for fixed (u,v) G, the right-hand side of the equation 
(2.3-g) has meaning. Fix v. With u as center, construct 
two concentric circles of radii r and r^ such that both

Let r<(r^. Let be a

'y v J

circles are in -f\~
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complex increment in u-plane such that|^u|<r . Consider

, .. . . . . \/2 u/2
F(u -h^u,v) - F(u ,v) _ / f( ? |_ [ (u/x) (v/y)

Au ^ 6u

. Jx (2 Tux) (2 Tvy) ]^>=^f(x,y), (x,y)^> (2.3-4)

where

%ue.y) ‘-k {l < > ■

^/2 H/2
• ^(2./^) ]-[(») (^) (2vC5) j^uy^o ]

- [ (H) {1) JK (2 Tux) (2Vvy) ] .

Our theorem will be proven when we show that (2.3.4) converges 

to zero as J Au| o. This can be done by showing that "9^ (x) 

converges in ^ ^ to^sfero as 0. Using the fact

that

k k k \ /2 }i /2
Ax!x = (-1) 1 ( 7) (|) J^(2 \/ux)J^(2 s/vy)

(2.3-5)

and by interchanging differentiation on u with differentiation
kl

on x, we may write x y^u(x*Y) using Caucny's integral

formulas [3] as follows :

, 1, k. \/2 \i/2
'% ^X’Y^ = H 1 (-1) 1 [ ' j ^V*) (v/y) J^(2/5x)JJi(2/vy)

gl (t) - u - Au) Au

dr]_ r (l/xh/2(v/y)>‘/2 J (2/P) J (2-757)
2iti J -----------------------------------------------------L------------ dr] —

c (n - u) A u
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2fti J

k/2 ix/2 __
(t]/x) (v/y) ' J. (2 s/qx) J„(2 V^vy)

kl
(-D 1
2*i

c . ' ( n - u )

[(tj-u) - (tj-u-Au) - (t]-u-Au) ]

dT] ]

5
{* n “ u - Au) (i\ - u)

k. \/2 -ji/2 __ „
• T] 1 (tt)/x) (v/y) (2 7t|x) (2 ^vy) dt]

(-1)
2ni

‘1
5 An k \/2 „ ]i/2

------~2------------  1 ^ 0 Jx(2y^)(Ju(2Ay}dT|
(t,-u)^(h-u-Au) x y \ (l

Now, for all r| 6 C and o 4. x <oo , o<y<_oo,

-ax-by k,
e A\,x^u(x’y)

. , , r 1 ki+M H W
z lAul \ i\ v 2

2n j
c (ti-u) (ri-u- ^u)

-ax-by (2 Vp) (2 v/vy) 11 Jx(2 y'fjx) 5^(2 Vvy) I dr)-t*

4 K'lAul \,n

rl (rl - r>

Here, be a bound on ^ e”3X*"bY (2 s/ipT)"^ (2^/vy)”^.

• J^{2 r/rjx) Jy (2 /vy) J and K is a constant independent of 

u and x . Moreover, j t] - u - A u | > r^-r)>0 and 

) r| - uj = r^ . Thus, as \AU| ->0, V&u (x,y) converges to

zero in H , . . Consequently ,
d t D • A t r *

<^f(x,y), Yau ~> 0 as lAul ■} °*
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Theorem 2.3-2 If (h, ,.f) (u,v) = F(u,v) for (u,v)

then F(u,v) is analytic in *V and for fixed u, (u,v) 6

v x/2 u/2±. F(u,v) = <f(x,y), ^ [(H) (H) ^(2 j^k) J^2 v^y) ]> •

(2.3-6)

Proof : The proof of this theorem is very similar to that 

above and Theorem 1 [5],

Theorem 2.3-3. if (h, ,, f) (u,v) = F(u,v) for (u,v) 6 ......... .......... ...... ... Aip

then F(u,v) is analytic on and

X/2 ]i/2 _ .
DF(u ,v) =<^f(x,y), D[(~) (H) J^(2 /ux) J^(2 y'vy) ]^> (2.3-7)

whe re D Jb
du

or
No
dv

Proof : By the Theorems 2.3-1 and 2.3-2, at every point

(u',v*) S each of the functions F(u,v') and F(u',v) is

analytic in the single variable u and v respectively. Therefore, 

invoking the Hartog’s theorem [2, p.140], we see that 

F(u,v) is analytic on -/"v .

Theorem 2,3-4. (Boundedness of F(u,v) ). If

F(u,v) = (h’ ,,f) (u,v) for (u,v) 6 , then F(u,v) isr *

bounded on any subset 

negative number^ of

= ^(u,v) 6 G^/ u,v / O or a 

according to

| F(u,v) | — | u|^ | v|^ Pa>b ( I uv | )

--vn

mir'hySA U

X
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where Pa b ( ]uv| ) is a polynomial in uv depending on a and b

Proof : In view of a general result [ 5. Theorem 1,8.11], 

there exists a constant C y 0 and a nonnegative integer r 

such that

) F(u ,v) | = ] ^f(x,y), 0 (x, y )^> |

max sup
^ r o<x<oo

°4k2< r °< y<- 00

-ax-by

k,,k \/2 ' y/2 __
L (Y) J*<2^>V2y7y)

By (2.2-5), the right, hand side is equal to 

sup
-ax-by \ + k,+\ k9+)i

e x u 1 v z

max
cCo r o ^ x < oo

„0 ^ k2 4 r o<y^oo

. (2 Tux) (2-/vy) (2 >/ux)~ (2 >/vy)

ince for all u, v in ,

-ax-by __-A . -y
e (2 /ux) (2 0vy) J^(2

^ Vy [4] .

<

where is constant with respect to u, v, x and y, and

the theorem follows.
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