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Section 1 :
Introduction

A family of uncountably many non-intersecting space-

filling curves is called a congruence of curves. The famous
example of a congruence is the lines of force defined by a
magnetic field. In hydrodynamics the stream lines characte-
rized by the velocity field of a moving fluid form a

congruence.

In the gensral theory of relativity there exist three
types of congruences. The first type . 1& called‘%ime-like’
cougruence; If the curves of a congruence have always time-
like tangent vectors then the congruence is called time-like.
For instance, the world lines of the particles in a continuum

provide a time-like congruencae. This congruence is the most

popular one among research workers, since they were studied

by Ehlers and Kundat (1962), Mc Vittie (1965), Ozsvath (1966),
Bllis (1967, 1971), Vaidya (1968, 1973), Greenberg (1970),
Date (1973), Krasinski (1975), Rao (1978), Raychaudhari (1979),
Duggal and Sharma (1986 )amdDuggal (1987). Radhakrishna gt-al.
(1975, 1976, 1980 a, 1980 b, 1981) heve obtained comservation
laws as concomitants of Lie invariance, Jaumann invariance of
certain important tensor fields with respect to a time-like

congruence in electrodynamices.

Next in popularity are the null congruences which have

no counterpart in Newtonian mechanics. When the curves of a



congruence have always null tangent veotors then the
congruence is called a null contruence. For instance, the
path of a photon constitutes a member of a null congruencs.
Extenaive applications of this congruence to the exploration
of gravitational radiation have been initiated by Newman

and Penrose (1962). Such  typesof congruences are studied
by Takeno (1957), Peres (1960), Kundt (1961), Debney and
Zund (1971), Geroch, Held and Penrose (1973), Hull (1977),
Bdgar (1980), Iukacs et-al. (1981), Radhakrishna and Singh
(1984)m{Radhakrishna (1988). Null congruences are especially
suited for studying electromasgnetic mull fields interacting
with gravitational null fields (Radhekrishna and Gumaste,
1984).

The last type of congruence which has received least
attention from relstivists, is the space-like ones. The
recent text by Stephani (1382) refers only to the work on
time~like and null congruenceas. When the curves of congruence
have always spaceﬂlika tangent vectors then the congruence is
called space~like. According to Narlikar (1978), the paths
of tachyons form a space~like geodesic congruence. (Tachyons
are hypothetical particles supposed to travel with velocity
greater than velocity of light).
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Space—~like congruences

For a given tima-like vector fiseld, there exist
Many space-like vector fields which are orthogonal to it.
It follows that the mumbersdifferent space-like congruences
is much more than the time-like congruences in relativistic
continuum mechanics. Due to this proliferation of space-like
congruences in relativistic mechanics, their study is impe-
rative. Thim forms the motivation for the investigations in
this dissertation. It is observed thatifiere hwr not been many
investigations of space-like congruences till 1370, although
the concept of space-like vectors was initiated in 1905 by
Einstein through his speciai theory of relativity.

We give a brief survey of space~like congruences in
relativistic hydrodynamics, thermodynamies and magnetohydro-
dynﬂ-UIicao

2.1 : Space-like congruences in relativistic hydrodynamics :

Rela tivistic hydrodynamica deals with super massive

objects

MN "'}302 e (101)
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at high pressure
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and moving with velocity comparable to the wvelocity of light
C,
l.e. Vv ~ d . Y (1.3)

Here M is the mass of a body of radius R and G is the
universal constant of gravitation. Such situations exist

only on neutron stars for which

M = 0.91 % c2 . (1.4)

For earth we have

R
Mg ~ 6 x100¢2 B, (1.5)
and for Sun we have (Narlikaxr 1978)
R
- ©
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And en retativistic mechanics s poi pertinnt (o ihe 4via Pliets 5

The acceleration vector field defined by
2% = u?; b (1.7)

whera u® is the unit velocity vector field and the semicolon

denotes covariant derivative, is a space~like vector field,

since

)

u u& = 0 e (108)
due to the relation

uau = 1. ' ee e (1-9,

a



Also the magnitude of A2 18 negative due to the signature
of the metriec ( —, — , — , + )« The vorticity vector

field

a .
1 abcd

where .ngbcd is the levi-Civita tensor, is a space-like

congruence, because

a 1 abed
lead: to ()JaU»a = 0

dne to the skewsymmetry of ylabcd in (a,b) and the symmetry
of “a Up 4in (a,b). This congruence has been extensively

studied recently by Taamparlis and Mason (1983).

2.2 : Space-like congruences in relativistic thermodynamics :

1) Heat flux congruence @

The expression for the space-like vector field Q% - the
heat flux, has raised lot of controversy in the history of
thermodynémics. The earllest investigations in the relativistic
domain are due to Eecksrt (1940), who gave the following rela-

tion between temperature gradient and heat flux,

c



where &) 1is temperature, y*ab = gab - uaub, .. (1.13)

N ig the coefficient of conductivity, When (@ = constant,
we note that
Qa = "‘"’h'z‘ rab {lb®‘1' .o (1014)
c
Thias means that even though femperature_does not change,
there is heat flux which is due to the acceleration field
ﬁb. This feature is the peculiarity of relativity. It does

not exist in classical thermodynamics, since when C —> @

(in the Newtonian limit) we get from (1.1%)

Qaﬂ - A rub®'"1’b. . (1.15)
by relativists
The objectionlto this definition of Eckart is that it leads

to the conclusion that 'heat propagatea with infinite velocity'.
However, according to the theory of relativity no interaction
can propagate faster than light, whosé speed is 1,86,000 miles
per second. Thus the esypression for 'Qa wasg not acéeptable

to relativists, Landru-lifachitz 1in 1958 proposed another

expression for the heat flux, viz.,

ﬁa=xrab®'1,b+uaub@'1,b e (1.16)

Thia also did not prediet sub-luminal speed for the heat
propagation. This defect has been resolved only in 1988.

Cambridge University Press i1s publishing (December,
1988) the proceedings of the latest International Conference



on Gravitation and Cosmology, wherein Profeésor Carter has
exposed a theory of csusal thermodynamics under the caption
'Conductivity with Causality in Relativistic Hydrodynamics'.
This is referred as'Regular' thermodynamics since it has
successfully overcome the pathological behaviour of acsusality,
contained in the earlier theories of high speed contimmum
mechanics developed by Eckart and Landeu-Lifschitz, as
relativistic generalizations of classical FOURIER-EULER
conducting fluid models. This regular theory can be safelyA
adopted for a wide range of astrophysical applications. An
exposition of this theory follows.

Differential relations :

Let 8(n,s), be the density of the fluid, k(n,s)
condﬁctivity scalar where n is the particle density
(independent of the flow vector u?), 8 is the entropy. Thus
Y, k are the primary equations of state functions. The

secondary equation of state functions are

i ¢ chemical potential
@ : the temperature
p

the pressure

Standard equilibrium theory gives

= B = £
" n '’ @ 8 cee (117

Nl b Sl \wpd ot

P = nmu +8@-§ .



Basic conductivity egnation 1is

“&a = - k ( rab @,b + {lb @) L] (1.18)
’ Here Tab - gab - n? ub , !
: (1.19)
‘8 _ a b } “on L

The heat flux vector 8% is defined in terms of an appropriate
heat transport velocity vector ve by the expression.
a
Q’ = OSVa oy (1020)

viu,= o oo (1.21)

Carter finally obtains in 1188 \/

Tab = nbxa + 5b@% + P gab \/ soe (1o22)

where 7(& is the chemical 4-momentum and ®a is the thermsl

4-momentum given by the relation

Ve

@a = @“a e o (1023)
The entropy current vector % s defined by
a _ a. . b x, x ’
6- - S (u "‘u T;UTB“‘W__ ) / *s e (1024)
. | .
I3 X»a = 0. see ( 1. 25)

The resistivity scalar Z is given by

i = "'"""'&"2'——"' . / soe (1026)



The complete set of equations of the‘Regular’ model are

a a )
2 "N x[b;&} + 2 & ®8 6" b = O TR (1027)\/

and >
a - .
2 b (@ {b;&] + Z ([a @bJ ) = 0 . K (1028)
Entropy creation formvla Is
-Sa}a = 7 Gag—a ;
} coe (1.29)
5 2 = S ua . ;
The particle conservation formula Iis
77afa = 0 ;
} "0 (1-30)
ﬂa = 7 u? ;
and the stress—energy momentum conservation is
v
b
T& ;b = 0 . L] (1-31)

Thie theory by Carter ylelds a hyperbolic type of equation
for the propagation of heat and this is the correct form for
finite speed of heat propsgation.

ii) The other space-like congruenéee for relativistic
thermodynamics, viz., specific currenmt vector field, gradient
of Clebesch potential for rotational motion, gradient of
potential for irrotational motion, gradient of specific
entropy, gradient of charge-mass density ratio, specifioc
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vorticity pseudo-vector field, etc., have been identified by
Ghunakikar (1974). Some of these congruences have been

studied by Schutz (1972).

2.3 ¢ Space-like congruences in relativistic magnetohy-
drodynamics

The occurrence of magnetic field in solar winds (Parkar,
1964), spiral arms (Hewish, 1969) and suh~spote (Wilson, 1968)
emphasize the necessity of relativistic magnetohydrodynamics
for the development of astrophysics. The magnetic vector
field, the electric vector field, Poynting flux are the space-
like vector fields in relativistic magnetohydrodymamics, whose
field equations together with the existance and uniqueness of
solutions are studied by Lichncrowicz (1967). This formed the
besis of several investigations on space-like congruences by
Date (1974), Ghunakiker (1974), Jangem (1982) and Gumaste
(1984).
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Section 3 :

GREENBERG'S parameters for a space-like congruence @

In Chapter-1I1 we propose to study special smpace-like
congruences and their geometrical, -deinematieal as well as
physical as well as phyeienl significances., We take full
advantage of the formalism ddveloped by Greenberg for the
parameters of space~like congruences, an exposition of which

follows.

The parametric expression of the space-like congruence

is given by the relations
Xa - x& ( f‘* J I ) 'y (’032)

where the parameters E“ (<= 1,2,3) specify the particular
space~like curve of the congruence and where T 1is some
arc-length parameter along the curve of the apace-like
congruence. At any point ( i.e. g* is fixed) on any one
curve of the space-like congruence, the unit tangent vector
n® ia defined by

a8 ( dxa' )

n = .-T—d 0 (1033)

ﬁ‘(

where nana = + 1. Obviously we have

]'\ naib n =0 ) (1034)
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Greenberg (1970) defined the threes parameters of space-
like congruence n? relative to time-like congruence u? for

the metric signature (+,+,+,~).

a

(1) & = (n%ja + ng,y u%uP) ees  (1.35)

— PO

(11) Cab =3 1 L3 (ngq - mg,0) =Ly @ (1.36)
1 e d
(411) Wy = 3 Loly (ngq -1y, «00 (137)

where 8 is called the expansion, the & ap 19 called shear
and the (U ;) 18 known as rotation of the space-like congruence

and [ ., 1s projection operator

_L..ab = 38]3 + uaub “nanb oo (1.38)

with properties

a b a a
Loy =Lya ,‘Lb Ly =te v Ly = 2 (10

a
8 a

Transport laws governing .the definition of parasmeters :

Two more space-like vector fields qa, ra are intro-

duced satisfying the orthonormal reiations.

ua(ias-d Qa‘la: r* I'a = nana= 1 (1.41)

- a a . a .
We =W, =U¥ng =m?Qa = rg=m’r,=0
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The definitions of the three parameters are subject to
Greenbergs transport laws which are easential for preserv-
ing the orthonormal relationa. They are three in nmumber

as ermumerated below

Dn
' _ a  c. .8 be_.a % b
(1) =0 ic” +u nb;c uu n pre u ee(1.42)
D®  _a be .a DMy
(11) -a%— =u o, qu -0 = ee(1.43)
Dra a b.c a Dn b
(i11) F{ =W Py rus-m —b r°? . ee{1.44)

at

Several exact solutions of Einatein’s field equatioms for
gravitating fields admitting special types of space-like
congruences have been delineated(in their comprehensive book

by Kramer et-al. (1980),
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Section 4 ¢

Space-like congruences in generalized Serret-Frenet (GSF)

Formulae ¢

The basis for new work on the space-like congruences

reported in Chapter-ll is described in this section.

In the 3-dimensional differential geommetry the
relatione between the three vector fields tangent, normal,
binormal and the two scalar fields curvature and torsion are
well known as Serret-Frenet formulae (0'Neill 1970). The
extenaion of these concepts to the»4~dimensiona1 space-time
of genersl relativity have been accomplished by Synge (1960).
These sre referred as generalized Serret-Frenet (GSF) formulae.

For the world line (space-time curve).
x* = x? (3)

where 3 4ip the coro-length parameter slong the curve, the
GSF formulae are (Davis 1970).
/v,_/

p e? (m) a
.—..5;_.&’.1-) =2 K(n) e (m) KR (1‘45)

where a,m,n range over (0,1,2,3) and -%~ is the covariant

derivative along the world line and ga(n) is the orthonormal

tetrad on the curve, with a as the tensor index and (n) as the
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tetrad index, ¢ a(1); Qa(z), 68(3) are the three’space-

(m)

like congruences. The matrix of coefficients K(n) 18

described by

0 k, 0 o 3
(m) _| Xy 0 k, 0
()~ 0 -k k
2 3
| 0 O ‘k3 0 ]

where k’, kz, k3 are called the first, the second and the

third curvatures. It should be noted that the matrix K%ﬁg

is neither symmetric nor skew-symmetric (as distinguished
from it's counterpart in 3-dimensions which is skew-
symmetric).



