

1 Introduction

The concept of 'REASONABLE WANDERER MAP' (I-Definition 1.1.8) in Hilbert space was first considered by Browder and Petryshyn [7] and obtained the results (I-Theorems 1.3.4 and 1.3.6). These results are extended in generalised Hilbert space by Hicks and Huffman [15]. In this chapter theorem 1.3.4 is extended to show that the demicontractive (I-1.1.11) and hemicontractive (I - 1.1.12) self-maps defined on a closed convex subset C of a Hilbert space H are reasonable wanderer in C. Further theorem (I-1.1.6) is extended to obtain a fixed point of Lipschitzian (I-1.1.10) demicontractive, demicompact (I-1.1.13) self-mapping of a bounded closed convex subset of a Hilbert space H. Finally some of our results and theorem (I-1.3.4) along with its corollary (I-1.3.5) are generalised by considering generalised contraction mapping (III-1.1) introduced by us in Chapter-III.

<u>Theorem 1.1</u>: Let C be a closed convex subset of a Hilbert space H. If T is a demicontractive mapping of C into C with contraction coefficient K and having non-empty set F(T) of fixed points of T in C, then the mapping defined by $T_{\lambda} =$ $\lambda T + (1-\lambda)$ I, where I is identity mapping on C and for a given λ with $0 < \lambda < 1$ and $K < 1 - \lambda$ is reasonable wanderer from C in to C with the same fixed points as T.

52

<u>Proof</u>: For any x (C, set $x_n = T_{\lambda}^n x$, $0 < \lambda < 1$. Let P (F(T), hence P (F(T_{λ}) (see [7]).

It follows from (I-1.3.12), where t stands for λ that

$$|| \mathbf{x}_{n+1} - \mathbf{P} ||^{2} = || \lambda \mathbf{T} \mathbf{x}_{n} + (1-\lambda) \mathbf{x}_{n} - \mathbf{P} ||^{2} \cdot = \lambda || \mathbf{T} \mathbf{x}_{n} - \mathbf{P} ||^{2} + (1-\lambda) || \mathbf{x}_{n} - \mathbf{P} ||^{2} - - \lambda (1-\lambda) || \mathbf{T} \mathbf{x}_{n} - \mathbf{x}_{n} ||^{2} \cdot \dots (1.2)$$

Using the fact that T is demicontractive, we have

$$\| \mathbf{T}\mathbf{x}_{n} - \mathbf{P} \|^{2} \leq \| \mathbf{x}_{n} - \mathbf{P} \|^{2} + K \| \mathbf{x}_{n} - \mathbf{T}\mathbf{x}_{n} \|^{2} \dots (1.3)$$

From equations (1.2) and (1.3), we obtain

$$\| \mathbf{x}_{n+1} - \mathbf{P} \|^{2} \leq \| \mathbf{x}_{n} - \mathbf{P} \|^{2} - \lambda (1 - \lambda - K) \| \mathbf{T} \mathbf{x}_{n} - \mathbf{x}_{n} \|^{2},$$

K < 1 - λ .

Summing these inequalities from n = 0 to n = j, j being positive integer, we have

$$\lambda(1-\lambda-K) \sum_{n=0}^{j} || Tx_{n} - x_{n} ||^{2} \le \sum_{n=0}^{j} \{ || x_{n} - P ||^{2} - || x_{n+1} - P || \}^{2} .$$
$$\le || x_{0} - P ||^{2} - || x_{j+1} - P ||^{2} .$$
$$\le || x_{0} - P ||^{2} - || x_{j+1} - P ||^{2} .$$

which implies that
$$\sum_{n=0}^{\infty} || Tx_n - x_n ||^2 < \infty.$$

Now since $x_{n+1} - x_n = \lambda [Tx_n - x_n]$

$$\sum_{n=0}^{\infty} || x_{n+1} - x_n ||^2 = \lambda^2 \sum_{n=0}^{\infty} || Tx_n - x_n ||^2$$

$$\leq \frac{\lambda}{1 - \lambda - K} || x_0 - P ||^2 \text{ by (1.4)},$$

... (1.5)
 $K < 1 - \lambda.$

This means (by definition I-1.1.8) that T is reasonable wanderer in C and hence T_{λ} is reasonable wanderer in C.

<u>Theorem 1.6</u>: Let C be closed convex subset of a Hilbert space H. Let T : C \longrightarrow C such that

- (i) $F(T) \neq \emptyset$,
- (ii) T is hemicontractive.

If $T_{\lambda} = \lambda T + (1-\lambda)$ I where I is identity mapping and for a given λ with $0 < \lambda < 1$, then T_{λ} is reasonable wanderer in C with same fixed points as T.

Proof : Since T is hemicontractive, we have

$$|| \mathbf{T} \mathbf{x}_{n} - \mathbf{P} ||^{2} \leq || \mathbf{x}_{n} - \mathbf{P} ||^{2} + || \mathbf{x}_{n} - \mathbf{T} \mathbf{x}_{n} ||^{2}$$

In equation (1.2) using the fact that T is hemicontractive we obtain

$$||x_{n+1} - P||^{2} + \lambda(1-\lambda) || Tx_{n} - x_{n} ||^{2} \le ||x_{n} - P||^{2} + \lambda || Tx_{n} - x_{n} ||^{2} \le ... (1.7)$$

Replacing
$$||Tx_n - x_n||^2$$
 by $\frac{1}{\lambda^2} ||x_{n+1} - x_n||^2$ on

right hand side of (1.7) and then summing over n = 0 to n = j, we get

$$\lambda(1-\lambda) \sum_{n=0}^{j} || Tx_{n} - x_{n} ||^{2} \leq \sum_{n=0}^{j} \{ || x_{n} - P ||^{2} - - - || x_{n+1} - P ||^{2} \} + \frac{1}{\lambda} \sum_{n=0}^{j} || x_{n+1} - x_{n} ||^{2} + \frac{1}{\lambda} \sum_{n=0}^{j} || x_{n+1} - x_{n} ||^{2} + \frac{1}{\lambda} || x_{0} - P ||^{2} - || x_{j+1} - P ||^{2} + \frac{1}{\lambda} || x_{j+1} - x_{0} ||^{2} + \frac{1}{\lambda} || x_{j+1} - x_{0} ||^{2} + \frac{1}{\lambda} || P - x_{0} ||^{2} + \frac{1}{\lambda} || P - x_{0} ||^{2} + \frac{1}{\lambda} || x_{0} - P ||^{2} +$$

Thus $\sum_{n=0}^{\infty} || \mathbf{T}\mathbf{x}_n - \mathbf{x}_n ||^2 < \infty$, and $\sum_{n=0}^{\infty} || \mathbf{x}_{n+1} - |\mathbf{x}_n ||^2 \leq \frac{1+\lambda}{1-\lambda} || \mathbf{x}_0 - \mathbf{P} ||^2 \dots (1.8)$

which implies that T is reasonable wanderer in C.

55

Now we extend corollary (I-1.3.5) for the mappings considered in theorems (1.1. and 1.6) in the following manner.

<u>Corollary 1.9</u> : If T is demicontractive (or hemicontractive) self map of C, where C is closed convex subset of a Hilbert space H and the set F(T) of fixed points of T in C is nonempty, then the mapping $T_{\lambda} = \lambda T + (1-\lambda) I$, I is identity map on C and for given λ with $0 < \lambda < 1$, K $< 1 - \lambda$, maps C into C, has same fixed points as T and it is asymptotically regular (I-definition 1.1.9) at x.

<u>Proof</u>: Suppose T is demicontractive mapping with contraction coefficient K. Then the mapping $T_{\lambda} = \lambda T + (1-\lambda)$ I is reasonable wanderer in C and has same fixed points as T. This implies inequality (1.5) i.e.

 $\sum_{n=0}^{\infty} \|x_{n+1} - x_n\|^2 \leq \frac{\lambda}{1-\lambda-K} \|x_0 - P\|^2, K < 1-\lambda.$ Setting $x_n = T_{\lambda}^n x$, $\lambda = \frac{1}{1+n}$, we obtain $\sum_{n=0}^{\infty} \|T_{\lambda}^{n+1} - T_{\lambda}^n x\| \leq \frac{1}{n-k(n+1)} \|x_0 - P\|^2$

which implies that

 ${\mathcal K}$

 $\lim_{n \to \infty} \| T_{\lambda}^{n+1} x - T_{\lambda}^{n} x \| = 0.$ i.e. T is asymptotically regular at x.

2. <u>Construction of Fixed Points of a Reasonable</u> Wanderer map.

Theorem 2.1 : Suppose T is (i) Lipschitzian demicontractive selfmap of a bounded closed convex subset C of a Hilbert space H.

- (ii) reasonable wanderer in C,
- (iii) demicompact,
- (iv) $F(T) \neq \emptyset$, where F(T) denote set of fixed points of T in C.

Then F(T) is convex set and for any given x_0 in C and any fixed λ with $0 < \lambda < 1$, the sequence $\{x_n\} = \{T_{\lambda}^n, x_0\}$ determined by the process

 $x_n = \lambda T x_{n-1} + (1-\lambda) x_{n-1}, n = 1, 2, ...$...(2.2)

converges strongly to a fixed point of T in C.

<u>Proof</u>: Let P be a fixed point of T and hence it is of T_{λ} (by hypothesis).

Since T is liptschitzian, then there exists a constant L > 0 such that

 $|| Tx - Ty || \le L || x-y ||$, x, y (c.

For P_0 , $P_1 \in F(T)$, we have

$$\|TP_{\lambda} - P_{0}\| = \|TP_{\lambda} - TP_{0}\| \leq L \|P_{\lambda} - P_{0}\|$$

and $\|TP_{\lambda} - P_{1}\| = \|TP_{\lambda} - TP_{1}\| \leq L \|P_{\lambda} - P_{1}\|.$

From which it follows that

. .

$$\| P_{1} - P_{0} \| \leq \| P_{1} - TP_{\lambda} \| + \| TP_{\lambda} - P_{0} \|$$

$$< L \{ \| P_{1} - P_{\lambda} \| + \| P_{\lambda} - P_{0} \| \}$$

$$< L \| P_{1} - P_{0} \| \qquad \dots (2.3)$$

Thus for some a, b with $0 \le a$, $b \le 1$, it follows that

$$TP_{\lambda} - P_{0} = aL (P_{0} - P_{\lambda}).$$
 (2.4)

$$TP_{\lambda} - P_{1} = BL (P_{1} - P_{\lambda}).$$
 ... (2.5)

Adding (2.4) and (2.5), we obtain

$$2TP_{\lambda} = (1-aL) P_0 + (1-bL) P_1 + L(a+b) P_{\lambda}$$

Now setting L(a+b) = 1

$$1 - aL = t$$
 with $0 \le t \le 1$

we obtain

 $TP_{\lambda} = P_{\lambda}$

where $P_{\lambda} = tP_{0} + (1-t) P_{1}$.

This implies that $P_{\lambda} \in F(T)$ and F(T) is a convex set.

Now, the sequence $\{x_n\}$ lying in C is bounded and since T is reasonable wanderer in C by corollary 1.9 it is asymptotically regular at x_0 in C. It follows that

$$\lim_{n \to \infty} \| \mathbf{T}_{\lambda}^{n+1} \mathbf{x}_{0} - \mathbf{T}_{\lambda}^{n} \mathbf{x}_{0} \| = 0$$

i.e.
$$\lim_{n\to\infty} ||T_{\lambda}x_n - x_n|| = 0$$
, where $T_{\lambda} = \lambda T + (1-\lambda)I$.

which implies that the sequence $\{Tx_n - x_n\} - \{1/\lambda, (x_n - x_{n+1})\}$ strongly converges to zero. Now by demicompactness of T, there exists a strongly convergent subsequence $\{x_{n_i}\}$ such that

$$x_{n_{t}} \rightarrow q \in F(T)$$
.

Since T is demicontractive, there exists a constant K, $0 \leq K < 1$ such that

 $\|\operatorname{Tx}_{n_{i}} - q \| \leq \|\operatorname{x}_{n_{i}} - q \| + K \|\operatorname{Tx}_{n_{i}} - \operatorname{x}_{n_{i}}\| \to 0, \text{ as}$ $i \to \infty.$ It follows that $\operatorname{Tx}_{n_{i}} \to q$, as $i \to \infty$.
Using the fact that T is of Lip. class, we have $\|\operatorname{Tq} - q\| \leq \|\operatorname{Tq} - \operatorname{Tx}_{n_{i}}\| + \|\operatorname{Tx}_{n_{i}} - q\|$ $\leq L \|q - \operatorname{x}_{n_{i}}\| + \|\operatorname{Tx}_{n_{i}} - q\| \to 0, \text{ as } i \to \infty.$ i.e. $\|\operatorname{Tq} - q\| = 0$ which implies that $\operatorname{Tq} = q.$

The inequality $||x_n - q|| \leq ||x_{n-1} - q||$ valid for each n implies that the sequence $\{||x_n-q||\}$ is monotonically decreasing sequence. This coment along with the fact $x_{n_i} \rightarrow q$ implies the convergence of entire sequence $\{x_n\}$ to a fixed point q of T.

This completes the proof of the theorem.

3. Generalisation Of Reasonable Wanderer Maps :

The following Theorem 3.1 generalize Theorems 1.1, 1.6 proved in the first section of this chapter and the Theorem (I-1.3.4) of [7]. The proof is given in the light of proof of Theorem 1.1.

<u>Theorem 3.1</u>: Let C be a closed convex subset of a Hilbert space H. Let T be a generalised contraction mapping of C into C (i.e. $|| Tx-Ty ||^2 \leq a_1 || x-y ||^2 + a_2 || x-Ty ||^2 +$

> + $a_3 \parallel y - Tx \parallel^2 + a_4 \parallel (I - T)x - (I - T)y \parallel^2$. where $a_1 \ge 0$, $\sum_{i=1}^4 a_i < 1$, for all x and y in C.)

with further assumptions $a_1 + a_2 + a_3 = 1$, $a_3 + a_4 < 1$. Suppose set F(T) of fixed points of T in C is non-empty. Then the mapping defined by $T_{\lambda} = \lambda T + (1-\lambda) I$, where I is identity mapping on C and for a given λ with $0 < \lambda < 1$, is reasonable from C into C with the same fixed points as T. <u>Proof</u>: For any x (C, set $x_n = T_{\lambda}^n x$, $0 < \lambda < 1$. Let P (F(T), hence P (F (T_{λ}) . [7].

Using Ishikawa technique (I-1.3.12), where t stands for $\lambda_{\rm r}$ we have

$$\| \mathbf{x}_{n+1} - \mathbf{P} \|^{2} = \| \lambda \mathbf{T} \mathbf{x}_{n} + (1-\lambda) \mathbf{x}_{n} - \mathbf{P} \|^{2} .$$

= $\lambda \| \mathbf{T} \mathbf{x}_{n} - \mathbf{P} \|^{2} + (1-\lambda) \| \mathbf{x}_{n} - \mathbf{P} \|^{2} -$
- $\lambda (1-\lambda) \| \mathbf{T} \mathbf{x}_{n} - \mathbf{x}_{n} \|^{2} ... (3.2)$

since T is generalised contraction mapping

$$\| \mathbf{T}\mathbf{x}_{n} - \mathbf{P} \|^{2} = \| \mathbf{T}\mathbf{x}_{n} - \mathbf{T}\mathbf{P} \|^{2} \leq a_{1} \| \mathbf{x}_{n} - \mathbf{P} \|^{2} + a_{2} \| \mathbf{x}_{n} - \mathbf{P} \|^{2} + a_{3} \| \mathbf{P} - \mathbf{T}\mathbf{x}_{n} \|^{2} + a_{4} \| \mathbf{x}_{n} - \mathbf{T}\mathbf{x}_{n} \|^{2}.$$

$$\| \mathbf{T}\mathbf{x}_{n}^{-P} \|^{2} \leq \frac{\mathbf{a}_{1}^{2} + \mathbf{a}_{2}^{2}}{1 - \mathbf{a}_{3}^{2}} \| \mathbf{x}_{n}^{-P} \|^{2} + \frac{\mathbf{a}_{4}^{2}}{1 - \mathbf{a}_{3}^{2}} \| \mathbf{x}_{n}^{-T}\mathbf{x}_{n}^{2} \|^{2} \cdot \left\| \mathbf{x}_{n}^{-P} \|^{2} + K \| \mathbf{x}_{n}^{-T}\mathbf{x}_{n}^{2} \|^{2} \cdots (3.3) \right\|^{2}$$

since $a_1 + a_2 + a_3 = 1$ and setting

$$K = \frac{a_4}{1-a_3} < 1$$

From (3.2) and (3.3) we obtain

$$\| x_{n+1} - P \|^{2} \leq \lambda \left\{ \| x_{n} - P \|^{2} + K \| x_{n} - Tx_{n} \|^{2} \right\} + (1 - \lambda) \| x_{n} - P \|^{2} - \lambda(1 - \lambda) \| Tx_{n} - x_{n} \|^{2}.$$

$$\leq \| x_{n} - P \|^{2} - \lambda(1 - \lambda - K) \| Tx_{n} - x_{n} \|^{2}.$$

$$K = \frac{a_{4}}{1 - a_{3}} < 1.$$

Now letting K < $1-\lambda$ and developing further this theorem on the similar lines of Theorem 1.1, we obtain the desired result.

<u>Remark 3.4</u> (i) If we put $a_2 = a_3 = a_4 = 0$, $\sqrt{a_1} = 1$, we obtain theorem (I-1.3.4) of Browder and Petryshyn [7] as a corollary to our theorem.

- (ii) If we put $a_1 + a_2 + a_3 = 1$, $a_3 + a_4 < 1$ and y = P = TP, we obtain Theorem 1.1.
- (iii) If we put $a_1 + a_2 + a_3 = 1$, $a_3 + a_4 = 1$ and y = P = TP, we obtain Theorem 1.6.
- (iv) It is obvious that the mappings defined by I-1.3.4,0.3.6 and 1.3.7 have been taken care of.

Finally, we formulate the following corollary 3.5 which generalize corollary 1.9 and corollary (I-1.3.5) of Browder and Petryshyn [7].

<u>Corollary 3.5</u>: If T is a self map of a closed convex subset C of a Hilbert space H and satisfies conditions of Theorem 3.1, Suppose further that T has atleast one fixed point in C. Then the mapping $T_{\lambda} = \lambda T + (1-\lambda)I$, I is identity map on C and for a given λ with $0 < \lambda < 1$, maps C in to C, has same fixed points as T and it is asymptotically regular at x. <u>Proof</u> : Proof may be given in the light of proof of corollary 1.1.