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CHAPTER I

FUZZ2Y SETS, RELATIONS AND GRAPHS

In this chapter, we state the basic definitions and
results which will be needed in the succeeding chapters.
Throughout the discussion, X stands for the universal set

and I for the closed unit interval [0, lj of the real line.

1,14 FUZZY SETS

Definition 1,1.1 : A fuzzy set A on a universal set X is a

function A § X = I,

Definition 1.1.2 ¢+ If A 3 X —3> I and B 3 X «3 I are two

fuzzy sets on X, then A is fuzzy subset of B if and only if

A(x)  B(x), V¥V x €xX.

Definition 1l.1.3 s Two fuzzy sets, A and B on X are equal if

and only 1f they are equal as functions, i.e. A(x)=B(x),¥x{f X. |

Definition 1.1.4 : If A and B are fuzzy sets on X, then their

union AUB and intersection ANB are fuzzy sets on X, defined

by
(AUB) (x) = max {A(x), B(x)}  and
(AnB) (x) = min {A(x), B(x)} v x €X.
If {Ai} ieI i a farnil;( of fuzzy sets on X, then
(iU€ IAi) and, (i‘z IAi) are defined by,
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(U A)(x) = sup A,(x) and
tert ie1 *

(12 A x) = ii€n§ Aj(x) ¥ x €X.

Definition 1.1.5 : The complement of a fuzzy set A on X is a

fuzzy set on X, defined by

A'(x) = 1 - A(x) ¥ x €X.

Similar to crisp sets, fuzzy sets satisfy De-Morgan's

laws and distributive laws.

Theorem 1,1,6 ¢+ If A, B and C are fuzzy sets on the same

universe X, then

1) (auB)* = A'n B!

2) (ADB)* = Atus'

3) AU(BNAC) = (AUB) N (AUC) and
4) AQ (BUC) = (ANB)U (ANC).

Proof : 1) (AUB)*' (x) = 1-(AUB) (x) = 1 - max {A(x), B(x)}

= min {1-A(x), 1-B(x)} =min{A(x),B(x)}
= (A'nB*)(x) ¥ x €X.

Therefore, (AUB) ' = A'NnB"’,

2) (AnB)' (x) = lemin {A(x), B(x)} = max {1-a(x), 1-8 (x)}
' = max {A'(x), B'(x)} = (A'UB')(x) ¥ x €X.
Thus (ANB)*' = A'UB*,
3) F(AU(Bn C))(x) = max{A(x); min [B(x), C(x):}}
= min{ max [A(x), B(x)] , max[A(x).C(Xﬂ}
= ((AUB) N (AUC)) (x) ¥ x € X.
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Remarks 1l,1. 7:

Hence, AU(BNC) = (AUB) N (AUC).

(an(Buc)) (x) = min{ A(x), max[ B(x), c(x)]}‘

‘o-'3

= max{mi‘n [a(x), B(x)} , min [A(x),c(x)]}

= [(anBu@ano)x) - ¥ x €x.

 Therefore, AN (BUC) = (ANB)U (ANC).

2)

3)

4)
5)
6)

7)

and associative,

We have idempotency i.e. AUA = A and ANA = A,

1) The operations 'U' and *N*' are commutative

If # and X are the fuzzy sets, mapping every element of X

to zero and one respectively, then AUS = A and AnNX = A

so that # and X are the identities under ‘U‘' and
Obviously AQg = # and AUX = X.

(a*)* = A,

Absorption laws are satisfied,

i.e. AU(ANB) = A and AN (AUB) = A.

For a fuzzy set A, AUA' # X and ANA' # £ always,

lnl.

 for,

if g(x) =a, a¥ o0 and a # 1, then (AUA') (x) # 1 and

(AnAr) (x) # o.

For this reason, the collection of all fuzzy sets on

‘a pseudocomplemented distributive lattice.

. Lastly, we define the cartesian product AxB of

fuzzy sets as follows

X does not form a complemented distributive lattice, but forms

two

Definition 1,1.8 1+ IfA ¢ X «=>» I and B : Y =3 I are fuzzy
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sets on X and Y respectively, then the cartesian product

AXB, AXB ; XXY = I is defined as

T (AxB) (x,y) = min {A(x), B(y)} x €X and vy €Y.
1«2, Relations

pefinition l.2.1 3 A binary relation R from a set X to a

set Y is a subset of XxY, i.e. RC XXY.

when X = Y, R 18 said to be a relation on X.

More generally, we have the following definition.

nefinition 1.2.2 3 An neary relation is a set of ordered

n-tuples which is a subset of the cartesian product Xj; x X, x

«ee X X, n being a positive integer,

Definition 1.2.3 ¢+ If R} C X xY and Ry C Y x 2, then the

composition Ry o Ry is a relation from X to Z, defined by

Ry o Rz = {(x,2) : (x,y) €R; and (y,z) € R, for some y €Y},
We now define some important types of relations.

Definition 1.2.4 ¢ If R is a relation on X, then

1) R is reflexive if (x, x) ER ¥ x € X,

2) R is antireflexive if (x, x) ﬁR vV x €X.

3) R is non-reflexive if (:;., x) ,éR for some x & X.

4) R is symmetric, if (x,y) € R implies (y,x) €R, ¥ x,vy € X.
5) R is antisymmetric, if (x,y) € R and (y,x) €R imply

x=y ¥x,v9 €X.
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6) R is asymmetric, if (x,y) € R implies (y,x) '[R for
every X, y € X. |
7) R is transitive, if (x,y) € R and (y,z) € R, imply

(x,z) €ER ¥ x, v, 2 €X.

Definition 1.2.5 ¢ A relation R on X which is reflexive and

transitive is called a pre-ordering relation.

pefinition 1.2,6 : A pre-ordering relation whiéh is symmetric

is called an equivalence relation.

Definition 1.2.7 : A pre-ordering relation which is anti-

symnetric is called an ordering relation.

pefinition 1,2.8 : The relation RY = RURZUR3U ... is called

the transitive closure of R,

If the set X contains n elements, then R+ = RURZU...URnl

The following result is well-known in literature.

Theorem 1,2.9 ¢ RY is the smallest transitive relation

containing R.

Definition 1.2.10 : The symmetric closure of a relation R

is the relation RUR“l, where R‘l is the inverse relation

defined as

™Y = {(v,0) + (x,y) €R).

Theorem 1.2, 113 The symmetric closure of a relation R is

the smallest symmetric relation containing R.
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1+¢3. Graphs and digraphs

Definition 1.3.1 3 A graph G is an ordered pair (V,E) where v
iz a nonempty set of elements called vertices and E is a

finite set of unordered pairs of elements of V called edges.

Definition 1.3.2 : In a graph (V,E), if {u,v} € E then

{u,v} 1is called an edge joining the vertices u and v, and

u and v are said to be adjacent vertices.

Remark 1.3,3 ¢+ As {u,v} 1is unordered pair, the edges {u,v}

and {v, u} are the same. Graphically, an edge in a graph is

represented by an undirected arc joining the two vertices.

Definition 1.3.4 : A path from u to v of length n in a graph

G = (V,E) is a sequence of vertices u, 3ys @20 eees@p y 0 V

such that each pair {u, a3} , {8y,35} , «... {3,.1.V} is in E,

u and v are called the endpoints.

Definition 1,3.5 : If {u,u} €E, then there is an arc from

u to u, known as a loaop.

Definition 1.3,6 : If the end points u and v of a path u,ay,

a3, +++s8,_ 3,V in a graph (V,E) are equal, then the path

forms a circuit,
We now define digraphs and their adjacency matrices.

Definition 1.3,7 : A digraph is an ordered pair (V,E) where

v is a nonempty set and E is a relation on V.
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Definition 1.3.8 3§ The members of V are called vertices and

the members of E which are ordered pairs are called directed

edges,

pDefinition 1.3.9 : A directed path from u to v of length n

in a digraph G = (V,E) is a sequencé of vertices u,ay,385, 4400

ap.1, Vv such that (u,a,)€E, (a),a;) £E,.... (ap.1, V) EE.

u and v are called the end points of the directed path.

Remarks 1,3.10 ¢+ 1) A directed edge (u,v) in a digraph is

represented by an directed arc which starts from u and ends
in v.

2) Relations and digraphs aré equivalent concepts.
For, if G = (V,E) is a digraph, then E is a relation on V

and if, RC A x B is a relation, then G = (AUB, R) is a

digraph,

3) 1If the relation E in a digraph G = (V,E) is anti-

reflexive, then G is a loopfree graph.

4) A relation E in a digraph G = (V,E) is transitive
if and only if every directed path has shortcut, i.e. if and
only if for every non-trivial directed path from a vertex

X to a vertex y, there exists an edge (x,y).
The following result is well known in graph theory.

Theorem 1,3,11 ;3 If G = (V,E) is a digraph, then for n> 1,
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(u,v) @E” if and only if there exists a directed path of

length n from u to v in G.

Corpllary 1.3.12 : For any two vertices u and v in a digraph
(V,EY, (u,v) €EY if and only if there exists a nontrivial
directed path from u to v where E¥ is the transitive closure

of E.

Remark 1.3,13 : The fuzzy analogues of the above two results

are proved in the Theorem 3,1.8 and Ccrollary 3,1.9 in the

Chapter III,

We now define the adjacency matrix of a digraph and

state a few well-known basic results involving it,

Definition 1.3.14 : Let G = (V,R) be a digraph where

Vo= {yl. VZ;...,VA} and R be a binary relation on V. The
adjacency matrix A of R is defined to be the n x n Boolean

matrix where

a(i,3) =

{l if (Vio Vj) €R

0, otherwise.

Remark 1,.3,15 : For a given ordering on v, the adjacency

matrix is unique.

As the adjacency matrix is a Boolean matrix, we define

the operators @ and @ on {0, 1} as,

x @ vy = max (x,y) and

x ® vy = min (x,y), where x, v € {0,1} .
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Definition 1.3.,16 : If A and B are two n x n Boolean matrices

over {o, 1} , then their inner product A@Q@B is an n x n

matrix given by

A @@ B =[al @ 8(Lj)] @la,22® 823) ®
@A @ B

Definition 1,3.17 : For any k > 1, ( @ ® )X A 1s defined

inductively as

(@ ® ) a=a
(® ®@)2a= 2@ ® A ...,
(@ ®@)a= (@12 @ ®@a

where A is a Boolean matrix.

Theorem 1,3,18 : If A and B are adjacency matrices of the

relations R and Q on V = {ill, v2....,vn'} . then & @ @ B

is the adjacency matrix of the relation R o Q.

" Theorem 1.3.19 : If A is the adjacency matrix of a relation R

then ( @ @)™ A is the adjacency matrix of R".

Theorem 1,3,20 : If A and B are adjacency matrices of the

relations R and Q on V then the adjacency matrix of R U Q is
A @ B, where (A @ B)(ioj) = A (ioj) @ B(io.’)o

Theorem 1.,3,21 ¢ If A is the adjacency matrix of a relation R

on v = {vy. Vs -eeuvp} . then the adjacency matrix of the

transitive closure of R is A @ ( @®2a @ (® @)3A ™ ..
';o® ( @@ )n A,
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Remark 1.,3.22 : The adjacency matrix of a relfexive relation

R 1is the identity matrix and that of a symmetric relation is

symmetric.

The proof of the following theorem is well known in

literature. The fuzzy analogue of this theorem is proved in

the Chapter III.

Theorem 1.3.23 3§ Let G = (V,E) be a digraph and A is the

adjacency matrix. Let 3 and (X) denote the operations,

x 1if x> vy
X@Y?{

y otherwise |,

: xX+vy fx>0,v¢v>0
x @y = {
0 otherwise,

% Aif k=1
and L = k-1 k=1
L™ @ T @@ a),if x>,

Then Lk(i,j) is the length of the longest nontrivial directed
path frem vy to vj that has length less than or equal to k.

Lk (i,j) = O if there is no such path.
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