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CHAPTER I

FUZZY SETS# RELATIONS AND GRAPHS

In this chapter, we state the basic definitions and 
results which will be needed in the succeeding chapters. 
Throughout the discussion, X stands for the universal set 
and I for the closed unit interval £o, 1} of the real line.

1.1 FUZZY SETS

Definition 1.1.1 : A fuzzy set A on a universal set X is a 
function A : X —> I.

Definition 1.1,2 s If A t X —^ I and B s X —I are two 
fuzzy sets on X, then A is fuzzy subset of B if and only if 
A(x) ^ B (x), V x £ X.
Definition 1.1.3 * Two fuzzy sets, A and B on X are equal if 
and only if they are equal as functions, i.e. A(x)=B (x), Vx£ X.

Definition 1.1.4 : If A and B are fuzzy sets on X, then their 
union AUB and intersection AHB are fuzzy sets on X, defined 
by

(AUB) (x) « max •£A(x), B(x)^- and
(Af»B)(x) a* min£A(x), B(x)} V x

IS a family of fuzzy sets on X, then

( U Aj_) and. (Ai) are defined by, 
i£ I irI
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( U Aj) (x) * sup Aj (x) and 
*■& i€ I

(.9 _A±) (x) a inf A±(x) V X fc X. i€ 1 1 i€i
Definition 1.1.5 : The complement of a fuzzy set A on X is a 
fuzzy set on X, defined by

A’ (x) » 1 - A(x) V x (X,

Similar to crisp sets, fuzzy sets satisfy De-Morgan’s 
laws and distributive laws.

Theorem 1.1,6 i If A, B and C are fuzzy sets on the same 
universe X, then

1) (AUB)• « A*n B*
2) (AftB) ‘ » A'UB '
3) All(B/iC) » (AUB)A(AUC) and
4) AH (BUC) - (AAB)U (AAC).

Proof : 1) (AUB)' (x) « l-(AUB) (x) * 1 - max£A(x), B(x)}
= min{,l-A(x), 1-B(xj} =min£A/(x)^(x)}- 
a (A'n B*) (x) V x £x.

Therefore, (AUB) 1 » A'nB',
2) (AnB)' (x) a i-min {.A (x), B(x)} « max{l-A(x), l-B(x)}

« max {A* (x) , B'(x)} * (A'UB'Hx) ¥ x £ X. 
Thus (AH B) * a a*UB*.

3) (AU(BfiC)) (x) = max{,A(x), min £b(x), C(x)]}
« min£ max [a(x), B(xj] , max [ A(x) ,C(xj]|
* ((AUB) n (AUC)) (x) ¥ x €x.
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Hence, AU(BAC) ■ (AUB)fl(AUe).

4) (AA(BUC)) (x) = min A(x), max[B(x), C(xj]}*

» max^min [a(x), B(x)3 , min [ A(x) ,C (x)JJ- 

- [(AHB)U(An C)]0O ¥ x € X.

Therefore, AA(BUC) » (AAB)U (AAC),

Remarks 1,1, 7 s 1) The operations *U' and * fi * are commutative 

and associative,

2) We have idempotency i,e. AUA * A and AAA = A.

3) If 0 and x are the fuzzy sets, mapping every element of X 

to zero and one respectively, then AU0 = A and AnX = A 

so that 0 and X are the identities under *U* and 'A'.

4) Obviously A Cl# » 0 and AUX = X,

5) (A') ' = A.

6) Absorption laws are satisfied, 

i.e. AU(AAB) * A and aA (AUB) = A.

7) For a fuzzy set A, AUA' 0 X and AflA* / 0 always, for, 

if A(x) = a, a 0 0 and a 0 1, then (AUA') (x) / 1 and 

(AAA*) (x) 0 o.

For this reason, the collection of all fuzzy sets on 

X does not form a complemented distributive lattice, but forms 

a pseudocomplemented distributive lattice,

lastly, we define the cartesian product AxB of two 

fuzzy sets as follows i

Definition 1,1,8 * If A s X —» I and B s Y —» I are fuzzy
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sets on X and Y respectively, then the cartesian product 
AxB, AxB * XXY —I is defined as 
(AxB) (x,y) «*min{A(x), B(y)} x £ X and y £,Y.

1*2. Relations

Definition 1.2.1 i A binary relation R from a set X to a 
set Y is a subset of XXY, i.e. RC XxY.

When X » Y, R is said to be a relation on X.

More generally, we have the following definition.

Definition 1.2.2 » An n-ary relation is a set of ordered 
n-tuples which is a subset of the cartesian product X^ x X2 x 
... x Xn, n being a positive integer.

Definition 1,2,3 t If Rj C X x Y and R2 C Y x Z, then the 
composition R^ o R2 is a relation from X to Z, defined by

Rj o R2 ■ {(x,z) : (x,y) £.R^ and (y,z) £ R2 for some y €y}-.
*

We now define some important types of relations.

Definition 1.2.4 » If R is a relation on X, then
1) R is reflexive if (x, x) £ R V x £ x,
2) R is antireflexive if (x, x) j£ R V x £ X.
3) R is non-reflexive if (x, x) ft R for some x £ X.
4) R is symmetric, if (x,y)£R implies (y,x) £ R, ¥ x,y £ X.
5) R is antisymmetric, if (x,y) £r and (y,x) £r imply

x * y V x, y £ X.
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6) R is asymmetric, if (x,y) f R implies (y,x) £ R for 

every x, y £ X.

7) R is transitive, if (x,y) £ R and (y,z) € R, imply 

(x, z) £ R V x, y, z £ X,

Definition 1.2.5 * A relation R on X which is reflexive and 

transitive is called a pre-ordering relation.

Definition 1.2.6 : A pre-ordering relation which is symmetric 

is called an equivalence relation.

Definition 1.2,7 : A pre-ordering relation which is anti­

symmetric is called an ordering relation.

Definition 1.2.8 : The relation R+ « RUR^UR^U ... is called 

the transitive closure of R.

If the set X contains n elements, then R+ = RUR^U.,.URn. 

The following result is well-known in literature.

Theorem 1.2.9 * R+ is the smallest transitive relation 

containing R.

Definition 1.2.10 i The symmetric closure of a relation R
1 1is the relation RUR , where R“A is the inverse relation 

defined as

R-1 - {(y,*) * (x, y) £ r).

Theorem 1.2. 11s The symmetric closure of a relation R is 

the smallest symmetric relation containing R.
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1 • 3. Graphs and digraphs

Definition 1,3.1 : A graph G is an ordered pair (v,E) where v 

is a nonempty set of elements called vertices and E is a 
finite set of unordered pairs of elements of V called edges.

Definition 1.3.2 : In a graph (V,E), if {u, v} £ E then 
£u, v} is called an edge joining the vertices u and v, and 

u and v are said to be adjacent vertices.

Remark 1.3.3 t As {u, v} is unordered pair, the edges {u, v} 
and {v, u} are the same. Graphically, an edge in a graph is 
represented by an undirected arc joining the two vertices.

Definition 1,3.4 : A path from u to v of length n in a graph 
G *» (V,E) is a sequence of vertices u, a^, a2# ••*'an-l ' v 
such that each pair {u, ajj- , ' •••' {.an-l'vl is in E*

u and v are called the endpoints.

Definition 1.3.5 : If {u, u} f E, then there is an arc from 
u to u, known as a loop.

Definition 1.3.6 s If the end points u and v of a path u,a^, 
a2, •••'an-l'v a (V,E) are equal, then the path
forms a circuit.

We now define digraphs and their adjacency matrices.

Definition 1.3.7 t A digraph is an ordered pair (V,E) where 
V is a nonempty set and E is a relation on V.
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Definition 1.3.8 j The members of V are called vertices and 

the members of E which are ordered pairs are called directed 

edges.

Definition 1.3.9 : A directed path from u to v of length n 

in a digraph G * (V,E) is a sequence of vertices u, a±, ••**

an-l, v such that (u, a^jCE, (a]/a2) €,E,..., (an_i, v). £ E.

u and v are called the end points of the directed path.

Remarks 1,3.10 t 1) A directed edge (u, v) in a digraph is 

represented by an directed arc which starts from u and ends 

in v.

2) Relations and digraphs are equivalent concepts.

For, if G » (V,E) is a digraph, then E is a relation on V 

and if, R C A x B is a relation, then G * (AUB, R) is a 

digraph.

3) If the relation E in a digraph G * (V,E) is anti- 

reflexive, then G is a loopfree graph.

4) A relation E in a digraph G * (V,E) is transitive 

if and only if every directed path has shortcut, i.e. if and 

only if for every non-trivial directed path from a vertex

x to a vertex y, there exists an edge (x,y).

The following result is well known in graph theory. 

Theorem 1.3.11 t If G * (V,E) is a digraph, then for n ^ 1,
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(u,v) £En if and only if there exists a directed path of 
length n from u to v in G.

Corollary 1.3.12 * For any two vertices u and v in a digraph
(v,E), (u, v) £ E+ if and only if there exists a nontrivial

. 1directed path from u to v where E is the transitive closure 
of E.

Remark 1.3.13 : The fuzzy analogues of the above two results 
are proved in the Theorem 3.1.8 and Corollary 3.1.9 in the 
Chapter III.

We now define the adjacency matrix of a digraph and 
state a few well-known basic results involving it.

Definition 1.3.14 s Let G ** (V,R) be a digraph where 
V * {vp v2'***'vnT and R be a binary relation on V. The 
adjacency matrix A of R is defined to be the n x n Boolean 
matrix where

f 1 if (Vi* v-i) £ R 
A(i,j) = j 1 J£ 0/ otherwise.

Remark 1.3.15 : For a given ordering on V, the adjacency 
matrix is unique.

As the adjacency matrix is a Boolean matrix, we define 
the operators © and (5£) on {jo, 1} as,

x © y * max (x, y) and
(J) y = min (x, y), where x, y £ {o, l} .x
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Definition 1.3.16 : If A and B are two n x n Boolean matrices 

over {o, l} , then their inner product A©®Bisannxn 

matrix given by

(A ® ® B)(i,j) = [A(i,l) © B(l,j)] ®[A(i,2)@ B(2,j)] ©

... ® [A(i.n) © B(n, j| .

Definition 1,3,17 j For any k > 1, ( © © A is defined 

inductively as

( © (X) )X A = A,

( © ®)2A« A © ® A, ...,

( © © )k A * (( © ® )k-1 A) © ®A#

where A is a Boolean matrix.

Theorem 1.3.18 : If A and B are adjacency matrices of the 

relations R and Q on V * {vj,, v2«....vn} * then A ® © B

is the adjacency matrix of the relation R o Q.

Theorem 1.3.19 t If A is the adjacency matrix of a relation R
_ -l_ M M

then ( ® Qp ) A is the adjacency matrix of R .

Theorem 1.3.20 : If A and B are adjacency matrices of the 

relations R and Q on V then the adjacency matrix of R U Q is 

A © B, where (A © B)(l,j) « A (i, j) © B(i, j).

Theorem 1.3.21 : If A is the adjacency matrix of a relation R 

on V = {vp v2# •**#vn}" * ^en adjacency matrix of the

transitive closure of R is A © ( © ©)2 A © ((?) © (±) ..

© ( © ® )" A.• * «
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Remark 1.3.22 * The adjacency matrix of a relfexive relation 
R is the identity matrix and that of a symmetric relation is 
symmetric.

The proof of the following theorem is well known in 
literature. The fuzzy analogue of this theorem is proved in 
the Chapter III.

Theorem 1.3.23 * Let G * (V,E) be a digraph and A is the 
adjacency matrix. Let (J) and (x) denote the operations,

if x > y 
otherwise ,

x © y rl y
i:x+y if x > o, y > O 

otherwise,

kand L
A if k » 1
L*-"1 @ (L*-1 0 ® A), if k> 1,

Then L (i#j) is the length of the longest nontrivial directed 
path from to Vj that has length less than or equal to k,
VL (i#j) =*0 if there is no such path.
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