<u>CHAPTER - II</u>

N-IDEALS AND N-FILTERS

INTRODUCTION :

If I is an ideal of the Boolean algebra N of normal elements of a pseudocomplemented semilattice S, the extension I_E of I is defined to be the least ideal in S containing it. Venkatnarasimhan [12] has proved that the extension of an ideal I of N is the least ideal of S meeting N in I i.e. $I_E \cap N = I$. Note that, I_E coincides with I_e , the notation used by Venkatnarasimhan. But $(I \cap N)_E \neq I$ for every ideal I in S.

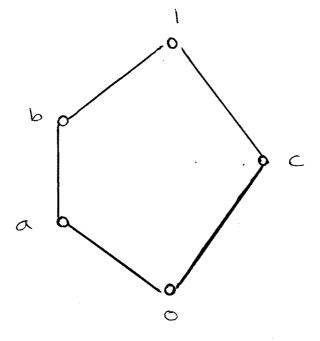


Fig.1

Here pseudocomplements of 0, a,b,c,l are l,c,c,b,0 respectively and N = $\{0,b,c,l\}$. Let A = $\{a,0\}$. Then A \cap N = $\{0\}$ and hence $(A \cap N)_E = \{0\}$ $\neq A$. Let I = $\{0, a, b\}$ then I \cap N = $\{0, b\}$ and hence $(I \cap N)_E = \{0, a, b\} = I$. This motivates us to study those ideals I in S for which $(I \cap N)_E = I$.

R. Cignoli [2] has defined K-ideals (K-filters), conjuctively K-regular and K-normal in a distributive Lattice L, where K is a sublattice of L and characterized , conjuctively K-regular and K-normal lattices as

<u>Result 1</u>: L is conjuctively K-regular if and only if any K-prime ideal is a prime ideal of L

<u>Result 2</u>: L is K-normal if and only if any K-prime filter is contained in a unique maximal filter.

These definitions and results are generalized to a pseudocomplemented semilattice.

Let S be pseudocomplemented semilattice and N be the Boolean algebra of normal elements of S. Guided by definitions of R Cignoli [2] we study N-ideals, conjuctively N-regular and N-normal semilattices.

The section 1, contains the characterization of conjuctively N-regular semilattices as

Theorem : The following three statements are equivalent

(1) S is conjuctively N-regular

.T

- (2) The minimal prime ideals are exactly the N-prime ideals in S.
- (3) Any N-prime ideal is a prime ideal in S.

A relation between conjuctively N-regular and N-normal semilattice is established in Section 2.

In Section 3, we change our base of consideration from pseudocomplemented semilattices to S-lattices i.e. a pseudocomplemented lattice L in which a* V a** = 1 for all a in L. We characterize S-lattices as

"The pseudocomplemented lattice is an S-lattice if and only if it is N-normal".

§ 2.1 <u>Conjuctively N-regular Semilattices</u> :

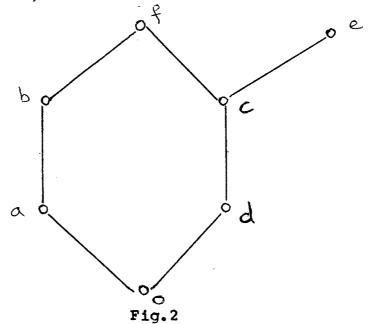
We begin with the following :

2.1.1 Definition : Let \overline{S} denotes a subsemilattice of S. An ideal I of S is called a \overline{S} -ideal if for any x in I, there is an element n in I $\cap \overline{S}$ such that $x \leq n$.

l an

2.1.2 Definition : Let \overline{S} denotes a subsemilattice of S. An ideal I of S is called as a \overline{S} -prime ideal if I is a \overline{S} -ideal and I $\cap \overline{S}$ is a prime ideal of \overline{S} .

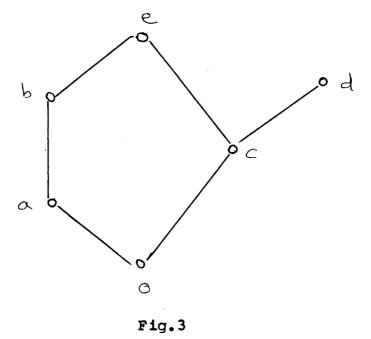
In a semilattice S represented in Fig.1 if $\overline{S} = \begin{cases} 0, c, b, f \\ f \end{cases}$ then $I_1 = \begin{cases} 0, a, b \\ f \end{cases}$ is a \overline{S} -prime ideal and $I_2 = \begin{cases} 0, a \\ f \end{cases}$ is not a \overline{S} -ideal



Dually we can define \overline{S} -filter and \overline{S} -prime filter.

2.1.3 Definition: Let \overline{S} denote a subsemilattice of S. S is called conjuctively \overline{S} -regular if given x, y in S and a in \overline{S} such that $x \wedge y \leq a$ there are elements b and c in \overline{S} such that $x \leq b$, $y \leq c$ and $b \wedge c \leq a$.

The semilattice represented by the diagram of Fig.2 is not conjuctively \overline{S} -regular if $\overline{S} = \{0, a, c, e\}$



Now we turn our attention to a very particular case where S is a pseudocomplemented semilattice and $\overline{S} = N$ is a Boolean algebra of normal elements of S.

In this case S-ideal, S-prime ideal and conjuctively. S-regular are called as N-ideal, N-prime ideal and conjuctively N-regular.

A property of N-prime ideals of S stated in the following :

2.1.4 Theorem : The minimal prime ideals in S are exactly the N-prime ideals in S if and only if any N-prime ideal is a prime ideal in S.

Proof : 'Only if part' being obvious we prove 'if part'
only.

Let P be any minimal prime ideal in S Define $I = (P \cap N)_E$. Then $(I \cap N)_E = ((P \cap N)_E \cap N)_E = (P \cap N)_E = I$ by result (9). Thus $(I \cap N)_E = I$, proves that I is a N-ideal. I is a N-prime ideal because P \cap N is a prime ideal in N and I \cap N = $(P \cap N)_E \cap N = P \cap N$. Hence by assumption I is a prime ideal in S. Again P \cap N \subseteq P implies $(P \cap N)_E \subseteq P$ i.e. I \subseteq P which in turn implies I = P and hence P is a N-prime ideal.

Now, let P be a N-prime ideal in S then $P \cap N$ is prime in N. As N is a Boolean algebra, $P \cap N$ is a maximal ideal in N. Let there exist a prime ideal Q in S such that Q <u>C</u> P.

As $Q \cap N$ is prime and hence maximal in N, $Q \cap N \subseteq P \cap N$ implies $Q \cap N = P \cap N$. Therefore $(Q \cap N)_E = (P \cap N)_E$. But P being N-ideal $(P \cap N)_E = P$ and hence $(Q \cap N)_E \subseteq Q$ implies P $\subseteq Q$. Thus P = Q which shows P must be a minimal prime ideal in S.

As a characterization of conjuctively N-regular semilattice we have.

2.1.5 Theorem : S is conjuctively N-regular if and only if N-prime ideal is a prime ideal in S.

<u>Proof</u> : <u>If part</u> : Suppose $x \land y \leq a$ for x, y in S and a is in N. Assume that there exist no b,c in N such that $b \land c \leq a$ for $x \leq b$ and $y \leq c$. Define $F_x = \begin{cases} 2 \notin N : 2 \geq x \\ 3 & d \\ F & f \\ denotes the filter <math>\left[(F_x UF_y) \right] \land N$. If $a \notin F$ then $b \land c \leq a$ for some $b \notin F_x$ and $c \notin F_y$. But $b \land c \not\leq a$. Hence $a \notin F$. As N is distributive by Stone's theorem there exists a prime ideal P' in N such that $a \notin P'$ and $P' \land F = \emptyset$ (see $[5] p \parallel q$). Let $P = (P')_E$. Then obviously P is prime ideal and hence by assumption it is prime. If $x \notin P$ then $x \notin (P')_E$ implies $x \leq q$ for some $q \notin P'$. But then $q \notin F_x \land P' \subseteq F \land P' = \emptyset$; which is impossible. Hence $x \notin P$. Similarly we can prove $y \notin P$; contradicting the primeness of P. Hence there exist b, c in N such that $b \wedge c \leq a$ and $x \leq b, \ y \leq c;$ proving that S is conjuctively N-regular.

Only if part : Let I be any N-prime ideal Let $x \land y \notin I$. Then $x \land y \notin (I \cap N)_E = I$ implies that $x \land y \leq a$ for some a $\notin I \cap N$. As S is conjuctively N-regular, there exist b,c in N such that $x \leq b$, $y \leq c$ and $b \land c \leq a$. But then $b \land c \notin I \cap N$ implies $b \notin I$ or $c \notin I$; $I \cap N$ being prime in N. Thus $x \notin I$ or $y \notin I$. This proves that I is a prime ideal.

Summing up above results we get

2.1.6 Corollary : The following three statements are equivalent :

- (a) S is conjuctively N-regular
- (b) The minimal prime ideals are exactly the N-prime ideals in S.
- (c) Any N-prime ideal is a prime ideal in S.

§ 2.2. <u>N-normal semilattices</u> :

Now we define S-normal semilattice in a bounded meet semilattice as follows.

2.2.1 Definition: Let \overline{S} denotes bounded subsemilattice of S. S is called \overline{S} -normal semilattice if given x, y in S such that $x \wedge y = 0$ there exist a, b (\overline{S} such that $x \wedge b = 0 = y \wedge a$ and a V b exists and is equal to 1 (i.e. 1 is the only upper bound of a and b in S).

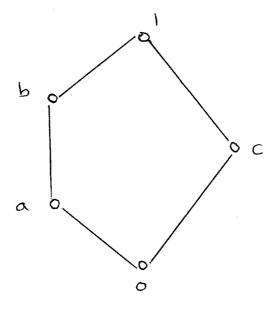
The \overline{S} - normal semilattices are said to be normal semilattices if \overline{S} = S.

The semilattice with the diagram sketched in Fig.3,

is conjuctively \overline{S} -regular but not \overline{S} -normal semilattice where $\overline{S} = \{0, a, b, 1\}$.

Fig.4

The semilattice represented in Fig.4 is the example of \overline{S} -normal semilattice. Here $\overline{S} = \{0, b, c, 1\}$



Now we concentrate to a very particular case where S is a pseudocomplemented semilattice and $\overline{S}=N$ is a Boolean algebra of normal elements of S. In this case the \overline{S} - normal semilattice is called as N-normal semilattice.

An interesting property of N-normal semilattice is proved in the following :

2.2.2 Theorem : If S is N-normal then any N-prime filter is contained in a unique maximal filter in S.

<u>Proof</u>: Let S be N-normal and let I be any N-prime filter in S. I \cap N being a proper in N, it follows that I is a proper filter in S. As 0 \notin S, I is contained in a maximal filter in S by Result (1). Let if possible I \subseteq M₁ and I \subseteq M₂ where M₁ and M₂ are any two distinct maximal filters in S. Since M₁ \neq M₂ there exist m₁ \notin M₁ and m₂ \notin M₂ such that m₁ \wedge m₂ = 0 by Result (3). As m₁ \wedge m₂ = 0 and S is N-normal there exist b, c in N such that m₁ \wedge c = 0 = m₂ \wedge b and bVc exists and is equal to 1. Hence c \notin M₁ and b \notin M₂. I \subseteq M₁ and I \subseteq M₂ imply b \notin I and c \notin I. But b V c = 1 \notin I \cap N and I \cap N is prime in N will give b \notin I \cap N or c \notin I \cap N. Thus b \notin I \subseteq M₁ and c c \notin I \subseteq M₂; a contradiction. Hence M₁ = M₂.

In the following theorem we establish a relation between conjuctively N-regular and N-normal semilattices.

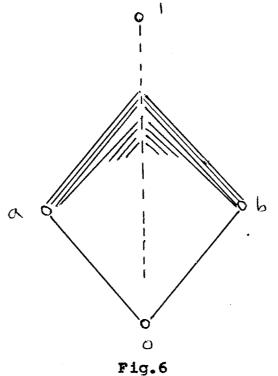
2.2.3 Theorem : If S is N-normal then S is conjuctively N-regular.

<u>Proof</u>: Suppose $x \wedge y \leq a$ for x, y in S and a (N. Define $x_1 = x \wedge a^*$ and $y_1 = y \wedge a^*$. Then $x_1 \wedge y_1 = x \wedge y \wedge a^* \leq a \wedge a^* = 0$ i.e. $x_1 \wedge y_1 = 0$. As S is N-normal there exist b, c in N such that $x_1 \wedge c = 0 = y_1 \wedge b$ and b v c exists and is equal to 1. Define $b_1 = a \vee b^*$ and $c_1 = a \vee c^*$. Then obviously b_1 and c_1 are elements of N.

GARR. BALASAHEB KHARDEKAR LIBRARY

Further $x_1 \wedge c = 0$ implies $x \wedge a^* \wedge c = 0$ and hence $x \leq (a^* \wedge c)^* = a \underline{\vee} c^* = c_1$. Thus $x \leq c_1$ similarly we get $y \leq b_1$. Now $b_1 \wedge c_1 = (a \underline{\vee} b^*) \wedge (a \underline{\vee} c^*) = a \underline{\vee} (b^* \wedge c^*)$ $= a \underline{\vee} 0 = a$, since $0 = 1^* = (b \underline{\vee} c)^* = b^* \wedge c^*$. Thus $b_1 \wedge c_1 = a$, it follows that S is conjuctively N-regular.

Converse of this theorem need not be true. For this consider the semilattice represented in the following diagram.



This semilattice is conjuctively N-regular but it is not N-normal. 2.2.4 Corollary : In a N-normal semilattice the following statements are true

- (a) Any N-prime ideal is a prime ideal in S.
- (b) S is conjuctively N-regular.
- (c) The minimal prime ideals are exactly the N-prime ideals in S.
- (d) Any N-prime filter is contained in a unique maximal filter in S.

As is well known that the set of uniquely complemented elements form a Boolean algebra in a very weakly distributive (distributive) semilattice [6], with corresponding modifications in the proof of the above theorems we have

2.2.5 Theorem : Let S be any very weakly distributive (distributive) semilattice and B be the Boolean algebra of all complemented elements of S. Then the first three of the following statements are equivalent and each of these is implied by the fourth.

- (a) The minimal prime ideals are exactly the B-prime ideals in S.
- (b) Any B-prime ideal is a prime ideal in S
- (c) S is conjuctively B-regular
- (d) S is B-normal.

2.2.6 Corollary : Let B be the Boolean algebra of all

complemented elements of a very weakly distributive (distributive) semilattice S. If S is B-normal then any B-prime filter is contained in a unique maximal filter in S.

A Line Arrise

§ 2.3 S-lattices

Throughout this section L denotes pseudocomplemented lattice and N denotes the Boolean algebra of normal elements of L.

R.Cignoli [2] has proved in a distributive lattice L if K is a sublattice of L then L is K-normal iff any K-prime filter is contained in a unique maximal filter. As an extension of this result to the pseudocomplemented lattice we prove

2.3.1 Theorem : L is N-normal if and only if any N-prime filter is contained in a unique maximal filter.

<u>Proof</u>: As 'if part' follows from Theorem 2.2.2, we prove 'only if part'. Let $x \land y = 0$ for some x, y in L. Then $I_x = \begin{cases} z \in N : z \land x = 0 \end{cases}$ and $I_y = \begin{cases} z \in N : z \land y = 0 \end{cases}$ denote the ideals in N, N being a distributive lattice. Denote by I, the ideal generated by I_x and I_y in N. Assume that L is not a N-normal i.e. for no a $\in I_x$ and b $\in I_y$ a V b = 1. Hence 1 \notin I. N being a distributive lattice, by Stone's theorem there exists a prime filter P' in N which is disjoint with I. If $P = (P')_E$ then P is a N-prime filter. If $x \notin P$ then $x \ge K$ for some $K \notin P'$. But then $K \land y = 0$ and hence $K \notin I_y \cap P' \subseteq I \cap P' = \emptyset$;

which is impossible. Hence $x \notin P$. Similarly $y \notin P$. Define $P_x = \begin{bmatrix} P \cup \{x\} \end{bmatrix}$ and $P_y = \begin{bmatrix} P \cup \{y\} \end{bmatrix}$. We claim $P_x \notin L$ for, if $0 \notin P_x$ then $0 = p \land x$ for some $p \notin P = (P^*)_E$ implies that $p \ge t$ for some $t \notin P^*$. But then $t \land x = 0$ implies $t \notin I_x \cap P^* \subseteq I \cap P^* = \emptyset$, a contradiction. Hence P_x is proper filter in L. Similarly we can prove P_y is proper filter in L. As P_x and P_y are proper filters in L, $P_x \subseteq M_1$ and $P_y \subseteq M_2$ for some maximal filters M_1 and M_2 in L by Result (1). As $x \notin P_x \subseteq M_1$ and $x \land y = 0$ we get $y \notin M_1$. Similarly $x \notin M_2$; proving that $M_1 \notin M_2$. This shows that the N-prime filter P is contained in two distinct maximal filters M_1 and M_2 in L.

Now, we characterize S-lattices as

2.3.2 Theorem : L is an S-lattice if and only if L is N-normal.

<u>Proof</u>: Let L be N-normal and x be any element in L. As $x* \land x^{**} = 0$ there exist b, c in N such that $a \land x^* = 0 =$ $b \land x^{**}$ and $a \lor b = 1$. But then $a \leq x^{**}$ and $b \leq x^*$. Hence $a \lor b \leq x^* \lor x^{**}$ implies that $x^* \lor x^{**} = 1$ i.e. L is an S-lattice.

Conversely, let L be an S-lattice. If $x \wedge y = 0$ for some x, y in L then $y \leq x^*$ implies $y \wedge x^{**} = 0$. Thus $x \wedge x^* = 0 = y \wedge x^{**}$ where x^* , x^{**} are in N with $x^* \vee x^{**} = 1$. This proves that L is N-normal. 2.3.3 Corollary : The following statements are equivalent

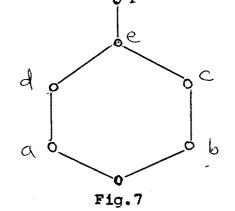
- (a) L is an S-lattice
- (b) Every N-prime filter in S is contained in a unique maximal filter in S.
- (c) L is a N-normal lattice.

Summing up above results we get

2.3.4 Corollary : In a S-lattice, the following statements are true

- (a) L is conjuctively N-regular
- (b) Any N-prime ideal is a prime ideal of L
- (c) The minimal prime ideals of L are exactly the N-prime ideals of L.

Converse of this corollary need not be true. For this, consider the lattice shown in the following diagram.



This lattice is conjuctively N-regular but it is not an S-lattice.