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CHAPTER-III

THE CHARACTERIZATION OF DISTRIBUTIONAL FINITE FOURIER
COSIN-SINE TRANSFORMATION AND APPLICATIONS

3.1 INTRODUCTION
The finite Fourier cosine sine transform of a function

f(x,y) is defined by the equation

a b
u . .
Fimy) =& f(x,y) Cos (T--)-(-) Sin('l-]ix)dxdy 3.1.1
o o a b

in chapter II we have extended this transform to certain class

S'(I) of distributions through the definition

fés (f(x,y)] = F(m,n) =‘/.."i‘;-’-< £, \vm,n> fe S'(I)

m,n = 0,1,2,3,...

whers b (x ’y) = ---1:-- Sin ( Q_l‘_»_!_) y N=1,2,3,.0000
on ab b

and Y] (x,y) = __:_?___ Cos (.T.Tl’i) sin ( r.‘_..T.r.X)
m,n Y ab - a b

m,n = 1,2,3,¢0e.
In this chapter we nrow turn to the problem of precisely
characterizing the functions F(m,n) that are generated by
transformation f'cs . In particular we shall prove that complex
valued functions F(m,n) defined on the set of all ordered pairs
of positive integers is the Fourier cosine-sine transform of
some member f € S'(I), if and only if the growth condition

stated below is satisfled that is if and only if

J/
.-—:_ . f ‘_ELTLQ%—‘—- Convel‘ges
ab Mo n=o | A 9] )
m,n
where 2 2 2
R T T G Gt LI
mn 2 2 09



Tnis in turn will lead to a characterization of the members
of S (I) in terms of certain combinations of generalized
derivatives of the elements of L 5(I). The notations and
termilogy in this chapter follow that of Zemanian A.H.[37]. An
operation transform formula is also established and is applied

Lo solve two dimensional heat flow equation.

LEMMA 3.1.1
o @
< <
Let an ndeno’ce the complex number then the series mz=o n=°
?

a ¥ converges in S(I) if and only if § § [7\ IZK!am,miz

m,n MLy m=0 N=0

PROOF @
We employ the fact that{ \Pm n}m an orthonormal
?

m,n=o0

converges for every nomnegative integer k.

set to” write
a b

4
;s IR
O 0

P 1 2
o dermin Ymin!

a bf b 1 « 2
s = a v | axdy
o 0 m=0 n=o0 m,n m,n m,n

dxdy

i
[Ny

Py Kk a b
N L & 2 dxd
m=o n-o‘ m,n‘ ‘ m,n‘ 6r foxpm,nv r,s y
1 2K 2
= Zp b ‘ )‘m n\ ‘am ni o1
m=0 N=0 ! !

Our assersion follows directly from this equation.
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THEOREM 3.1.1

Let F(m,n) be the complex valued functions defined on

the set of all ordered pairs (m,n) of integers then

2 o
Y ab mzzo ngo F(m,n) q;’n,n 3.1.1

converges in S'(I) if and only if there exists a nomegative

Integer g such that

2
b P T Eem) 3.1.2
ab m=0 n=0 | n,n |2q

converges Furthermore, if f denotes the sum in S'(I) of

(3.1.1), then F(m,n) is the distributional Fourier cosine sine

transform of f.

PROOF M

First that (3.1.1) converges in S'(I) say to f,

then Since wm,n ¢ S(I) we have

=( --%-- Z F(mpn) ¥ L, ¥
(f, wm,n) (/ab m=0 n=0 (mn) m,n m,n)

[+
Since {l{gn,n } ™ is a complete orthonormal system of eigen

junctions of differential operator R therefore

(v s ¥ ) =1, if (p,l) = (m,n)
P, m,n
=0, if (p,1) # (m,n)
Thus F(m,n) ,,'/_Eg__ (£, b ).

m,n

61



Hence if the series (3.1.1) converges to f in S'(I) then F(m,n)

Is the distributisnal Fourier cosine sine transform of f.

Now we shall show that (3.1.2) converges for some q,

for that wa first pirove that

o
the sequence | F{m,n) } is hounded for some value say
q m,N=0
’ m,n
4, of g. To prove this ) assume that the above sequence is

unbounded for every qg=1,2,...

Henfce there are increasing sequences | m q } and { n qt of

positive integers such that

--X—q——f-ng— \)/ 1, fOf‘ q=1,2,.ooo

Now for every q=1,2,3,...., leot

-1

a = ], q | if m=m and n=n

m,n q
’ mq ,nq a

i}

i or n £ n
0 lfm;émq q

Now , for any fixed non-nagative integer k,

.2
e o] s o] o
K q
RTINS B S B A, mq\]
m=0 n=o m,n m,n g=0 mq Nt q,
- 2 2k-2
N qfo @ | )r\nq nq| ?
2k-2q !
aut since | >an nql is bounded by 1 for all sufficlently large q
. 9
- : T 2 2k-2
The series 1 A q
gm0 a | mq,nql converges
Hence ‘; ; K )
A a converges for every nonnegative
m=0 n=o m,n m,n\ g8 y ga

integer k, but by lemme (3.1.1)
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‘p |

P
L z )\k a 2 _a b, k 5 1 2
m=0 n=o | m,n m,n *fo fo‘R m=o rfo am’nq; m,nl dxdy
3.1.3
v 0
Hence the series mio r§=o a n ‘pm n converges in S(I), say
to ¢ .
® X
Thus for this ¢ = 2 I a ‘l’m in S(I)
m=0 nN=0 m,Nn "N
0 R ®©
LI ja Fmn)ly, 2 |a A D
m=0 N=0 m,n g=o M§,na " mqg,nq
[4+] C{ -1
= L | A al ‘)\q
=0 ' mg,nq -
e o]
= X q-1
q=0
= 0
This contradicts the condition (A) stated below.
o ."‘
[« .
- b e S(I
For every ¢ = X nz=o & n Tmn (1)
X [osY X
the series _“ Z, @ b converges i> (A)
m=0 HB=0 m,n m,n

ab
where b 2 (f, v )
m 2

N m,n .

>

Hence our assumption must be wrong. Thus, the sequence{

is bounded for some value a, of q.

Hence, since l)\m nl +®© a5 mrw Jn > ®
’

we assume that IX: nF(m,n)l*w 0 as m >
]
n »o

and for each q > Ag*
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Now we shall prove that (3.1.2) converges for some q > 9
Again to prove this assume that (3.1.1) diverges for every

q > que Hence there are increasing sequences [ m q}and {nq } of
positive integers such that

- -
mqi Nq _q 2

1 gz n | A Flmn) "¢ 2 - 3.1.4
m=m _i q-1 m,n

= + AQ4Zyeees
for q qo'ri’ bl

Now in this case choose

a = |F(m,n) z\;?: q.1 \

i & m< m n n ¢2n
if M3 q ' q-1‘< < q< qo

Then for every nomnegative integer k

o - -
P n-%.i ke . ¢ :-
m=m n=n 1A, 1“2 = né}\ IA IZk-ZqV;'q
g-1 q-1 N myn mzmq_a q-1'm,n m,n
-2
< 2q
Thus, since ,‘\m’;m as m*® , N *®  and by inequality (3.1.4)
m-4 n -4
q "
z z K 2 -2
m=m n=n | A a 1% < 2q
q-1 q-1 m,n m,n
for sufficiently large q.
This implies the series
) w k 2
T % ‘ A 8 | converges for each k.
M= nN=0 m,n m,n
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Thus again by lemma (3.1.1) the series

<

m=0 N=0 m,A m,n

22}

converges in S(I) , say to¢ .

on the other hand

< o
3 z \a F(m,n)|  diverges because
M=o n=o | m,n
m -1 n-1
a- q mel ngt , 29 =1
e L & Flmm)|= g ™ x a |
- ] = n=n
-1 n=_, m=m g Ny m,n
n -4
- 9 ‘ A F(m,n)|" q !
S
m=m n=n
Shy q-1
> 977 -

by inequality (3.1.4)

Again, we have contradicted condition (A). This shows that
(3.1.2) converges for q > Ao+
CONVERSLY

Assume that (3.1.2) converges for some a,> 0, then

we wish to show that for each ¢ S(I) the series

co K
lF \v
n%—o ni.:—-o (F(m,n) e ) converges

This will confirm the convergence of (3.1.1) in S'(I). By using
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ihe Schwarz inequality for some real number. wmyér [33,p.313)/

we may write

I I (F(myn) vV ,4) = b3 I Fmyn)( ¥ ' d )
Mm=0 nN=0 m,n m=0 Nn=0 m,n
=TT W (0, )
m=0 nN=0  m,n m,n m,
A £ 0.
m,n

dz ¢ [x_qF(m,n)lz'f 3’:°|x"

“m=0 n=0 m,n m=0 f;=° m,n
2} 2
(o, wm,n)‘ M

The first series iIn right hand side converges by assumption

Zemanian [37,p.254-255].

Also by lfor every cbe S(I) the series

w0

z zM,wm) Y

m=0 n=0 N m,n

converges In S(I) to ¢ , and hence by (3.1.3) with k=q the
second series also converges. Thus the series (3.1.1) converges
in S'(I) Q.E.D.

THEOREM 3.1.2

A necessary and sufficilent condition for f to be a

member of S'(I) is that there exists some nomnegative integer

q and some gel,(I) such that
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g .
f=Rg+ fi c Y
mn=0 m,n m,n
where C m.n denotes the complex constants, and Rq is
¥

understood to be a generalized differential operator on S'(I).

Also L E denotes a summation on those m,n=0,1,2,...., for
m ,n=0
which )\m o =0 there are only a finite number of such m,n...
9
PROOF
SUFFICIENCY

By Brpp . 258 NOte III }
If f = gq g for some g e L2(I) and some nomnegative integer
q then f € S'(I). This follows directly from the fact that
L,(I) C s'(I) and that R maps S'(I) into S'(I) and S(I) C S'(I)

and since each ‘Pm £ S(I) it follows that . £ e5'(1)
]

NECESSITY

[7>) L :
Let f = I z Fmyn) ¥ & S'(I)
m=0 n=0 m,n
set G(m,n) = A 4 F(m,n), whenover Am n £0
m,n k }

shere q> 0 is such that

o

z 2l A F'(m,n)i2 , A £ 0 converges
m=0 n=o0' m,n m,n

@ 2
Also set G(m,n) = ojHence né‘lao nZ=° |G(m,n) | converges,

and by the Riesz Fisher theorem there exists some ge L, (I)

such that G(m,n) = (g, V¥ ) moreover, since y e S(I) the

m,n m,n

the definition of R on S'(I) yields
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G‘
A =(g, RY = (RY
(9, m,n qF'n,n) (g ll)m,r‘l) ( 9 lpm,n)

Altogether then, we may write

ow (7]

§= 3 I F(mn) ¥ =1 I Aqmn G(m,n) ¥

m=0 n=o M A mon’ 0 ) m,n

+ L7
‘:\ =0 F(mfn) \I"m

m,n N
PI N (g b eI F
= L
m=0 n=o m,r‘g’ m,n =0 (m,n) tl)m,n
m,n
= £ I (g, ¥ )y ¥ + 2% F(mup) ¥
m=0 n=o mn mn’ Tman | m,
m,n
b
R A A AR Dbz F(mn) g

3

: R%G, ¥ )b +11 F L
= mio neo 9 "m,n Tmyn N =0 (m,n) m,n

q Iz F
Rg +A (m,n) ‘Um

. k4
m,n=o0

Q.E.D

OPERATION TRANSFORM FORMULA AND APPLICATION
3.2 INTRODUCTION

Our distributional finite Fourier cosine sine
transformation g*\erates an operation transform formula. this
together with the inversion theorem proved in chapter II can

be applied in solving certain differential equation involving
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initial conditions as distributions.

3.3 AN OPERATION CALCULUS FOR R

Since we have already indicated that the differential
operator R =82/ 3X2+ 82/3 Yz
is contiruous and linear mapping of S'(I) into S'(I). Therefore

we %may write for every f ¢ S'(I) and for each nomnegative

integer k.
k o 0 k
R f= 1 z(f’q)mn)R lpmn
m=0 n=0 ’ ’
(753 (o a)
< L I,y AR v 3.3.1
m=0 n=o m,n° "myn  m,n

We can use this fact to solve the differential equation
P(R) u (x,y) = glx,y) 3.3.2

Where P is a polynomial and given g{(x,y) and unknown u(x,y)
are required to be In S'(I). Now by applying the distributional
finite Fourier cosine sine transformation f ('3 to (3.3.2) we

obtain b U (mn) = G(m,n) 3.3.3

where U(m,n) = fc;s [U(x,y) § x+ m, y+ n}

G(m,n) = fog [9(x,y); x> m, y » n]

That is U(m,n) and G(m,n) are distributional finite Fourier

cosine sine transformations of u(x,y) and g(x,y) respectively.
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Case (1)

If p( Amr)n = 0 for every m,n=0,1,2,... we can divide
1

aquation (3.3.3) by P(Am,n) so that we have

G(m,n)
U(m,n) = .ISZ-X.‘ )
m,n

Then by applying inverse Fourier cosine sine transform (1.0,

-1
fcs ) we get

(72}

[+
Slmyn) -y
ulx,y) = & ,‘i‘;o PO ) ¥ 3.3.4
?

then by theorem (2.8.2) and theorem (3.14)this solution exists
and is unique in S'(I)

Case (ii)

m n?
" s
then a solution exists in S*'(I) if and only if G(mr_,ns) =0 for

If P(A o =0 for somely nsay A 1r,5=1,2,.0.p),

r,5,=1,2,....p. In this case solution to equation (3.3.2) is
given by
G(m,n)
m,n m,n
But, it is no longer unique in S'(I) , and we may add to

{3.3.5) any complementary solution

o) P
Uc (x,y) = 5 5 a ]
r=1 s=1 m N m_n
rs r s
p P
. z I a i
r=1 s=1 s ' mr,ns

where a. are arbitrary numbers.
]
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3.4 /peensﬁ OF DISTRIBUTION FOURIER COSINE SINE
TRANSFORMATION

a) If f& S'(I), then the distributional Fourier cosine sine

transformation of R f(x,y) exists and is given by

\ )
fc:s[R f(x,y)] =mX’mF(m,n)=r% ,nfcs [f{x,y)] 3.4.1

To prove this let V¥ r'? S(I)so that we have
?

fc_; (IR f(x,y) =/§E§)- (Rf(x,y), ‘Pm,n(X’Y)

Vars:
= 3-(f(x,y) R 4,;,,n<xm

vab
= .;-(xtY) ’ Am,nq'm,n(x'y)
vab
= -3 )\m,n (f(x,y) , \Pn’n (x,y)
= A '/29.._ (f(x,y) , v (x,y)
m,n 2 m,n
= A F (m:n)
m,n cs
= A F{(m,n)
m,n

This shows that fc':s transforms differential operator R [f(x,y) ]
into an algebraic operator Xm nF (m,n). Hence it can be applied

¥
to get the solution of boundary value problems.

NOTE

s K K '
= f f
In general fcs[R f(x,y) =X o s 1f(x,y)]

b}

= )‘kn F(m,n) 3.4.2

m,
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b) It fe S'(I) and C is any arbitrary positive constant

then

-

feg[f(xy) + C] A 3§-< flx,y) +C, ¥ 0

an o—

Y Y |
- Eg-mx,y). v ) ?-g-(c, ¥

—

F(m,n) + C {%E (1, ¥ )

a b

o o0

3.6 APPLICATION TO HEAT FLOW EQUATION IN THIN RECTANGULAR
PLATE

Our object is to solve the heat flow problem for
temperature distribution In a thin ,rectarguiar plate whose
surface Is insulated. This plate has an arbitrary distribution
of temperature. The edges of the rectangular plate be kept
at zero temperature. And there is no heat source in this pla/{ce.

Again radiation loss is negliigible.

We shall solve this problem by using distributional
Fourier cosinesine transformation with Initial and boundary

conditions as a generalized functions.

THE STATEMENT OF THE PROBLEM
Find the conventional function u(x,y,t) In the space

S'(I) on the domain I given by

I={(x,'Y):0<x<a y O< y <b , Oc t ¢ = }

72

mm x 1
F(myn) + C f [ Cos --1:1‘--- Sin Q-’-;-l—- dxdy



which satisfies the two dimensional heat flow equation.
2

du ‘)2u du
+ - = -rl— — - u=ui\x t 3.601
3 xz a yz hz ) t 9 ( 1Y )

where h1 is constant known as diffusivity

with initial and boundary conditions :

) As t + ot , u(x,y,t) converges to a certain generalized
function f(x,y) in S$'(I).
That is u(x,y,0) = f(x,y) 3.6.2
ii) u(x,y,t)=0 , along the boundaries of the open rectangle I

iii) u(x,y,t)=0 as t > «

SOLUTION
2Tc> 501\219 this problem we use the differential operator
R = 3—— + -g—-z as defined in (2.5.3) so that equation (3.6.1)
B4 y .
will be written as
2 Ju
n Ru) = == 3.6.3
() = 7

Now by applying distribution Fourier cosine sine transformation

£ to above equation we get

cs
2 ' d ' ¢
h fcs[R(u) 1= 371 feos [u]
A S u( )
1‘60 h m’nU(m,ﬂ,t) = ""éi- m’n't )
where ‘A = ._"2 (m2/ 62+ nz/bz)
11

. 2
1.30 ""é-_ U(m,n,t) - h Xm

5T nU(m,n,l:) =0 3.6.4

whose solution is given by
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U(m,n,t) = t

A
Rﬂh m,n

But by initial condition (3.6.2) we have
U{m,n,0) = F(m,n) = A

Substituting value of A the above solution becomes
2

h t
U (m,n,t) = F(m,n) e '\m,n 2

—
where F(m,n) = ?-2-- ¢ Y ),

Y] ’ m,l"'l
2 nm
and P = z==— Cos TLX sin Y
m,n ab a b

So that by applying corresponding inversion theorem we shall

get the formal solution

5 ; h2 t
ubyst) =2 - F(mn) e o “r:"n 3.6.5

u(x,y,t) is conventional function that satisfies differential

oquation (3.6.3) or (3.6.1)

Now we shall verify that (3.6.5) is the possible solution

i.e. (3.6.5) satisfies initial and boundary conditions.

To Verify the boundary condition (ii) we have to show

that for each ¢e S(I)

(ulx,y,t), ¢(x,y)}> (f(x,y), ¢ (x,y), as t> of 3.6.6
Now for fixed t >0 (3.6.5) converges in S(I) and therefore
in Ly (I), consequently - we can take its inner product with ¢

term by term to write
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w h2y t
u(x,y,t), 47("5)/)): z 2 F(m,n)e m,n (wm ','(b) 3.6.7
m=0 N=0 !

But by Lemma 2.6.6 and 2.6.8 ( 4’m,n:$) is of rapid descent.

It follows that series in (3.6.7) converges uniformly on

0¢ t€=. So that we may pass to the limit as t+ dJ" under

the summation sign to get

m=on=0 n

(Uix,y,t), dx,y)}> £ 2 f(mmt ‘*‘m‘ R 3.6.8

But sinef € S'(I) , the right hand side of (3.6.8) is equal
to (f,4). This proves (3.6.6)

Finally, for T gt < o (T>o0) we have from (3.6.5) that

[+ (2 23

| b h t
L uty SR B [F(mm) [fe” Amyn

| ‘l’m’n t 3.6.9

Angd by our previous comments the series herein converges

uniformly on I. So, we may take limit as x + of or x » a and

y ——éo+’ ory+ b so that condition {ii) is also satisfied .

NOw t0  verify boundary conditon (iii) in the same way

h t
ju (x,y,t)l‘mio n=§o [F(m,n]|e Am,n H\pm,nh 0
2 2
as t-sw since * = =T ( mz/az+ nz/b )
m,n

""hz 'ﬂzo 2 2
then e (mz/a2+ n“"/ b )t+p, a5 1> .

~hich verifies boundary conduition (iii) Q.E.D.
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