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CHAPTER-III

THE CHARACTERIZATION OF DISTRIBUTIONAL FINITE FOURIER 

COSIN-SINE TRANSFORMATION AND APPLICATIONS

3.1 INTRODUCTION

The finite Fourier cosine sine transform of a function

f(x,y) is defined by the equation

a b
F(m,n) = ' f(x,y) Cos (-—-) Sin(-”^jdxdy 3.1.1 

o o a b
Cn chapter II we have extended this transform to certain class 

S'(I) of distributions through the definition

f' tfU,y)J = F(m,n) f , * > .fe S*(I)
cs z m ,n

m,n =

where ^ (x,y) = Sm ( , n*1,2,3,..
o,n

^ ab b

and •i» (x ,y) _____2_. Cos (-----) Sin ( 2-JUt)
m,n / ab a b

In this chapter we now turn to the problem of precisely

characterizing the functions F(m,n) that are generated by

transformation f* . In particular we shall prove that complex

valued functions F(m,n) defined on the set of all ordered pairs

of positive integers is the Fourier cosine-sine transform of

some member f e S'(I), if and only if the growth condition

stated below is satisfied that is if and only if
2

„L w » l FKn) l
m^=o n=o | X

m,n

Converges

where

m,n

2 2 2 
- TT ( (-*. + )
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I

Tnis In turn will lead to a characterization of the members 

of S' (I) in terms of certain combinations of generalized 

derivatives of the elements of L 2^)* The notations and 

termiiogy in this chapter follow that of Zemanian A.H.[37], An 

operation transform formula is also established and is applied 

to solve two dimensional heat flow equation.

LEMMA 3.1.1
« 2?£ *■Let am ndenote the complex number then the series m-o y»s0

a mo o conver9es in s(!) if ^ 001 y if £ ? I X |2k|a_ m|2 
m’n m’n m*o n=o tm,n m’m

converges fox' every nomegative integer k.

PROOF

We employ the fact that{ ^___}°° mm ,n1 m ,n=o

C|r^Tan^orthonormal

set to' write 
a b
f j* 1R'' ^ * a I dxdy
00 m^o rtom’n m’n

k p 1

a b
P 1 k I

. 2 Z 3 X ^ I 
o o m=o n=o m,n m ,n m,n

•IS dxdy

akplpl^k^ ._
/ / r T T T am Xm o « to t dXC*y

L l h l m,n r,s m,n r,s m,n r,s 
o o m=o n=o r=o s=o

P \ o a b
2 Z \X | la I / / > J> dxdy

mao rwo m,n ' m,n o o m,n r,s

1 1 12k , 12
r X a .1m-o JL m»n 1 m,n m=o n=o

P
Z Z

Our assersion follows directly from this equation
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THEOREM 3.1.1

Let F(m,n) be the complex valued functions defined on 

the set of all ordered pairs (m,n) of Integers then
2 00

/ ab m^o n=o 4* 3.1.1
m ,n

converges in S' (I) if and only if there exists a nomegative

Integer q such that

4 T jF(m,n)rOO 0® |
Z j 1

ab" m=o n=o | ^n |2q
3.1.2

converges Furthermore, if f denotes the sum in S'(I) of 

(3.1.1), then F(m,n) is the distributional Fourier cosine sine 

transform of f.

PROOF

First <jsupos6>) that (3.1.1) converges in S' (I) say to f,

then since n £ S(I) we have
00 w

(f * ) =( z 2 F(m,n) «p , «|| )
m,n / ab nn=o n=o m,n m,n

* r-z- £ £ F(pfl) ( <l> .. *• )/ab p=o l=o p,l m,n

2
= ----- F(m,n)

/ ab
Since i ^ n ^ m n *s a complete orthonormal system of eigen 

functions of differential operator R therefore

( ^ ) = 1 , if (p,l) « (m,n)
p ,1 m ,n

= 0 , if (p,l) 4 (m,n)

Thus F(m,n) (f, ) .
* m ,n
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Hence if the series (3.1.1) converges to f in S'(I) then F(m,n) 

Ls the distributional Fourier cosine sine transform of f.

Now we shall show that (3,1.2) converges for some q, 

for that we first prove that

the seauenca i Ffo*n) ls founded for some value say
H 1 m,n=o

A m,n
of q. To prove th is assume that the above sequence is 

unbounded for every q-1,2,...

Her^ce there are increasing sequences { mq } and { nqj of 

positive integers such that

F (m ,n )
__ 9__g_

X*?A m ,n q’ q
1 j for q=1,2,....

Now for every q=1,2,3,...., let

a m ,n x q
mq ,nq

-1
if m=m ar*q n=n 

q q

= 0 ifmjim w'Mn
q q

Now , for any fixed ncn-nagative integer k,
<x> q

= ^ [ | X ll nqq=o mqihd ^ "

CO 00

l Z | a I
m=o n=o m,n m,n

°i\ 3

2k-2q

00

1 q'
q=o

i2k-2q
mq ,nq

But since | m̂q ,nq is bounded by 1 for all sufficiently large q

The series £ q' 
q=o

i2k-2q
mq ,nq converges

Hence 00 CO

^ | X a converges for every nonnegative
m=o n=o m,n m,n

integer k, but by lemme (3.1.1)
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p I
2 z X a

m=o n=o m
k ,2 a b,_k l ,2» I* a Di3 =/ f R,nm,n JQ JQ' m=o r&o ‘n,,n* dxdV

3.1.3
? 2Hence the series ^ 3m>n ^ converges in S(I), say

to 4> •

Thus for this $
00

00

2 2 a ^ in S(I)
m=o n=o m ,n m >n

2 2 |a F (m ,n) | ^ 2 |a \ q
m=o n=o mfn ' q=0 m<|,nq mq,nq

- 2 | X q|
q=o mq,nq

■1

00

2 q
q=o

1

I X
rrvq ,nq

= 0

This contradicts the condition (A) stated below.
tJO

00

For every <b = Z 2 aT m=o n=o m ,n m»n
■JO oo

the series .. _ ^ 3

where bm,n

m=o n=o m ,n m,n

(f, * )
2 m,n

«P e S(I)

converges ^ L CAl

, F (m ,n)
Hence our assumption must be wrong. Thus, the sequence^ —--------

is bounded for some value q^ of q. m,n

Hence, since I A I as m><» ,n > <»
’ 1 m,n

we assume that |Xq F(m,n)h-'» 0 as m >°°
1 m ,n 1

n ■>00

and for each q > q .o



Now w© shall prove that (3.1.2) converges for some q > q.0
Again to prove this assume that (3.1.1) diverges for every 

q > q^,. Hence there are increasing sequences [ m }and {n } °f
q q

positive integers such that

-1mq-i nq- * a o
1 £ 2 JL. | X F(rn,n) I 4 2

msBmq~1 q-1 m’n

for a = a +i» q +2., • •.. 
Or o

Now in this case choose

3.1.4

a * |F(m,n) X -2q
q lm ,n m ,n

if m f m < q-1
m , n

q q -1^ n < n
q

» q « qO

Then for every nonnegative integer k

Wq-l "q-1 m~ | nq-l
£

m=m
£ , 

n=n |A ^ a 2 H
£ ■ IA |2k-2q

q -1 q-1 ro »n m ,n m=m
q -1

n=n
q-

Jm J
■1 m ,n m

2-7.
,n r (m ,n) I q

< 2q

Thus, since X^00 as m — , n and by inequallty (3J.4)
m - 1 ri - i * 

q q:
Z X I A ,2 -2m=m , n=n I X a | < 2qq-1 q-1 m ,n m ,n ^

Por sufficiently large q. 

This implies the series

CO CO K
• XIX 0 \

m*o n*o' m,n m ,n
converges fqr each k,
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Thus again by lemma (3.1.1) the series

00 fa
Z Z a

m=o n=o m,n m,n

converges in S(I) , say to .

on the other hand

ca 00 \ . .
£ Z | a F(m,n)| diverges because 

m=o n=o J m,n

m -i
q*
£

q-1

n -1
q
z fa F(m,n)|__ 1 m ,n

m-1 n-i
-2q -q q- 2

£ £ 1 (F(m,n) >. q
m=m j n=n

q-1 q-1 m,n

m -1
q
£

n -i
q

£

-q 2
X F (m,n) | q -1

m=m n=n 
q-1 q-1

by inequality (3.1.4)

£ -1
q

Again, we have contradicted condition (A). This shows that 

(3.1.2) converges for q > qc.

CONVERSLY

Assume that (3.1.2) converges for some q >, 0, then

we wish to show that for each <|>e S(I) the series

CO 'a

£ 2. (F(m,n) ^ 4*) convergesm-o n=0 m ,n

This will confirm the convergence of (3.1.1) in S'(I). By using

65



•he Schwarz inequality for some real number 

we may write

Wid ■r [33,p.313]/

Z
m=o

l (F (m,n)
n=o

4) f d>)
m,n

00

Z
m=o

00

Z F(m,n)( <|» ,4)
n=o m,n

)

<n go= z z
m=o n=o

X | X 
m ,n m ,n

( ♦ * ). 

»h

X 4 0.
m ,n

00 -q v. 2's oo q<{ Z £ I X F(m,n)| l Z IX S
m=o n=o m,n m=o n=o rn,r>

(♦,* )i2>\
' r ’ m,n %

The first series in right hand side converges by assumption 

Romanian [ 37, p .254-255] .
Also by hor every c£> e S(I) the series

a, 00
Z Z ) *

m=o n=o m,n m,n

converges in S(I) to <$> , and hence by (3.1.3) with k»q die

second series also converges. Thus the series (3.1.1) converges 

in S'(I) Q.E.D.

THEOREM 3.1.2

A necessary and sufficient condition for f to be a 

member of S' (I) is that there exists some nonnegative integer 

q and some g e Lj (I) such that
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y

f = Rqg + C 4>
*n«-0 m,n m »n

q
where C m n denotes the complex constants, end R Is

understood to be a generalized differential operator on S'(I).

Also £ £ denotes a summation on those m,n=0,1,2,...., for 
/ m ,n=0

which ^ =0 there are only a finite number of such m,n...in ,n ’

PROOF

SUFFICIENCY

By 67 pp. 258 NOte III ]

If f = ^ cj for some g e L 2(I) and some nonnegative integer

q then f £ S* (I). This follows directly from the fact that

L2(I) C S'(I) and that R maps S'(I) into S'(I) and S(I) C S'(I)

end since each ^ e S(I) it follows that . f £ S'(I) m ,n

NECESSITY
0o'"

Let f = 2 2 F(m,n) >l» e S'(I)
m=o n=0 m ,n

set G(m,n) = X q F(m,n), whenever X 4 0
m ,nm,n '

where q > 0 is such that
fj() OO a

2 2 | X F(m,n)| X j* 0 converges
m=o n=o m,n m ,n

00 qq 2

Also set G(m,n) = O^Hence 2 2 |*Q(rn,n)| converges,
* m=o n=o

and by the Riesz Fisher theorem there exists some ge L2 (I) 

such that G(m,n) ■ (g, 'I* ) moreover, since ilfo e S(I) the

the definition of R on S' (I) yields



(g, X 4, ) = (g, Rq )= (Rqg <P )
va’ m,n m,n v m,n a’ m,n

Altogether then, we may write

« CO

•f = 2 Z F(m,n) ^
m=o n=o m

» Z 2, X G(m,n) ^.n i p 0 m,n ’ ' m.n ’ m,n ’ m»n

+ ? 2 F(m,n) ip 
Am,n“ ° m’n

<jj 00

2 Z X 
m=o n=o m (g - 'P ) + ZZ F(m,n) ip 

»n m,n K ^ m,n
m,n

09 JO az 2 (g, x <P ) <p
m=o n=o m ,n m ,n m ,n

, 00
00 n

> -om,n

m=o n=o m,n m,n A ^ 
m,n

m=o n=o m,n m,n A ^ 
m,n

m,n

£ Z (g, Rh ) <P + 2 Z F(m,n) <p
m,n

r 2 (Rqg, 4» ) +22 F(m,n) f
“ w * m rt m irn,n

= Rg + 2 Z F(m,n) >P 3 \ m ,n
m ,n=o

Q.E.D

OPERATION TRANSFORM FORMULA AND APPLICATION 

3.2 INTRODUCTION

Our distributional finite Fourier cosine sine 
transformation generates an operation transform formula, this 

together with the inversion theorem proved in chapter II can 

be applied in solving certain differential equation involving
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initial conditions as distributions.

3.3 AN OPERATION CALCULUS FOR R

Since we have already indicated that the differential
2 , ^ 21 2 

operator R=3/3x + 3/ 3y

is continuous and linear mapping of S'(I) into S'(I). Therefore 

we ^/may write for every f e S'(I) and for each nomegative 

integer k.

k * g /. ,i, Xr,k
R f * h (f , * )R* *

m,n m ,nm=o n=o
rjn 00

Z 1 (f * ||) ) X
m=o n=o ”m,n m,n m,n

3.3.1

We can use this fact to solve the differential equation

P{R) u (x,y) = g(x,y) ^ 3.3.2

Where P is a polynomial end given g(x,y) and unknown u(x,y) 

are required to be in S'(I). Now by applying the distributional 

finite Fourier cosine sine transformation f' to (3.3.2) we
C9

obtain P( U (m,n) = G(m,n) 3.3.3

Where U(m,n) = f^CuU.y) ; x m, y nj

G(m,n) = fcs [g(x,y); x + m, y -»> n]

That is U(m,n) and G(m,n) are distributional finite Fourier 

cosine sine transformations of u(x,y) and g(x,y) respectively.
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Case (1)

If p( ^ ) = 0 for every m,n=0,1,2,... we can divide
m ,n

equation (3.3.3) by p(^m>n) so that we have

i,, , G(m,n)
U(m,n) = ------ (

m,n

Then by applying inverse Fourier cosine sine transform (i.e.
f,J ) we got

cs
OO 00

/ x T 7. G(min) ,|)
u(x,y) * iL n7~kc ) *m=o n=o P( V__ ) m,n

m,n
3.3.4

then by theorem (2.8.2) and theorem (3.1»i)this solution exists 

and is unique in S’ (I)

Case (ii)

If P(X m ^=0 for some^mjnsay * m n (r,s=1,2,...p),
* r s

then a solution exists in S' (I) if and only if G(m ,n ) =0 for 

r,s,=1,2,....p. In this case solution to equation (3.3.2) is 

given by

u(x,y) = pf l M 0 ) 'L.n 3*3*5
' m,n m,n

But, it is no longer unique in S'(I) , and we may add to 

(3.3.5) any complementary solution

P P
u (x,y) = z Z a 
c r=1 s=1 m nr s

<l»
m„ n r s

P P
Z £ a >h

r=1 s=1 r,s • mr,ns

where a are arbitrary numbers, n ,s

.hi
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3.4

£3

OF DISTRIBUTION FOURIER COSINE SINE 
TRANSFORMATION

a) If f & S'(I), then the distributional Fourier cosine sine 

transformation of R f(x,y) exists and is given by

3.4.1

PROOF

To prove this let V ^ S(I)so that we havem,n

f' OR f(x,y) (Rf(x,y), * <**>
m,n

^-(f(x,y) ,R *)n(x.y)

-/“-(x-y> - m,n*m,n(’<’y)

- X (f(x,y) , d) (x,y)
2 m ,n m ,n

= X ^ (f(x,y) , V (x,y)
m ,n l m ,n

- X F (m,n) 
m,n cs

X F(m,n) 
m tn

This shows that f* transforms differential operator R [f(x,y) ] cs
into an algebraic operator X^ ^F(m,n). Hence it can be applied 

to get the solution of boundary value problems.

NOTE
In general f* [Rk f(x,y) = Xk f ]f(x,y)] 

cs m ,n cs

X F(m,n) m ,n 3.4.2
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b)

then

If ft S'(I) and C Is any arbitrary positive constant

f^g[f(x,y) + C] = f(x,y) + C ,
m,n

/ab= F(m,n) + C (1, * )z m,n

a b
= F(m,n) + C / / Cos -™-~ Sin X- dxdy

Q D
O O

3.6 APPLICATION TO HEAT FLOW EQUATION IN THIN RECTANGULAR 
PLATE

Our object is to solve the heat flow problem for 

temperature distribution in a thin , rectangular plate whose 

surface is insulated. This plate has an arbitrary distribution 

of temperature. The edges of the rectangular plate be kept 

at zero temperature. And there is no heat source in this plate. 

Again radiation loss is negliigible.

We shall solve this problem by using distributional 

Fourier cosinesine transformation with initial and boundary 

conditions as a generalized functions.

THE STATEMENT OF THE PROBLEM

Find the conventional function u(x,y,t) in the space 

S'(I) on the domain I given by

1= ((x ,'y) : 0 «x < a , (k y < b , 0« t « ® }
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which satisfies the two dimensional heat flow equation.
2 23 u .) u , 3 u . .

----o + -—r = —*~9 ----- , u=u(x ,y ,t) 3.6.1
3 x 3 y2 h 3 t 

2
where h is constant known as diffusivity 

with initial and boundary conditions :

i) As t -► o*" , u(x,y,t) converges to a certain generalized 

Junction f(x,y) in S'(I).

That is u(x,y,o) = f(x,y) 3.6.2

ii) u(x,y,t)=0 , along the boundaries of the open rectangle I 

lii) u(x,y,t)=0 as t + “

SOLUTION

To solve this problem we use the differential operator
2 23 3R » —jr +----- as defined in (2.5.3) so that equation (3.6.1)

Ox2 3 /
will be written as

h2 R(u) - -g~" 3.6.3

Mow by applying distribution Fourier cosine sine transformation 

f1 to above equation we get

i.6 .

where

h2 f;s[R(U) i - -a4- m

2- ■,)

h 4nU*m,n,t* = ”” u(m»n»t) j,

\ 2 , 2 . a2 2 .2\A = -w (m / a + n /b ) m ,n

3 2i.e. r-r- U(m,n,t) - h x U(m,n,t) = 0
0 X m jil

whose solution is given by

3.6.4
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▼

2
U(m,n,t) = h X t fit m ,n

But by initial condition (3.6.2) we have 

U(m,n,o) * F(m,n) = A

Substituting value of A the above solution becomes
h2 \ t

U (m,n,t) = F(m,n) e 'm,n ?

where F(m,n) = (f ^ ),4! * m ,n
, 2 r. m 7T x ^ . n it yand di = ===- Cos--------Sin---------

m,n ’ab a b

So that by applying corresponding inversion theorem we shall 

get the formal solution

m

Z h2 t
u(x,y,t) = Z “ F(m,n) e X m,n *

m=o n=o m ,n
3.6.5

u(x,y,t) is conventional function that satisfies differential 

equation (3.6.3) or (3.6.1)

Now we shall verify that (3.6.5) is the possible solution 

i.e. (3.6.5) satisfies initial and boundary conditions.

To Verify the boundary condition (ii) we have to show 

that for each <t>e S (I)

(u(x,y,t), <Mx,y)}> (f(x,y), 4>(x,y), as t->- o* 3.6.6

Now for fixed t >0 (3.6.5) converges in S(I) and therefore

in l_2 (I), consequently we can take its inner product with <j> 

term by term to write
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f

QD £a «.rr> h X t
(u(x,y,t), 4>(x,y))= Z ** F(m,n)e m,n (^ a <t>. ) 3.6.7

m=o n=o m,n

But by Lemma 2.6.6 and 2.6.8 ( ) is of rapid descent.

It follows that series in (3.6.7) converges uniformly on

0. 14 00 . So that we may pass to the limit as t+ o** under

the summation sign to get
CO

(u(x,y,t), ^U,y)>J=on!0F(m,n)( *m>n. 4> ) 3.6.8

But sincif e S*(I) , the right hand side of (3.6.8) is equal

to (f,$). This proves (3.6.6)

Finally, for T 4 t < 00 (T > o) we have from (3.6.5) that
00 <f>

i uU,y,t>|«m;n „£ |F(m,m) | la" X m .n* || *m_n | 3.6.9

And by our previous comments the series herein converges 

uniformly on I. So, we may take limit as x -*• o* or x -*■ a and 

y or y + b so that condition (ii) is also satisfied .

Noto to verify boundary conditon (iii) In the same way
OO 00 2

ju (x,y,t)|^ ^ ^ |F(m,nj|eh ^m,^ ll't* |->- o
i ij i \ m=f) n=fl 1 ' ’ 11 1 1 m,n‘m=o n=o 

X 2 2 2 2 2 
as t-$>o> since A =-tt (m/a+n/b)m ,n

2 _2 
—T

then e> ^ (m^/a2 + n2/ b ) t o J t3Si->£*>*

which verifies boundary conduition (iii) Q.E.D,
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