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CHAPTER-I

SURVEY OF LITERATURE AND PRE-REQUISITES 

1.1 INTRODUCTION

Many of the phenomena of classical physics may be 

described by partial differential aquation. And the oldest 

systematic technique for the solution of partial differential 

equation of mathematical physics is the method of separation 

of variables introduced by D.Alembert, Daniel Bernoulli and 

Euler in the middle of the eighteenth century. It remains a 

method of great value today and lies at the heart of the use 

of INTEGRAL TRANSFORMS in the solution of problems in 

applied mathematics.

The theory of Integral Transformations Is used for 

a systematic study of certain type of boundary value problems 

depending upon initial and boundary conditions. A variety of 

integral transforms 3Laplace, Fourier, Mellin, Hankel etc.2 

suitable to the need of the physical problems have been 

constructed by choosing proper kernels and applied in solving 

boundary value problems.

A function is a potent notion in mathematics. Some

manipulations like Dirac Delta function introduced by Dirac

[10] in 1947. fo*
b
/ <$(x) dx = 1 for x =Q, °° <a < b < 00

a

In technical literature have motivated the mathematicians to 

re-examine the concept of function not by its value but by

1



its behaviour as a functional on some space of testing 

functions. This is the new concept. This new mode of thinking 

gave birth to the theory of generalized functions.

The impact of generalized functions on the integral 

transforms has recently revoiutionaiised the theory of 

generalized integral transformations.

In this chapter we give a brief account of the 

olementary concepts that are required for the development 

of the work of dissertation.

1.2 LINEAR SPACE

A collection V of elements <j> , <|> ,9 .........is said to

be a linear space if the following axioms are satisfied

1) There is an operation +, called "addition" by which

any pair of elements and ip can be combined to

-yield a unique element <j) + >p in V.

moreover, + has the following properties

la) 4>+>P=*P+<t> (Commutativity)

lb) ($+'p)+9=«fr+( tp+8 ) (associiativity)

lc) There exists a unique element 0 in V such that <j> +0= $

for every <i> e V

ld) For every $ ® V there exists a unique element - <p in V

such that $ + (- 4>) = 0

2) There is an operation, called "multiplication by a

.itiiii
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complex number ", by which any complex number a 

and e V can be combined to yield a unique element 

a In V. Moreover, the following properties are 

satisfied for every choice of $ e V and complex numbers 

a and ^ .

2a a ) * ( afi ) $

2b) 1 4> = $ (1 denotes the number one )

3 In addition, the following distributive laws must be 

fulfilled.

3a a ( 4> + \p) = a4> + aip 

3b ( a+ 8)$ =a<t> + 34>

Subspace

A subset U of linear space V is called a linear 

aubspace (or simply a subspace) of V if for every cj) and \j^ 

in U and for every complex number a > 4> + ijj and are 

both in U.

1.3 TOPOLOGICAL VECTOR SPACE

Suppose T is topology on a vector space X such that

a) Every point of x is closed set

b) The vector space operations are continuous with respect 

to T.

Under these conditions, T is said to be vector topology 

on x and X is called topological vector space.

Condition (a) and (b) together imply that T is a Hausdorff 

topology so that every topological vector space is Hausdorff 

space. Also_^ is locally convex if there is a local base B

whose members are convex. [ A set C«^X is said to be convex 
if tc + (1-t) C <C. C, V 0 «t «1) g



1.4 COMPACT SET AND SUPPORT
n n

A set k in R or C is said to be compact if every

open covering of k contains a finite subcollection which also
n n

converse K. A subset of R or C is compact if and only if

it is closed.

The support of a continuous function f (t) defined on 

some open set X in R is the closure with respect to I of 

the set of points ty where f(t)^ 0.

1.5 CONV ENTIONA[_F UNCTION

By a coventionai function we mean a function whose
n n

domain is contained in R or C and whose range is either
1 1

R or C not necessarily respectively

1.6 SMOOTH FUNCTION

A conventional function is said to be smooth {or 

infinitely smooth) if all its derivatives of all orders exist 

and are continuous at ail points of its domain.

1.7 LOCALLY AND QUADRATICALLY INTEGRABLE FUNCTION
n

Let I be open set in R .By locally integrable function 

on I we mean a conventional function that is Lebesgue 

integrable on every open set T in R whose closure T is a 

compact subset of I • Lp (I) denotes the collection of all locally

integrable function f on I satisfying

If P = 2, f u L2 (I) is called quadratically integrable function 

on I.
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1.8 SECTTONALLY OR PIECEWISE CONTINUOUS FUNCTION

A function f(x,y) is said to be piecewise or sectional! y

continuous in domain D. If the domain D can be partitioned

into finite number of nonintersecting subdomains D, ,D„ ,...D .i n
In each of which the function f(x,y) is continuous and has 

finit limits as (x,y) approches the boundaries of each 

subdomain.

1.9 INTEGRAL TRANSFORMS

A function F(s), where s is real or complex,

expressed in the form of the convergent integrals

A F(S) « _/°°K( s ,t) f(t) dt < *

is called integral transformation of function f(t). The iunction 

K(s,t) in the integrand is called Kernel of the transformation. 

Different fbtrns of kernel k(s,t) and the range of integration 

give rise to different integral transforms; such as Fourier, 

Laplace, Mellin, Hankel etc transforms. The theory of integral 

transformation is used for a systematic study of certain types 

of boundary value problems depending upon the initial and 

boundary conditions. A variewty of integral transforms suitable 

to the needs of the physical problem have been constructed 

by choosing proper kernels and applied in solving the

boundary value problems.

If k(s,t) =0 , t < 0

= e t * 0t * 0
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we get what Is called the Laplace transform of the function 

f(t) given by

r°° -St
F(s) ■ * e f(t) dt 

o
— * f

If *(s,t) = 1/^ 2tt e3 ,-<*>< t < <*>

we get Fourier transform given by

F^) = 1/ /2n /fe^^ft) dt 

If K(s ,t)= 0 , t < 0

we get Mellin transform given by

F(s) = /“V* 1 f(t) dt ....(1.9.3)
o

the choice of kernel is largely determined by the form

of the differential equation whose solution is sought. The

extension of integral transform tofinite intervals have been

first suggested by Doetsch (1935) [26,p.424] in the case of

trigerofttri©— kernels. Defining the finite Fourier sine transform

of the function f(x), 0 <x « it by the equation
__ TT.

F (n) = f (n) = / f(x) Sin (n 9C) dx ....(1.9.^)
5 S q

Doetsch pointed out that the ivnersion formula
oo

f(x) = 2/IT Z f (n) Sin (nx) ....(1.9.5)
n=1

is an immediate consequence of well-known theorem in the
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theory of Fourier series, Extending these ideas to two

dimensions the finite double Fourier sine transforms of f(x,y) 

becomes

Faa (m,n) • f (m,n) = /71 /^(x.y) Sin(mx) Sin(ny) dxdy
SS 99 o o

••••(1.9.6)

And the inversion is given by the double Fourier series
JJ 00 oo

r(^*y) = Vn L E F(m,n)Sin(mx)Sin(ny) 
m=1 n=1 ss

....(1.9.7)

As has been stated earlier, there are several problems which 

need repeated as well as different types of transforms for 

their solutions, one such transform is the finite Fourier cosine 

sine transform which is givne by

fcs[f(x,y); (x,y)— (m^)]*^ (m,n) = Fcs(m,n)

= f1Tf1Tf(x,y) Cos (mx) Sin (ny)dxdy ....(1.9.8) 
o o

And inversion formula is given by

2® 2 ® oo
f(x,y)=2/irl FsCb,3n)Sin(ny)+4/tt E E F^ (m,n)Cos(mx)Sin(ny)

n=1 n=1 n=1

....(1.9.9)

The history of transform technqiue begins with the 

last century. The direct application of the transforms replaces 

the earlier symbolic method known as Heaviside's Operational 

calculus which goes by he name of the English electrical

/ ■

A'-'

• &
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engineer (1850-1915). Laplace (1749-1827) and Cauchy (1789-1857) 

were two of the earlier contributors to this subject ; latter 

studies by Bromwich, Carson and Vanderpoi placed the 

Heaviside calculus on on a sound footing. G.Doetsch (1935) 

unified the work of the above mathematicians. However, the 

problems involving several variables can not be solved by 

the use of only one transform. Therefore the generalization 

of one transform and of other transforms have been made and 

applied successfully by many mathematicians, some applications 

of the repeated use of the transforms are given by Sneddon 

[26]. There are several problems which are solved by the 

repeated applications of the same transforms one such 

transformation is the finite double Fourier transforms. In 

majority of the books which deal with the Fourier transforms, 

the transform is derived by first setting up the Fourier series 

and then showing how it can be extended so that it goes over 

to the iintegral form of Fourier transform.

1.10 SEMINORM AND MULTINORM

Let V be a linear space. A seminorm on V is a rule 

that assigns a real number y ( $ ) to each <J> e V and that 

satisfies the following axioms : 

i) Y (<*4>) = | o | Y (♦>

H) Y ( 4>+'i> )4 (|) ( $) + Y ( <l> )
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where i> and >|> are arbitrary elements of V and a is any 

complex number.

If in addition y( <t> ) = 0 <$>=s0 (i.e. 4> is zero

element of V) then y is called norm on V.

The collection s = t Yvlv of seminorms (Here

A denotes any finite or infinite index set) on linear space

V is said to be separating (or S separates V), if for every

j> * 0 in V, there is atleast on y such that y (4> )£ 0. In
v v

other words S is separating if only the zero element in V 

has the number zero assigned to it by every seminorm in S.

A separating collection of seminorms is called 

multinomr. Obviously sufficient condition for S to be multinorm 

is that at least one of the seminorm is norm.

If S is a countable separating collection of seminorms

it is caled countable multinorm.

1.11 COUNTABLE MULTINORMED SPACE

Let S = { Y } be a set seminorms on V, which 
v v eA

need not separate V. Given any nonvoid finite subset {yv } / of 
S and arbitrary positive numbers e, • • • • e n » ® ballon

centered at , where is fixed point in V, is defined

as the set of all 4>£ V such that

Yv (♦->!>)< , k=1,2,........n
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Clearly, the Intersection of two balloons centered at the same 

point ■<!> is also a balloon centered at ip •

A neighborhood in V is any set in V that contains a 

balloon, and a neighbourhood of f e V is any set that contains 

a balloon centered at ip .A neighbourhood of the origin 0 

is called the neighborhood of zero. We shall consider the 

topology generated by the collection of all neighborhoods in 

V as the topology of V.

A multinormed space V is a linear space having 

topology generated by a multinorm S (i.e. by a separating 

collection of seminorm); If S is countable, V is called 

countably multinormed space.

Let V be countably multinormed space with countable 

multinorm S.A sequence t $ 1 v _•) m v *s said to converge

to a limit $ in V, if and only if

Y ( <t> ) —» 0 as v —> oo, for every y e S

( l00A sequence 1 J v-i in V is said to be Cauchy sequence

in V if and only if for each ye S, Y (- $ ) —* 0, as

^ and U tends to infinity independently.

Every convergent sequence in countably multinormed

space V is a Cauchy sequence, hut the converse is not 

necessarily true. But when it is true (i.e. when every Cauchy 

sequence in V is convergent) V is called a complete space. 

A complete countably multinormed space is called Frechet 

space.
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Let M be a subset of multinormed space V; <J> e V Is 

called a contact point of M If every neighborhood of -~ 

intersects M. The set obtained by addition of M all of its 

contact points that are not already in M is called the closure 

of M and is denoted by M. Wien M = V ,M is said to be

dense in V. Obviously, M is dense in V if, for each <t> £ V,
00

there exists a sequence {<J>^ } \> =1 of elements in M which 

converges in V to $ . The converse of this assertion is not 

true in general.

In the linear space V let T ^ and T2 denote two 

topologies generated by respectively two different multinorms 

* = { }(ieA and S = { Y^}ye B • The topology T^ is said

to weaker than the topology T2 , and T2 is said to be 

stronger than T^ , if every T^ neighborhood is also T2 

neighborhood. We write T^ C T2.

1.12 COUNTABLE UNION SPACE

Let U be a linear subspace of multinormed space V. 

Also let S denotes the multinorm on V. Clearly, S is also 

a multinorm on U. The topology generated in U by S is called 

the induced topology in U by V.

Let { Vm } , be a sequence of countably multinormed
m= 1

Spaces such that V-j C V2 C V3 C....Furthermore, assume

that the topology of V-m is stronger than the topology induced
00

on it by vm+1 Let V denote the union of these s paces :V 

The V is clearly linear space. - ;

■ U
’ jn=1 m

} ' 
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i lA sequence 1 v is sald to converge in V to <t> -f
00

all the 4> and <j» belong to some particular V_. and (<b } . ,
v “ ' T\)* \)a|

converges to <|> in Vm -(And therefore in Vm+^ ,Vm+2 »«*»»as 

well). Under these circumstances V is called countable union 

space. Spaces of this type were Introduced by Gelfand and

Shilov [13,14].

The countable union space V = U„ V is completem= I m

whenever all the Vm are complete countably multinormed 

spaces.
00

A countable union space V = U Vw will be called a
m=1

strict countable union space if for each m the topology of 

V-m is identical to the topology induced on Vm by .

Obviously V will certainly be a strict countable union space

if the following condition is satisfied : If , for each

}
m ,k^ denotes the multinorm for V then

Y „< 
m,k

4>) Y C <t>YT*+1,k ) for all 4> e V m all m and k.

1.13 CONTINUOUS LINEAR FUNCTIONAL *

Let V be a countably multinormed space. A rule that 

assigns a unique complex number to each M V is called a 

functional. This complex number is denoted by < f, <J> >

The functional f is said to be linear if for each 

^ , vp e V and every complex number <* and 0 ,

12
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< f, a4> + 34> > » a< f, 4> > + 3« f , 4) >

The functional f is said to be continuous at 4> e V if 

for each e> 0 , there exists a neighbourhood ft of 4> in V such that 

| < f, ^ >-< f, 4> >| < e, whenever \J> e ft and f is said 

to be simply continuous if and only if it is continuous at each 

and every point 4>e V.

A functional f is continuous on a countable union space
00

V = U, V if it is continuous at every V m=1 m m

1.14 THE DUAL SPACE 
S'

The collection of all continuous linear functionals on 

a countably multinormed space or countable union space V is 

called the dual space of V end is denoted by V'.

Two members of f and g of V' are said to be equal

in V’, if for every V, < f jt> >=«g, <j».
IuvjloaI ty** «3U<5V»eAa

Also additiorr end multiplication by a complex number 

is defiend in V by the following relation

a) < f + g, 4> > = <f, 4» + <g,4> >

b) <oc f, 4> > =<K<f, 4> >

where 4> is in V.. With these definitions V' becomes 

a linear space, the zero element in V' being the functional 

that assigns the number zero to every 4> e V.

13



Assume that U and V are countably multinormed spaces

with U being subspace of V. by the restriction of f e V' 

to U we mean that unique functional g on U defined by

< f, 4> > =<g, 4> > , for every § e U. Clearly g is a

continuous linear functional on U. Hence the restriction of f e V ■ 

to U is a member of U'.

The dueal space V' of countably multinormed space

V is assigned the topology generated by the multinorm y>

where in V* is defined by ^ (f)=1 < f, <t» |. This topology 

is he weak topology on V'.

A sequence { fv ) v =1 in a dual space V' of countably 

multinormed space V is convergent if and only if there is 

f e v1 such that for every <t> e V < fv -f, , 4» —>0 asv—

A sequence {f } v ^ is called Cauchy sequence in V’

if and only if for each 4>e V < fv -f , —M), as v and ]x

tends to infinity independently.

It V is a complete space, then V' is also a complete 

space. In case of countable union space V =mUj Vm , if all 

Myn are complete countably multinormed spaces, then V is so, 

and therefore V* is also complete.

1.15 TESTING FUNCTION SPACE AND GENERALIZED FUNCTIONS

Let I be an open subset of Rn •c_o . ~nwhere C is

the complex n-dimensional Educlidean space. A set V(I) is

said to be a testing function space on I if the following

conditions are satisfied.
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i) V (I) consists entirely of smooth complex valued

•unctions defined on I

U) V (I) is either a complete countably multinormed space

or a complete countable union space.
* oo

iii) If sequence £ t4>V v »i
k

v - v converges in V(I) to zero then
for every non-negative integer k in Rn,( D l°°v ^

converges to the Hero function uniformly on every

com pat subset of I
k +k +...+k

where D *----- ------------------- —k ,|k|=k1 + k2+...kn
3V 1 a : 2 3 [j n

1 *2 **’ xn

A generalized function on I is any continuous linear 

functional on any testing space on I. Thus f is called a 

generalized function, if it is a member of the dual space V'(I) 

of some testing function space V(I).

1.16 OPERATORS ON TESTING FUNCTION SPACES AND THEIR DUALS :

Let U and V be both countably multinomred or countable 

union spaces. A mapping R from U to V is called an operator.

Thus an operator from U to V is a rule R that assigns 

precisely one element in V to each element in some subset 

of U.

An operator R from U into V will be linear if 

r( 0i4> )= a R + 3r •!> , v^e U and va,0ec
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A linear operator R from U to V is continuous if and

only if R 4>v—0 in V, whenever 4>v—0 in U as v—» •

Let U* and V' be both dual spaces of countably 

multinormed or countably union spaces U and V respectively. 

A mapping R' from dual space V* into the dual space U' 

is called linear if for every f, ge V1 and for every complex 

number a , S

R'( a f + b g), > . a « R'f, $ > + R'g, ♦ > ,for all

<t> e u

into U* is continuous iflinear

and only if R'f -----X) in U', whenever fv -K) in V* as

v —> °°

The adjoint operator R' from the dual space V' into 

U' is defined by

< R'f p > =< f,R ♦>, for all $e U, f e V'

Here R'f is that functional on U which assigns to each <t> e U 

the same numbers that f e V' assigns to R <fe v.

The adjoint operator R' is continuous linear mapping 

of V' into U', if R is a continuous linear mapping of U into V .

1.17 DISTRIBUTIONS

Let I be a nonempty open set in RM and K be a compact 

subset of I. Dk (I) is the set of all complex vaued smooth 

functions defined on I which vanish at those points of I, that
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are not in K.Dk (I) is a linear space under the usual 

definition of addition of functions and their multiplication by 

complex number. The zero element in Dk (I) is the identically 

zero function on I,
nFor each non-negative integer k in R we define

ijeminorm Yk on Dk (I) by

\ (♦) - Sup | Dk<Mt) ; 4> € Dk<I) 

t e 1
Then ^ will be norm on (I) so that Wk } k_£ *s a 

countable multinorm on Dk(I). We assign to Dk(I) the topology
t i 00

generated by 1 Yk tk=0 and thus Dk (I) is a countably 

multinormed space. Moreover Dk (I) is complete and hence a 

Frochet space.

L8t 1 Km }”m 1 b® ° SeqUSnCe °f C°mpaCt SUbSetS °f 1 

with properties

i) ki C k2 C kj C ....

ii) Each compact subset of I is contained in one of the

n Then I = U k /n 
m=1 m

D (I) C D (I) and topology of Dk, 
kmi Vn

(I)

is stronger than the topology induced on it by D ,(I). Now

the strict countable union space D(I) is defined by

D(I)=-U, D. (I) and its dueal space is denoted by D' (I). m= 1
Thelnembers of D' (I) are called distributions on I. Thus 

distribution is a continuous linear functional on D(I) space.
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Every distribution is generalized function but not conversely. 

Generalized functions were introduced in science in 1927 as 

a result of Dirac researches into quantum mechanics. It was 

Introduced in Mathematics by Sobolev [28] In 1936. While he 

was studying the uniqueness of the solution of Cauchy problem 

for linear hyperbolic equation. The theory of generalized 

functions also known as distribution theory was widely 

propogated by the work of L.Schwartz from 1944 onwards. 

Schwartz's [24] work on the extension of the Fourier 

transformation to distribution proved to be remarkably 

powerful tool for solving different types of problems in 

physics and engineering. Main advantage of generalized 

functions and distributions is that by widening the class of 

functions, many theorems and operations are freed from tedious 

restrictions.

1.18 THE SPACE E(I) AND ITS DUAL

E(I) is the space of all complex valued smooth
n

functions on nonempty open set I of R . For each compact
n

subset k of I and a non-negative integer k 6 R the seminorm 

^ $) on E(I) is defined by

Y ( 4>) = Sup |Dk4> | , for all $ e E(I).
K,k te K

Then, clearly E(I) is a multinormed space with the topology

generated by the multinorm 1 , where K traverses through

the set of all compact subsets of I and k=0,1,2...in fT1, E(I)

is also testing function space. The members of the dual space

E'(I) of E (I) are called distributions with compact support.
18
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By the definition of testing function space V(I) it is clear

tnat D(I) C V(I) C F(I) . Since D(I) is dense in E(I) V(I) is 

also dense in E(I).The convergence in V(I) to some limit 

implies the convergence in E(I) to the same limit. Further 

E'(I) C V* (I) C D* (I). That is £• (I) can be defined as 

subspace of V * (I).

1.19 HILBERT SPACE

Let X be a linear space over the complex field C. 

An inner product on X is a function (- ,')X X X —>C which 

satisfies the following conditions

i) (x,y=(y,x), for all x,y s x ?

ii) (a x +3 y, z) = a (x,z) + 3 (y,z), for all x,y,ze x

md « e c

ill) (x,x)^0 ; (x,x)=0 if and only if x=0

A complete normed linear space is called Banach space. 

Hilbert space is a complex Banach space whose norm arises 

from an inner product.

1.20 THE SPACE Uj (I )

Let I denote any open interval a < x < b on the real

line. Here a* - » and b= 00 are p|ermitted. A function f(x)

Is said to be quadraticaly integrable on I if it is a locally

integrable function on I such that 
b 2 —

% (f) - [f\f(x)\ dx r < -

19



The set of quadratically integrable functions can be 

partitioned into equivalence^ classes of such functions by 

stipulating that two such functions f and g are in the same

class if and only if aQ (f-g)=0. This

if f=g almost every wnere on I. The resulting space of 

equivalence classes is denoted by l_2 (I). Moreover, the 

functional <!0 is also defined on L2(I)....

That is, the number that a0 assigns to any equivalence 

class is defined as the number that ^ assigns to any one 

of its member, this number being the same all members

of a given class.

L2 (I) is a linear space whose zero element is the class 

of all functions that are equal to zero almost every where on 

I. Moreover, is a norm on l_2 (I) and is therefore a special 

case of a countable multinomr (the multinorm has only one 

element). L2 (I) is assigned the topology generated by . It 

turns out that l-2(I) is a complete space.

An inner product, which is arule assigning a complex 

number (f,g) to each ordered pair is defined by
b

(f ,9)= ^ f(x)gTx) dx f,g e L-2(I)

where g(x) denotes the complex conjugate of g(x). Furthermore , 

the inner product is continuous with respect to each of its 

arguments; that is, if f —* f in L^U) as m—,then

(fm (f>9) and (g,fm )—»(g,f).

20



The dual of 1-2(1) is l_2 (I) • That Is for each continuous 

linear functional H on L2 (I) there exists a unique member 

h of l_2 (I) such that H(f) = (h,f), for every f e L2 (I); here 

H(f) denotes the number that H assigns to f.

Moreover, we assume that there exists a sequence 

{xn }“_q heal numbers called eigen function of operator

R and a sequence ^n_o of smooth functions in L (I) called

eigen functions of R, such that| A,nl-►<» as n-*-® and * X
00 n n n

n=0,1...We also assume that{n_o form a complete orthonormal
00

system in L2(I). By orthonormality of the sequence|^n !

one means that f 0 if n+m

= 1 if n=m

The completeness of { } means that every ft; l_2 (I) can be

expanded into the series

f. f (t, *n)*n to
n=u

which converges in L2(I), that is

N
[f- i (ffj^MOasri

n=0

we call (*) as the orthonormal series expansion of f with 

respect to {<l>n * n=Q

21
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1.21 GENERALIZED INTEGRAL TRANSFORMATIONS

Generalized Integral Transformation is the study of the

combination of two mathematical branches. The theory of

integral transforms and the theory of generalized functions.

the extension of the Fourier transformation to the generalized

function is the first in the line of extension of the classical

transformations. The Fourier transform of a function of rapid

growth was first defined as generalized function by L.Schwartz

[24]. In 1966, A.H.Zemanian [36] extended Laplace transform

to generalized function. He defined the Laplace transform F(s)

of a generalized function f(t) to some class of functions

directly as the application of the function f(t) to the Kernel 
-st

e viz.

F(s) = < f(t), e >

A brief history and recent developments of the theory of 

generalized integral transformations can be seen in the

presidential address delivered by Prof .K.M.Saxena at the

I.S.C.A. Ahmeadabad in 1978.

Many researchers like Bremermam [4]

Gel f and and Shilov [13,14], Kanwal [17], Lighthill [18], 

Temple [29] and Zemanian [34,35,36,37,38] have studied the 

extension of various types of integral transformations to 

generalized functions.
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Chaudhary M.S. [6] extended finite Fourier double sine 

transform to generalized functions. Reddy B.P. and Chaudhary 

M.S. [23] extended Mathiew transform to generalized functions.

Following are the main approaches by which a classical 

transform is extended to a class of generalized functions or 

distributions.

i) Direct or Kamel Method

In this method a testing function space is constructed, 

Say V(I) containing the Kernel K(s,t) considered as a function 

of t defined on domain I. Then V* (I) is the space of all 

continuous linear functionals on V (I). I being the domain for 

functions 4> (t)e V(I). The members of V'(I) are generalized 

functions. From the definition of generalized function, f V' (I) 

assigns some fixed number to each $ eV(I). This number is 

the complex number generally denoted by < f, <J> >• AS-k(s,t)6V(I), 

f (t) ,K(s,t)> possesses sense as an application of * f(t)e V*(I) 

to k(s,t) e V(I). Here we have attached the argument * t * with 

f only to mean that k(s,t) e V(I) when it is considered as 

a function of t. The value f(t) ,k(s,t) then is a function 

of s say F(s) so we write F(s)=< f(t) ,k(s,t)-j, This can be 

viewed as a generalized integral transformation because if f 

is a generallized function then in the Lebesgue sense.

F(s)= / k(s,t) f(t) dt 
I
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This method of extension of an integral transforms to 

generalized function is very handy. Almost ail the classical 

integral transforms are now-a-days extended to generalized 

functions by this approach.

ii) Adjoint Method

The second approach for extending integral transform 

to generalized functions is as follows.

A testing function space V (I) is constructed that does 

not necessarily contain the Kernel K(s,t); but is closed under 

the conventional integral transform. Then, the integral 

transform of generalized function belonging to V * (I) denoted 

by Vf say, where V * (I) is the dual of V(I) is defined by 

the Parseval type relation

« Vf , > =<f , V <J) > fopr all <J>e V (I)

Schwartz used this method for extending the Fourier transform 

of a distribution of slow growth and Zemanian used this method 

for extending the Hankel transform to generalized function. 

More recently Chaudhary and Bhonsle [4] used both these 

approaches to extend the Laplace Hankel transformation to 

generalized function. Chaudhary M.S. in his Ph.D. thesis [5] 

extended the classical transform which have their Kernel as 

the product of the Kernel of different transforms to

generalized function.
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iii) Reduction of Kernel Method

In this method, first we reduce the integral

transformation with Kernel K, to another transform with Kernel 

K1 ,by suitable change of variable. Then it can be generalized 

by the first method. It's properties can be studied with the 

help of the corresponding study of transform with Kernel K^ 

for generalized function.

iv) Transformations Arising from Orthonormal Series Expansions :

This method is of a somewhat different character than 

are the previous ones. This method is related to Hilbert-space 

techniques. And its prototype is the Fourier series expansion 

of a periodic distribution (Zammanian [36] Chapter IX), A 

procedure will be developed for expanding a generalized 

function f into a series of the form

f - Z F(n)« (*)
n=0

where the 4-h constitute a complete system of

orthonormalfunctions and the F(n) are the corresponding Fourier 

coefficients of f.

This procedure leads to a whole new class of 

generalized integral transformations. The basic idea is to view 

the mapping f —vF (n) as a transformation p from a certain 

class of generalized functions f into the space of functions 

F(n) mapping the integers Into the complex plane. Then (*)
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defines the inverse transf ormation; of course, the convergence 

of the series (*) must be interpreted in a generalized sense. 

Moreover, the permissible orthonormal functions will be

eigenfunctions of a certain type of seif-ad joint differential 

operator R. particular generalized integral transformations that 

are encompassed by this technique are the finite Fourier 

transf ormation.

In this dissertation we have extended finite Fourier 

cosine-sine transformation to distributions by using the above 

technique.
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