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CHAPTER-I

SURVEY OF LITERATURE AND PRE-REQUISITES

1.1 INTRODUCTION

Many of the phenomena of classical physics may be
described by partial differential aquation. And the oldest
systematic technique for the solution of partial differential
oquation of mathematical physics is the method of separation
of variables introduced by D.Alembert, Daniel Bernoulli and
EBuler in the middle of the eighteenth century. It remains a
method of great value today and lies at the heart of the use
of INTEGRAL TRANSFORMS in the solution of problems in

applied mathematics.

The theory of Integral Transformations 1is used for
a systomatic study of certain type of boundary value problems
depending upon initial and boundary conditions. A variety of
integral transforms 3Laplace, Fourier, Mellin, Hankel etc.?
suitable to the nmeed of -the physical problems have been
constructed by choosing proper kernels and applied in solving

boundary wvalue problems.

A function is a potent notion in mathematics. Some

manipulations like ©Dirac Delta function introduced by Dirac

[10] in 1947, S(X>=0 fo¥ X#O
b

S 8{x) dx =1 for x =0, o <a<b <
a )

in technical literature have motivated the mathematicians to

re-examine the concept of function not by its value but by

; 1



its behaviour as a functional on some space of testing
functions. This is the new concept. This new mode of thinking

gave birth to the theory of generalized functions.

The Iimpact of generalized functions on the integral
transforms has recently revolutionalised the theory of

generalized integral transformations.

In this chapter we give a brief account of the
clementary concepts that are required for the development

of the work of dissertation.

1.2 LINEAR SPACE

A collection V of elements $ , ¢y , 8 «....is said to

be a linear space if the following axioms are satis;‘fied

1) There is an operation +, called "addition" by which
any pair of elements ¢ and ¢ can be combined to
yvield a unique element ¢ + § In V.,
moreover, + has the following properties

1a) $ + ¥ =¥ + ¢ (Commutativity)

1b) ($+9) + 8=¢ + ( V+8 ) (associiativity)

ic) There exists a unique element O in V such that § +0=
for every » € V

1d) For every ¢ € V there exists a unique element -~ ¢in V
such thatd + (- Pp) =0

2) There is an operation, called "multiplication by a

il



complex rumber ", by which any complex rumber «
and $ € V can be combined to yleld a unique element
¢ ¢ in V. Moreover, the following properties are

satisfied for every choice of » € V and complex rumbers

a and B,

2a a (8d) = (B )

2b) 1 % = $ (1 denotes the number one )

3 In addition, the following distributive laws must be
fulfilled.

3a @ ( 0+ V) = ad + ap

3b (a+ B)d =ad + B
Subspace

A subset U of linear space V is called a linear
subspace (or simply a subspace) of V 1f_ for everyc:P and \f/

.

in U and for every complex rumber ¢ , § + ¢ and g¢ are

voth in U.

1.3 TOPOLOGICAL VECTOR SPACE

Suppose T is topology on a vector space X such that

a) Every point of X is closed set
b) The vector space operations are continuous with respect
to T.

Under these conditions, T is said to be vector topology
on y and X is called topological vector space.
Condition (a) and (b) together imply that T is a Hausdorff
topology so that every topological vactor space 1s Hausdorff
space. Alég/ is "locally convex if there is a local base B

whose members are convex. [ A set C<X is said to be convex

iftc + (11t) C <. C, VvV 0.t €1) 3

e



1.4 COMPACT SET AND SUPPORT

A set k in Rn or Cn is sald to be compact If every
open covering of k contains a finite subcollection which also
converse K. A subset of Rn or Cn is compact if and only if

it is closed.,

The support of a continuous function f(t) defined on
some open set I In R is the closure with respect to I of

the set of points t/where f(t)#£ O.

1.5  CONVENTIONA| FUNCTION

By a coventional function we mean a function whose
n n
domain is contained in R or C and whose range is either

1
R or C notnecessarily respectively

1.6 SMOOTH FUNCTION
A conventional function is said to be smooth f(or
infinitely smooth) if all {its derivatives of all orders exist

and are continuous at all points of its domain.

1.7 LOCALLY AND QUADRATICALLY INTEGRABLE FUNCTION

Let I be open set in Rn .By locally integrable function
on I we mean a conventional function that s Lebesgue
integrable on every open set T in Rn whose closure J is a

compact subset of I-Lp (I) denotes the collection of all locally

Integrable function f on I satisfying
P
51 | ft)] dt< e , 1P <

lf P =2, f- L, (I) is called quadratically integrable function

on I.

1



1.8 SECTIONALLY OR PIECEWISE CONTINUOUS FUNCTION
A function f(x,y) is said to be piecewise or sectionally
continuous in domain D. If the domain D can be partitioned

into finite number of nonintersecting subdomains D1 ,D? ""Dn’

In each of which the function f(x,y) is continucus and has
finit limits as (x,y) approches the boundaries of each

subdomain.

1.9 INTEGRAL TRANSFORMS

A function F(s), where s is real or complex,

axprassed in the form of the convergent integrals

ARG = LR(s 0 ) at <o

is called integral transformation of function f(t). The function
K(s,t) in the integrand is called Kernel of the transformation.
Different fo¥ms of kermmel k(s,t) and the range of integration
give rise to different Iintegral transforms; such as Fourier,
Laplace, Mellin, Hankel etc transforms. The theory of integral
transformation is used for a systematic study of certain types
of boundary value problems depending upon the initial and
boundary conditions. A varlewty of integral transforms suitable
to the needs of the physical problem have been constructed
by ch;:osing proper kernels and applied in solving the

boundary value problems.

If k(s,t) =0 , t< O

~-st
= 8 t>5 0

QAR B2 5x0ge e
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we get what is called the Laplace transform of the function

f(t) given by

F(s) = fwe-Stf(t) dt
(o]

st

If <(s,t) = 1/V/21 o y =®<t < ™
. 15é
we get Fourier transform given by 2.
oty
Fi®) = 1/ /2 (Jl?/ht) at veeee(1.9.2)
If K(s,t)=0 , t <0
s-1
we get Mellin transform given by
F(s) = [t £(t) at veee(1.9.3)

o

the choice of kernel is largely determined by the form
of the differential equation whose solution is sought. The
extension of integral transform tofinite intervals have been
first suggested by Doetsch (1935) [26,p.424] in the case of

trigemetric— kerrels. Defining the finite Fourier sine transform

of the function f(x), O <x < 5 by the equation

- )
Fs(n) ='i’-s (n) = J f(x) Sin (n- %) dx veeo(1.94)
o

Doetsch pointed out that the ivrersion formula

f(x) =2/7 £ T (n) Sin (nx) veee(1.9.5)
n=1 13

1s an iImmediate consequerce of well-known theorem in the



theory of Fourier series, Extending these ideas to two

dimensions the finite double Fourier sine transforms of f(x,y)

becomes

Fog (M) = T__ (myn)= _)f"of“f(x,y) Sin(mx) Sin(ny) dxdy
eess(1.9.6)

And the inversion is given by the double Fourier series

Blxy) =4/8 £ 3
N=

i !:s(m,n)Sin(mx )Sin(ny)

1
000'0(10907)

As has been stated earlier, there are several problems which
need repeated as well as different types of transforms for
their solutions, one such transform is the finite Fourier cosine

sine transform which is givre by

£ [F0Y)5 (xy)=—== (mm)]F__(m,;n) = F_ (myn)

=f“f“f(x,y) Cos (mx) Sin (ny)dxdy veee(1.9,8)
o o

And inversion formula is given by

A
g

2% w
f(x,y)=2/m 2 E_Con)Sin(ny)+4/ 7 %

n=1 n=1

1 Feos (m,n)Cos(mx)Sin(ny)
N=

0000(10909)

The history of transform technqlue begins with the
last century. The direct application of the transforms replaces
the earlier symbolic method known as Heaviside's Operational

calculus which goes by he name of the English electrical




engineer (1850-1915). Laplace (1749-1827) and Cauchy (1789-1857)
were two of the earlier contributers to this subject ; latter
studies by Bromwich, Carson and Vanderpol placed the
Heaviside calaulus on on a sound footing. G.Doetsch (1935)
unified the work of the above mathematicians. However, the
problems involving several variables can not be solved by
the use of only one transform. Therefore the generalization
of one transform and of other transforms have been made and
applied successfully by many mathematicians, some applications
of the repeated use of the transforms are given by Sneddon
[26]. There are several problems which are solved by the
repeated applications of the same transforms one such
transformation is the finite double Fourier transforms. In
majority of the books which deal with the Fourier transforms,
the transform is derived by first setting up the Fourier series
and then showing how it can be extended so that it goes over

to the iintegral form of Fourier transform.

1.10 SEMINORM AND MULTINORM

tet V be a linear space. A seminorm on V is a rule
that assigns a real rumber Yy ( ) to each ¢ ¢ V and that
satisfies the following axioms :

i) Y (a¢) = | a}v($)

) YO )@ (9 +x (¥)

s
o~

N



where P and ¥ are arbitrary elements of V and 0 is any

complex rumber,

If in addition 1( ¢) = 0 = =0 (i.e.  1is zero

element of V) then Yy is called norm on V.

The collection S = { Yv}\) cA of seminorms (Here
A denotes any finite or infinite index set) on linear space
V is said to be separating (or S separates V), if for every
»# 0 in V, there is atleast on Y, such that Yv (¢ )¢ 0. In
other words S is separating if only the zero element in V

has the rumber zero assigned to it by every seminorm in S.

A separating collection of seminorms iIs called
multinomr. Obviously sufficient condition for S to be multinorm

i{s that at least one of the seminorm is norm.

If S is a countable separating collection of seminorms

it is caled countable multinorm.

1.11  COUNTABLE MULTINORMED SPACE

Let S = { Yv } be a set seminorms on V, which

EA
n -
need not separate V. Given any nonvoid finite subset {y v | oo

, & ballah

contered at ¥ , where Y is fixed point In V, is defined

S and arbitrary positive rumbers &€y Ep eenn €

as the set of all ¢€ V such that

Y\) (¢-lp)< Gk ] k=1,2’¢cooon
K



Clearly, the Iintersection of two balloons centered at the same
point ¥ is also a balloon centered at ¢ .

A neighborhood in V is any set Iin V that contains a
balloon, and a rneighbourhood of ¢ € V is any set that contains
a balloon centered at ¢ .A neighbourhood of the origin O
is called the neighborhood of zero. We ghall consider the
topology generated by the collection of all neighborhoods in

v as the topology of V.

A  multinormed space V is a linear space having
iopology generated by a multinorm S (i.e. by a separating
collection of seminorm); If S is countable, V 1is called

countably multinormed space.

Let V be countably multinormed space with countable
multinorm S.A sequence 1| ¢\’ }w\) 1 in V is said to converge

to a limit 9 in VvV, if and only if
Y(%—‘b) —» O0asv — », for everyy ¢ S

[+ «]
A sequence 1 4)\) } v=4 In V is said to be Cauchy sequence
in V if and only if for each Y € S, y(q)\)-cj)u ) - 0, as

v and U tends to infinity independently.

Every convergent sequence iIn countably multinormed
space V Is a Cauchy sequence, but the converse is not
necessarily true. But when it is true (i.e. when every Cauchy
sequence in V is convergent) Vb is called a éomplete space.
A complete countably multinormed space is called Fre/d'\et

space.

10



Let M be a subset of multinormed space V; ¢ € V is

called a contact point of M if every neighborhood of —

intersects M. The set obtained by addition of M all of its
contact points that are not already in M is called the closure
of M and is denoted by M., When M = V sM is sald to be
dense in V. Obviously, M is dense in V if, for each ¢ €V,
there exists a seqdence {4’\) }m\, -1 of elements in M which

converges In V to ¢ . The converse of this assertion is not

true in general.

In the linear space V let T1 and TZ denote two
topologies generated by respectively two different multinorms

R = { P }usA and S = { Yu} . The topology T, is said

e B
to weaker than the topology T2 , and Tz is said to be
stronger than T1 s, if every T1 neighborhood is also T2

neighborhood. We write T; C Ty

1.12 COUNTABLE UNION SPACE

let U be a linear subspace of multinormed space V.
Also let S denotes the multinorm on V. Clearly, S is also

a multinorm on U, The topology generated in U by S is called

the induced topology in U by V.

o+

Let { Vm} m=1

spaces such that V4 C VW, C V3 C....Furthermore, assume

be a sequence of countably multinormed

that the topology of Vw is stronger than the topology induced
fe+]
an it by Vm +1 Let V denote the union of these spaces:V= U v

) coamel
The V is clearly linear space. ’ «

P
oy
. R
Lo fas oy,
\\ o, N R A o+
> ,:o‘ P ]

m



o

A sequence | 1\,} v =1ls sald to converge in V to ¢ :f

[+ -]
all the 9, and ¢ belong to some particular V,, and {¢ } ,_,

converges to ¢ In V -(And therefore in V _Y

m+l Wm42 r0ce°8S

well). Under these circumstances V is called countable union

space. Spaces of this type were introduced by Gelfand and
Shilov [13,14].

<0
The countable union space V =my1 Vm is complete

whenever all the V are complete countably multinormed

spaces.

>
A countable union space V = U1 Vm will be called a
m=

strict countable union space if for each m the topology of

Vm Is identical to the topology induced on V., by V'm +1

Obviously V will certainly be a strict countable union space

if the following condition 1is satisfied : If , for each

o0

{y } ’

m, m’k{k;b denotes the multinorm for Vm then

” (¢)=Ym1k(¢)fora11¢evm,allmand K
Kk '

m,
1.13  CONTINUOUS LINEAR FUNCTIONAL
Let V be a countably multinormed space. A rule that

assigns a unigue complex rumber to each $ € V is called a

functional. This complex number is denoted by < f,¢ >

The functional f is said to be linear Iif for each

¢, U € V and every complex number @ and B ,

12
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<f, a0+ BY >= a<f, ¢ >+3<f , § >

The functional f is sald to be continuous at ¢ € V if
for each €> 0 , there exists a neighbourhood R of $ In V such that

| < f,0 >-< f,¢ >| < e, whenever y € Q and f is said
to be simply continuous if and only if it is contiruous at each

and every point ¢€ Vv,

A functional f is continuous on a countable union space

V = U1 V_ if it is continuous at every V__ .
m= m m

1.14 THE DUAL SPACE
-~
The collection of all continuous linear functionals on
a8 countably multinormed space or countable union space V is

called the dual space of V and is denoted by V',

Two members of f and g of V' are said to be equal
in V', if for every %€ v, < f P >=<g, ¢>.
% i Lncan dann asuala
Also additicn and multiplication by a complex nrumber

is defiend in V' by the following relation

a) < f+g, d> =<f, ¢> + <g,$ >

b) <xf,d >=a{f, p >

where ¢ 1is in V. \Nlth these definitions V' becomes
a linear space, the zero element iIn V' being the functional

that assigns the number zero to every ¢ e V.

13



Assume that U and V are countably multinormed spaces
with U being subspace of V. by the restriction of f € V!
to U we mean that unique functional g on U defined by
< f, & > =<g, $ > , for every ¢ ¢ U. Clearly g is a
contiruous linear functional on U. Hence the restriction of f& V/
to U is a member of U'.
The dueal space V' of countably multinormed space

V is assigned the topology generated by the multinorm {g ¢}4>e v’

where €¢ in V' is defined by §¢ (f)=1< f, ¢> |. This topology

is he weak topology on V',

A sequence {f\, } vy =1in a dual space V' of countably
multinormed space V is convergent if and only if there is

f € V' such that for every ¢ € V < £, =f., $> -0 asv—s®

X0
A sequence {f\) } V=i is called Cauchy sequence in V'

if and only if for each ¢c V < f\) —1’u y$7--»0, as v and u
tends to infinity independently.

It Vv is a complete space, then V' is also a complete
space. In case of countable union space V =m§l‘ Vm , if all
Vw are complete countably multinormed spaces, then V is so,
and therefore V' is also complete.

1.15 TESTING FUNCTION SPACE AND GENERALIZED FUNCTIONS

Let I be an open subset of Rn or CP ; where c” is
the complex n-dimensional Educlidean space. A set V(I) is
said to be a testing function space on I if the following

conditions are satisfied.

14



i) V(I} consists entirely of smooth complex valued
functions defined on I
ii) V(I) is either a complete countably multinormed space

or a complete countable union space.

o
iii) If sequence 3 N\) }\) =1 converges in V(I) to zero then

for every non-negative integer k in R", { o~ 2 }wv -1

converges to the Bero function uniformly on every

Mcompat subset of I

K +K +.s0etk
where D = D1 2 0 Llkl=k,+ k
K K K 1
0, 1 a3 :2 Ig n
1 Xo n

2+...kn

e

A generalized function on I is any continuous linear
functional on any testing space on I. Thus f is called a
generalized function, if it is a member of the dual space V'(I)

of some testing function space V(I).

1.16 OPERATORS ON TESTING FUNCTION SPACES AND THEIR DUALS :

Let U and V be both countably multinomred or countable
union spaces. A mapping R from U to V is called an operator.

Thus an operator from U to V is a rule R that assigns
precisely one element in V to each element in some subset

of U.

An operator R from U into V will be linear if

R(¥W BV)=aRd+ BRY,Vd,leU and Va,BeC

15



A linear operator R from U to V is contiruous if and

only if R $ ---0 in V, whenever 9, --0 in U as y-—w .

Let U' and V' be both dual spaces of countably
multinormed or countably union spaces U and V respectively.
A mapping R' from dual space V' into the dual space us
is called lirnear if for every f, g® V' and for every complex

rumber o , B

S RYWOAF + B g), $>=u<R'f b > +B<R'Gg, > ,for all

/ A linear mapping R' A V' into U' is continuous if

and only if R'f\) ~==>0 in U', whenever f, -0 in V' as

V o=

The adjoint operator R' from the dual space V' Iinto

U' is defined by
< R'f P >=<f,R 9> for all ¢ U, f € V'
Here R'f is that functional on U which assigns to each ¢ € U

the same rumbers that f € V' assigns to Rde Vv,

The adjoint operator R' is contirnucus linear mapping

of V' into U', if R is a continuous linear mapping of U into V .

1.17 DISTRIBUTIONS
Let I be a nonempty open set in R" and K be a compact
subset of I. Dk (I) is the set of all complex vaued smooth

functions defined on I which vanish at those points of I, that

16



are not in K.Dk (I) is a Llinear space under the usual
definition of addition of functions and their multiplication by

complex rumber. The zero element in D (I) is the identically

zero function on I,

n
For each non-negative iInteger k iIn R we define

seminorm Y on D (I) by

Y (#) = sup | D‘.‘Cb(t) ;¢ €D (D)
t€1

o0
is
Mhen will be norm on Qc (I) so that {Yk } k=0 a

countable multinorm on D (I). We assign to D, (I) the topology
e o]

generated oy {Yk }k =0 and thus Dk (I) is a countably

multinormed space. Moreover Dk (I) is complete and hence a

Fréchet space.

Let{ km }°° be a sequence of compact subsets of I

m=1
with properties
1) ky C ky C k3 C ...
ii) Each compact subset of I is contained In one of the

S

then I = U k (D, (1) C DO (I and topology of Dy i)
m k";HI m
is stronger than the topology induced on it by Dk -'\i (I). Now
m
the strict countable union space D(I) is defined by
D(I)=r‘ﬁ§1 Dy . (I) and its dueal space is denoted by D'(I).
- m

Thqfnembers of D'(I) are called distributions on I, Thus
J

distribution is a continuous linear functional on D(I) space.

17



Every distribution is generalized function but not conversely.
Generalized functions were introduced iIn science in 1927 as
a result of Dirac researches into quantum mechanics. It was
introduced in Mathematics by Sobolev [28] in 1936. While he
was studying the uniqueness of the solution of Cauchy problem
for linear hyperbolic equation. The theory of generalized
functions also known as distribution: theory was widely
propogated by the work of L.Schwartz from 1944 onwards.
Schwartz's [24] work on the extension of the Fourier
transformation to  distribution proved to be remarkably
vowerful tool for solving different types of problems in
physics and engineering. Main advantage of generalized
functions and distributions is that by widening the class of
functions, many theorems and operations are freed from tedious

restrictions.
1.18 THE SPACE E(I) AND ITS DUAL

F(I) is the space of all complex valued smooth
n
functions on nonempty open set I of R . For each compact

n
subset k of I and a non-negative iInteger k € R the seminorm
k k( $) on E(I) is defined by
?

YKk( $) = Sup |Dk¢|, for all $ € E(I).
’ te K

Then, clearly E(I) is a multinormed space with the topology
generated by the multinorm { Y K},kwhere K traverses through
the set of all compact subsets of I and k=0,1,2...in R", E(I)
is also testing function space. The members of the dual space

E'(I) of E (I) are called distributions with compact support.

18



By the definition of testing function space V(I) it is clear
that D(I) C V(I) C F(I) . Since D(I) is dense in E(I)}V(I) is
also dense in E(I).The convergence in V(I) to some limit
implies the convergence in E(I) to the same limit. Further
E'(I) C Vv'(I) C D'(I). That is E'(I) can be defined as

subspace of V'(I).

1.19 HILBERT SPACE

Let X be a linear space over the complex field C.
An imner product on X is a function (- ,-)X X X --3C which
satisfies the following conditions
i) (x,y=(y,x), for all X,y & ¥
i) (¢ x +8 y, z) = a(x,z) +3 (y,z), for all x,y,ze X

Aand C'&,B E C

iii) (x4x) 30 ;3 (x,x)=0 1if and only if x=0

A complete normed linear space is called Banach space.
Hilbert space is a complex Banach space whose norm arises

from an imner product.

1.20 THE SPACE LZ(I )

Let I denote any open interval a ¢ X « b on the real
line. Here a= - » and b= ® are plermitted. A function f(x)
is said to be quadraticaly integrable on I if it is a locally

integrable function on I such that

b 2 .
B = U] ax 17 <=
a

ST P

.
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The set of quadratically integrable functions can be
partictioned into equivalence: classes of such functions by
stipulating that two such functions f and g are in the same = -~
class if and only if  (f-g)=0. This is the case Wﬂd A%
if f=g9 almost everywnere on I. The resulting space of
equivalence classes is denoted by L (I). Moreover, the

functional “_ is also defined on Ly(D)eens
that is, the number that %, assigns to any equivalence
class is defined as the number that ‘!o assigns to any one: gﬁi

of its member, this number being the same @r‘) all. members s

of a given class.

Lo (I) is a linear space whose zero element is the class
of all functions that are equal to zero almost everywhere on
I. Moreover, 00 is a norm on Lz (I) and is therefore a special
case of a countable multinomr (the multinorm has only one

slement). L, (I) is assigned the topology generated by "o . It

turns out that L2 (I) is a complete space.

An inmner product, which is arule assigning a complex

rnumber (f,g) to each ordered pair is defined by
b

(£.9)= L f(x)alx) dx  fige L,(D)

where E(-x) denotes the complex conjugate of g(x). Furthermore ,
the immer product is continuous with respect to each of its

arguments; that is, if Fo—f in L, (I) as m—>» ,then

(f 9)— (f,g) and (g,fm y—>(g,f).

20



The dual of L, (I) is L,(I). That is for each continucus
linear functional H on L, (I) there exists a unique member
noof L, (I) such that H(f)=(h,f), for every f €L, (I); here

H(f) denotes the rnumber that H assigns to f.

Moreover, we assume that there exists a sequence

{)‘n }";‘_'; -0 of real rnumbers called eigen function of operator

}ou

R and a sequence {‘Vn n=0 of smooth functions in L.2 (1) called

eigen functions of R, such thatlA,}>» as n+= and R',‘)nz)\n L2

@«

n=0,1...We also assume that{‘pn} n=0 form a complete orthonormal
@©

system in L, (I). By orthonormality of the sequence{‘pn ‘ n=0

one means that (Y. ¥ ) # O if n¢m

=z 1 if n=m

The completeness of{ tPn } means that every f¢« L2 (I) can be

axpanded into the series

f = nz:o (f, ll'n)‘l'n ()

which converges in L, (1), that is

N
o [f-) (£

)‘”n ]2 0as n—>
n=0

n

we call (¥*) as the orthonormal series expansion of f with

o©

respect to {¢n J n=0
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1.21 GENERALIZED INTEGRAL TRANSFORMATIONS

Generalized Integral Transformation is the study of the
combination of two mathematical branches. The theory of
integral transforms and the theory of generalized functions.
the extension of the Fourler transformation to the generalized
function is the first in the line of extension of the classical
transformations. The Fourier transform of a function of rapid
growth was first defined as generalized function by L.Schwartz
[24]. In 1966, A.H.Zemanian [36] extended Laplace transform
to generalized function. He defined the Laplace transform F(s)
of a generalized function f(t) to some class of functions
directly as the application of the function f(t) to the Kernel

-5t
e viz.

F(s) =<£(t), oo%>

A brief history and recent developments of the theory of
generalized integral transformations can be seen in the
presidential address delivered by Prof.K.M.Saxena at the

1.S.C.A. Ahmeadabad in 1978.

Many researchers like Bremermamn [4] ,Er'dgl.yi {12},
Gelfand and Shilov [13,14], Kanwal [17], Lighthill (18],
Temple [29] and Zemanian [34,35,36,37,38] have studied the
extension of various types of integral transformations to

generalized functions.
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Chaudhary M.S. [6] extended finite Fourier dauble sine
transform to generalized functions. Reddy B.P. and Chaudhary

M.S. [23] extended Mathiew transform to generalized functions.

Following are the main approaches by which a classical
transform is extended to a class of generalized functions or

distributions .

i) Direct or Kemel Method

in this method a testing function space is constructed,
Say V(I) containing the Kernel K(s,t) considered as a function
of t defined on domain I. Then V'(I) is the space of all
continuous linear functionals on V(I). I being the domain for
functions ¢ (t)e V(I). The members of V'(l) are generalized
functions. From the definition of generalized function, f= V' (I)
assigns some fixed rumber to each b € V(I). This rumber is
the complex rumber generally denoted by < f, ¢ >.Aas:k(s,t)eV(I),
< f(t),K(s,t)> possesses sense as an application of f(t)e V'(I)
to k(s,t) € V(I). Here we have attached the argument 't' with
§ only to mean that k(s,t) € V(I) when it is considered as
a function of t. The value f(t) ,k(s,t) then is a function
of s say F(s) so we write F(s)=< f(t),k(s,t)> This can be
viewed as a generalized integral transformation because if f

is a gererallized function then in the Lebesgue sense.

F(s)=JS Kki(s,t) f(t) dt
I
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This method of extension of an integral trarnsforms to
generalized function is very handy. Almost all the classical
integral transforms are now-a-days extended to generalized

functions by this approach.

ii) Adjoint Method

The second approach for extending integral transform
to gereralized functions is as follows.

A testing function space V(I) is constructed that does
not necessarily contain the Kernel K(s,t); but is closed under
the conventional integral transform. Then, the integral
transform of generalized function belonging to V'(I) denoted
by Vf say, where V'(I) is the dual of V(I) is defined by

the Parseval type relation

€ VE ,d > =<f ,V ¢ > fopr all ¢e V(I)

Schwartz used this method for extending the Fourier transform
of a distribution of slow growth and Zemanian used this method
for extending the Hankel transform to generalized function.
More recently Chaudhary and Bhonsle [4] used both these
approaches to extend the Laplace Hankel transformation to
generalized function. Chaudhary M.S. in his Ph.D. thesis [5]
nxtended the classical transform which have their Kernel as
the product of the Kerel of different transforms to

generalized function.
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iii) Reduction of Kernel Method

In this method, first we reduce the  integral
transformation with Kermmel K, to ancther transform with Kernel
K1 ,oy suitable change of variable. Then it can be generalized
by the first method. It's properties can be studied with the
help of the corresponding study of transform with Kernel K,.

for generalized function.

iv) Transformations Arising from Orthonormal Series Expansions :

This method is of a somewhat different character than
are the previous ones. This method is related to Hilbert-space
techniques. And its prototype is the Fourier series expansion
of a periodic distribution (Zammanian [36] Chapter IX). A

procedure will be developed for expanding a generalized

function f into a serles of the form

f=13 Fln)V (*
n=0 nn . )

where the constitute a complete system of
ortnonormalfunctions and the F{(n) are the corresponding Fourier

coefficients of f.

This procedure leads to a whole new class of
géneralized integral transformations. The basic idea is to view
the mapping f —>»F(n) as a transformation p from a certain
class of generalized functions f into the space of functions

F(n) mapping the integers into the complex plane. Then (*)
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defines the inverse transformation; of course, the convergence
of the series (®) must be interpreted in a generalized sense.
/J‘/_
Moreover, the permissible orthonormal functions (" 5, will be
eigenfunctions of a certain type .of self-adjoint differential
operator R. particular generalized integral transformations that
are encompassed by this technique are  the finite Fourier
transformation.
In this dissertation we have extended finite Fourier

cosine-sine transformation to distributions by using the above

technique.
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