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DISTRIBUTIONAL FIITE FOURIER COSINE SINE TRANSFORM 

2.1 INTRODUCTION

The concept of orthonormal series related to generalized

functions is some what different than other usual concept of 

integral transformation of gneralized function. Expansion of 

certain schwartz distribution in the series of orthonormal 

functions were given by Zemanian A.H. and thereby he extended 

number of integral transformations to distributions [37]. By 

using the technique of Zemanian we have extended Finite 

Fourier Cosine-sine transform to distribution.

The method involved in this work is very much related

to Hilbert space technique, and its prototype is the Fourier

series expansion of a periodic distribution (generalized 

function) with finite period. A proceduree will be developed 

for expanding a generalized function f into a series of the

form

2.1.1
m=o n=o

where the m,n constitute a complete system of Orthonormal 

functions. And F(m,n) are the corresponding Fourier coefficients 

of f. This procedure will leads to a whole new class of 

generalized integral transformations. The basic idea is to view

the linear mapping f ---- »F(m,n) as a transformation f from
C5
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certain class of generalized functions f into the space of 

Junctions F(m,n), mapping the integers into the complex plane. 

Then (2.1.1) defines the inverse transformation; of course; 

the convergence of series (2.1.1) must be interpreted in a 

generalized sense. Moreover, the permissible orthonormal 

functions ^ m >n he eigen functions of self adjoint operator

R. As a result, the corresponding transformation f wil’
OS

generate an operational calculus for solving differential 

equations involving the operator R.

We have extended Finite Fourier cosine sine transformation 

of classical functions f(x,y) to a class of generalized functions 

and proved inversion and uniqueness theorems.

We shall define the Finite Fourier Cosine Sine

Transformation of classical functions f(x,y) over the 

open rectangle I as follows :

2.2 DEFINITION

Let f(x,y) be a function of two independent variables 

x and y, which is defined on open rectangle I such that 

f(x,y) is continuous on I and its first order partial derivative 

is piecewise (sectionally) continuous on I where I is given 

by

I = { (x ,y) : 0< x < a, 0 < y « b }

Then, here we may treat f(x,y) as a function of y alone (i.e. 

considering temporarily f(x,y) as function of y) so that f(x,y) 

will posssess finite Fourier sine transform (with respect to 

y) which we may denoote by Fs(x,n) defined by the equation
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2.2.1

Fg (x,n) = f3(x,y) ; y -*• n ]

=*• { f(x,y) Sin (--^-)dy 

Now F (x,n) will itself have a finite Fourier cosine transform
5

With respect to x which we denote by F^ (m,n) and is defined 

oy the equation

Fcs (m,n) = fc[fg [f(x,y); y n]; x -► m]

= fc[Fs(x,n) ; x -»• m ]

= fc[fs[f(x,y); y* n ]; x + m] 2.2.2

» fcstf(x»y);(x»y) ^ (m»n)l

= / / f(x,y) Cos (--”-)Sin(--g“)dxdy
o o 2 2 3

Equation (2.2.3) defines the Finite Fourier cosine-sine

transform of f (x, y).

2.2.3 INVERSION FORMULA

By applying inversion theorem for finite Fourier sine 

transformation to equsation (2.2.1) we obtain the relation

f(x,y) =2/feZ F (x,n) Sin (-——) 2.3.1
n=1 s b

Similarly by applying inversion theorem for finite Fourier

cosine transformation to equation (2.2.2) we shall get the

relation [ 27 ]
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<X> m TT x
F (x,n) = 1/a F (0,n) + 1/a I F(m,n) Cos(------~)
* m=l 03 a

2.3.2

Now by using (2.3.2) in (2.3.1) w© obtain

f(x,y) =2/b |=1 [1/a F^ (0, n)+2/a J^m ,n)Cos(«^J-*)Sta(2-££) 

That is

f(x,y)=»2/abj^ Fcs (o,n)Sin(~g-)+4/ab l * ? Fcg (m,n)Cos(----)
m=1 n=4

Sin(-—^) 2.3.3

2.4 FINITE FOURIER COSINE SINE TRANSFORM OF DERIVATIVES

The finite Fourier sine transformation of derivative of 

f(x) i.e. 2rf/ 2*x will be given by

3tf- , ,a & f , h-jf x
f* * * "i - C Sln( a -)dx

= [f (x) Sin?--r-)]a-/f(x) (XU.) cos^-J-^dx
a a

= [0-0] - ---- F (n) „
9 C

1.4.1

3fSimilarly finite Fourier cosine transformation of will be

given by

fc<fx! I* * ") - l H-®" l--r-J “*

[f(x) Cos(
n ir xa n it a n i x,

)]+------ / f(x) Sin(---------- )dx
a o a

(-1)n f(a)-f(0) + ----- Fg(n) 2.4.2
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If we assume at the boundary of f(x) , f(a)=f(a)=0 then

(2.4.2) gives

3f n tt
fo t“a” ; X - n} . — Fg (n) 2.4.2a

The result of higher order derivatives may be established 

by repeated use of fundamental results (2.4.1) and (2.4.2) 

viz.
h a

/ 3-|sin(
o 8x2

niTx
a

a
)i- ----

O

■)dx

« n „ f ») ' f» 0-----------f [-—i-;x
a c d x

^ ® X

n]

if. Cos (---£) dx 
a

-(-~-)F (n) + --- [(~1)nf(a)+f(0)] 
a c a

2.4.3

Similarly
. [t* .
c a x2 ’

a a2f
f ; X ♦ n] » / Cos (--“--)dx

o dx

r 3 f . ,n it x ^ mr ar s-f .nit x. g 
“ 13-r Cost-——}]/ . — Sin( - dx

= (-1)nf (a)-f • (0) t-j- fg[-~ ;x» nl

= (-1* f’ (a)-f1 (0) + --- [- F (n)]
a a c

=(-1)nf' (a)-f' (0)-(“--)2F (n)
a c 2.4.4
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0
Now if we regard the function f as function of two independent 

variable x and y defined on the domain I i.e. open rectangle 

>I=</(x,y); 0 < x < a, 0 < y ^b ^ . then the double transform 

of partial derivatives of a function f(x,y) may readily be

written down as

F x * m] = ~--[f(0,y)+ (-1)m+1 f(a,y)]-(-“-Vg (m,y)
3

~~Cf(0,y) + (-1)m+lf(a,y)]-(----)fg[f(xfy); x ■*» m

Now by taking Fourier cosine transform of above equation 

obtain

2
j- :(x.v) 9 (m.n)l = (m.n

32 f
f cs^~~2 ;(x’y) 61(m»n)]= (m,n)-(—)Fcs (m,n) 2.4.5

m tt
m+1

where (j1(m,n)= —[f [f (0,y);y n] + (-1) f (f) (a,y); y+ n]]
I a C C

in particular if f(0,y)=f(a,y)=0, 0«y<b then
_2 2 2 _ r 3) f , \ / \i m TT _ . vf ^—V ^x,y) ^ 3-------- 2" Fcs(m>">
° x a

2.4.5a

3 f(x»yL
3 y2

Similar result hold for Fourier cosine sine transform of 

that is
32 f n ^ n+1

Since fg [-—j ; y -*■ n ] = --g- [f (x,0) +(-1) f(x,b)]

' 2 ^2
-n—$ f [f(*,y) ; y n]

b^ s

So that by taking Fourier cosine transform of above equation 

we have
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e-
i

32 2 2
f t 7'—2 ’ *x,y* "*■ ^m»n^ = 0 (m,n) - F^rti.n) 2.4.6

n ir n+1
where / (m,n) * —r- [f Cf(x,0); x -*• m] + (-1) f [f(x,b); x-► m

U C C

in particular if f(x,0)=f(x,b)=0, 0<x<a then
2 rr2

fcs[\l ; (x,y) ' (m’n)] = " ~"2 Fcs(m’n) '
/ b

2.4.6a

From result (2.4.5a) and (2.4.6a) we deduce that

■Pes "1^1 f(x»y) » (x»y) (m»n) 1 ■

0 2 2 2 m n , vs8j (m,n) +Q2(m,n) -It (—2+ -j) F Cm,n)4
a b

2.4.7

In particular if f(x,y) vanish along the boundaries of the open 

rectangle 1= { (x,y): 0-; x< a , 0 <y <sb} we have

0,2 22
ffcs^3”2 + a~2 * f(x»y> ?(x»y) (m,n)l= -T?(--j + --j)F ^m,n^

“y a b

2.4.8

2.5 THE SPACE L2(I)

Let I denotes the open rectangel given by I®{ (x,y): 0 <x < a ,

0 < y < bl .A function f(x,y) is said to be quadraticaiiy

integrabie on I if it is a locally integrabie fufaction on I such

that .
2 —

«* (f) = [ *J|f(x,y)| dxdy ] 2 < ®
oJ oJ

The set of all quadraticaiiy integrabie functions can be 

partitioned into equivalence classes of such functions by 

stipulating that two such functions f and g are in the same
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class If and only If ao(f-g)*0. This Is the case if and only 

if f=g almost everywhere on I. The resulting space of 

equlvalance classes is denoted by Lg (I). It Is customary to 

Speak of l_2 (I) as space of functions, even though it is 

actually a space of equivalence classes.

The functional a0 is also defined by (2.5.1) on LgU);

that is, the number that '* assigns to any equivalence class

is defined as the number that assigns to any one of its 

members, this number being the same for all members of a 

given class.

1.2(1) is a linear space whose zero element is the class

of all functions that are equal to zero almost everywhere on

I. Moreover, a is a norm on L (I) and is therefore a specialo z
case of a countable multinorm (the multinorm has only one

element). L (I) is assigned the topology generated by a .It 2 o
turns out that (I) is a complete space.

An inner product, which is a rule assigning a complex 

Humber ( $ , 4* ) to each ordered pair <j>, of elements in l_2 

(I), is defined by ___ _

2.5.2

where ^ (x,y) denotes the complex conjugate of ip (x,y). It

possesses the following properties
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I) (f+h,g) = (f,g)+ (h,g) f,g,h e l-2(I)

li) ( Bf»g) = (f»3g)= ii(f»g), here 3 denotes complex number

iii) (f*g) = (gj)

iv) (f,f) = Ca0(f)32 *0

And if (f,f) = 0, then f is the zero element in L2(I).

Also Schwarz inequality hold in L2(I). That is | (f ,g) (^(f) a Q(g) 

The dueal of L2(I) is L.2 (I). That is for each continuous linear 

•functional H on l_2 (I) there exists a unique member h of L_2(I) 

siucn that H(f) = (h,f) for every fe (I) yjhere H(f) denotes 

the number that H assigns to f.

Let R denote the differential operator given by

J,2R + V
Also let ^ (x,y) be defined byill |*l

*'(x.y) - Sin (2-i-i)
o,n *ab h

n — 1^2• • •• 2.5.4

o _ n ity
P (x,y) = Cos (—--) Sin (-----)
m,n /ab a b

ro jH2 1 j2}3j • • * •
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of real numbersThen there exists a sequence { 'I'___}. __~1 m ,n ‘ m ,n=Q
called eigen values of differential operator R. And a sequence

} of smooth functions in La (I) called eigen
m ,n m ,n=0 *

fnctions of R, such that I ^ | -*-°° as m and n -*■» .1 m,n
And

R m ,n X m,n
*

m ,n=0,1,2, 2.5.5

vrfhere

X s 
m ,n -it

2, m2 
'a2 2.5.6

LEMMA 2.5.1
too

X } is an orthonormal system of eigen
m ,n m ,n=0

functions of operator R.

Proof

To prove the lemma we shall show that,

< *m,n’ *ptd - ' lf (m-"> - ‘P'O)

= 0 if (m,n) 4 (p,q)

Case(i)

If (m,n) * (p,q) then the inner product gives

a b 
S f 
o o

mu x niry

a b v aK ° b

( ^ * 4* )*( ^ )= / r ^ dxdym,n p,q m,n m,n J J m,n m,n J

a b 2 n it y o
/ /7—- Cos ——x Sin------7~ Cos —r- Sin —
o o * ab a b * ab

dxdy .

---/
ab

b m it x
S Col-------o o a Sin

n 7i y

-b dx dy
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4 b a 2m ft x
-----/ r/ V2[1+ Cos
ab o b a

2m it x
. b

--- / [x + 
ab 2m tr

a

] dx[1/2[1- Cos —---]dy
b

ill- Cos dy

..J,.. fb [ a-0] [1- Cos -~--y] dy

55 o

SinJQJ_*__ b 
i [ y - —]

ab 2n tt J

ab

_ab_
ab

b

• [ b - 0] 

= 1

Case (ii)

If ( m , n) i (p,q) then

< „• „> + -5— ? t r TL™ Cos El*.]m,n p,q ab

[ Sin b

f f [ Cos

qrr y , q tt y \

o o 

nir y
Sin (Sin ] dxdy

V b /

a

ob [ i i/2(Co.(-22P)N X + COS (-T22-) ]dxl ^ TT
D 3 £1

2/ab r a
m~+Jj

a

n iry Sln3^ ] dy
5 b a

)ir x Sm (-V-P)Trxf

+
)tt

a J

Sin
n >r y

Sin -~-y dy
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f

= 2/ab /b [O-o) Sin 4-=---) Sin ( 9JUL ) dy 

o b

b
* 2/ab / [ 0 ] dy 

o

s 0

Hence by definition of orthonormality our assertion follows 

Again by completeness of jn}^>n_Qmeans that every fe bj (I)

can be expanded into the series

t » ? £ (f, <P ) <l>
m=0 n=0 m,n m,n

which converges in L^I) , that is 
N N

a Tf- £ £ (f, ^ ^ ]+ 0 as N 00
o L m=o n=o m,n m,n

2.5.7

2.5.8

we call (2.5.7) the orthonormal expansion of f with respect

rm„n*0

Moreover, for given operator R there may be more than one 

complete orthonormal system of given functions.

An important classical result states that i* )
m,n is

complete if and only if, for every f e l_2(I)i the coefficients

(f, ^___) satisfy Parseval's equation.
m ,n
« a b
* * Kf. ^ ; |f,(x,y)|dxdy . [a (f)]‘

m=0 n=0 ----- o o

0

2.5.9
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RIESZ FISHER THEOREM

Let ^ m,n ^ be a complete orthonormal system, and let 

i n ^ m n=0 be a seciuenc0 of complex numbers such that
a. ^ %
Zn y C converges, then there exists a uniquem=0 n=o m ,n

Fc L_ (I) such that C » Of» i|j ) consequently ^ oo m ,n m ,n
f- z Z c

m=0 n=0 "*m,n m,n *

2.6 THE TESTING FUNCTION SPACE S(I)

Now we shall construct a testing function space S(I) 

which depend upon the choice of the domain I, the differential 

Operator R and complete orthonormal system {^ >n } m >n_Q °f sigen 

functions. It's dual is a space of generalized functions, each 

of which can be expanded into a series of the eigen functions

m ,n

S(I) consists of all functions $ (x,y) that possesses 

the following properties.

i) <j>(x,y) is defined, complex valued and smooth on I

For each nonnegative integer kii)
,k , . .a b . k . ,2 1

ak( $) = ac^R ♦ ) = [ / / | R <t> (x,y)| dxdy]2 <

lii) For nonnegative integers m,n and k
(Rk(t> ,<l> ), = (<t> , R^ )

m ,n m ,n

where R denotes the differential operator

R. t.. + j>1_
SK2 d y2

2.6.1

2.6.2

2.6.3

And
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(x,y) = -2- Cos (^---) Sin 
m ,n /ab a

for each m,n = 1,2,3

^ n (x,y) = -~- Sin 
° n / ab b

for each n=1,2,3,...

2.6.4

And
k .

(R <t> ^ n) *s 90 inner Product in LgU)

Then both sides of equation (2.6.2) exists because in 

view of Lemma 2.5.1 and by Schwartz inequality we have

For ail <t> (x,y)e S(I)

f / n R M dxcJy ^ f ^ dxdy]‘J C / / *R 4> |4dxdy]
o o ’ ^ ’

a b 2

o o

2 _ a b. k 2 
r / / '
o o

$ 1. ak >

2.6.5
< 00

And

/ / I $ Rk 4* I dxdy = I X
o o m ,n m,n o o 

k

a b
/ / I'M |dxdy 

m ,n

< X
m,n

ao( 't>)

< oo 2.6.6

Moreover, under the pointwise addition of functions and their 

multiplication by complex number S(I) is a linear space.

LEMMA 2.6.1

Every >!> _ „(x,y) is a member of S(I) for each pair
III jll

of nonnegative integers (m,n), 

for ail m,n = 0,1,2...., and (x,y) e I
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PROOF

Sine© each ^ ^ (x ,y) is complex valued smooth function

>P
k k

on I and R P _ _ = m ,n X
m ,n

we have

. 2 a
[o.f1 kv m,n' 1 J

b i 1/ lR
A

2k a b 
X / /
m,n o o

2k
.1m,n

+ „ I dxdy m,n

(Since is orthonormal)

2k 
= X 

m,n

j.e. a . ( >P ) exists for all m.n =0,1,2.... k m,n

Finally for each nonnegative integers m,n and k if (m,n)^(p,q },we 

have
(Rk * ♦ ) = Xk ( * * ) = 0

P,q m,n m>n' P’q
k

» X ( tp j
p,q m,n p,q

* ( 4> X ip )
m,n , p,q p,q

» ( * * v m,n <P )
p»q

And for (m,n) * (p,q)

k K(r% <l> ) - ( X
m,n, p,q

= ( .1;

)
»n

X" ip )

m,n, m,n 

K
m ,n m ,n m ,n

12357 41
A

* ( >P m „ Rk ip . m’n » K m,n >



Hence ^ Is member of S(I) for all m,n= 0,1,2,... m ,n

LEMMA 2.6.2
00

For every nonnegative integer k,{a^ } is multinorm

on S(I).

PROOF

First we shall show that a k is seminorm.
Now, for^any^' S(I) and any constant 3 e C by equation

(2.6.1) we have 1

a0
(3$) = [ a/ / | Rk3# (x,y) |2 dx dy ]

o o
a b k o 1

= 16 1 l f S | R $ (x,y) | dx dy ]2 
o o

= I 3 I « ( 4> )
1 1 k

I.) Again for any <t> (*»y)» 4> _(x,y) in S(I) we have
1 "

a b
(|>i+ V = [; / lR ( Vx,y) + Vx'y^ dxdy]2

o o

a b k 2 —
< [ / / |R I dxdy]2 +

o o

a b k 2 X
+ [ S S |R 4>2(x,y)f- dxdy ]2 

o o

(By Minkowskis inequality)

a a ( $ ) + 
k 1

( ♦
k 2

fhus a k( $
S(I)
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Thus (I) and (ii) imply that ak is sominorm on S(I)

f 1 00Now let j be a collection of seminorm on S(I).
k=o

Then for every 4>(x ,y) f 0 in S(I) there exists at least one

a such that a ( <j> ) 0
k k

In particular i
a b . —

(♦>■[/ / I 4>(x *y) 12 dxdy ]2 4 0
° o o

Then clearly aQ{$) = 0 <j> = 0 that is aQ is norm on S(I).

Thus at least one of the seminorm is norm the
,00

collection is separating therefore { °L ; is multinorm
k=o k=o

cn S(I).

Furthermore, since { ^ is countable separating
k- o

collection of seminorm. Therefore { °i<}00f<-o^s countable multinorm 

on S(I) Thus S(I) is countably multinormed space.

LEMMA 2.6.3

S(I) is subspace of L2 (I)

PROOF

Since L^_ (I) is the class of quadratically integrable

functions on I such that,
b 2 1

aQ(f) = [ j S |f(x,y)l dxdy ]2 4 co C * >
o o

Then clearly L2(I) is a linear space.

Moreover, aQ is norm on L2(I) and is therefore a special case 

of countable multinorm (i.e muitinorm as only one element). Therefore
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l_2 (I) is countably multinormed space. And we have shown in 

previous Lemma that S(I) is countably multinormed space.

Then to prove our assersion, we have to prove that

S(I) C l2(i)
Now by (2.6.1) for all 4> (x,y) e S(I) we have

'♦> - VR% > -[ / / Vt (x.y) |2dxdy ]*« -

o o

Then from (*) it follows that, 
k .R <J)C l__ <I) for each k>, 0 

" k
In particular if k=0 then R = <j>

So that $ (x,y)e S(I) <t>(x,y) e l_2 (I)

That is S(I) C L (I)

Here S(I) is subspace of L 2(I) » when we Identify each

Function in S(I) with the corresponding equivalence class in

u2 <i)

CONVERGENCE IN S(I)
00

A sequence! $ } v is said to converge in S(I) to ,

if and only if for each nonnegative integer k,

c (4>.. -:)))-*■ 0, as V ■+• 00k v
r l00And a sequence { is called a Cauchy sequence

in S(I) , if and only if for each nonnegative integer k,

a ( d> — ) "*■k v U

as v and y tends to infinity independently.

In the preceding lemma we shall show that every

Cauchy sequence in S(I) is convergent which will imply that 

S(I) is complete. So that S (I) becomes complete countably
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multinormed space and hence a Frechet space. 

LEMMA 2.6.4

S(I) is complete

PROOF

To prove this lemma we have

Cauchy sequence in S(I) is convergent.
2 2 

8 3adjoint operator given by R = „—g + ---*
dJxZ y

to show that every 

Let R be the seif

(see lemma 2.6.7. [16,p.187)

Then R is closed. It is convenient to regard S(I) as 

a countably Hilbert space with scalar product

( 4> )k:
. h h

> Z (R <J) , R ^)
h=0

giving rise to the increasing set of seminorms.

11 <t> I lk=/ U »<t> )k * on S(I),

equivalent to the multinomr{q I00 on S(I)(see lemma 2.6.2) .
K 1 k=o

Indeed,

a (4> ) 11 $ . IN k max { a ( (J>) , a ((j> )... a U )}
k K 12k

Therefore 4> -»■ cb in S(I) as m -► «> means that 
m

11 d> _ d> 11 -*■ 0, as m •> oo and for each k ,k=0,1, ,2...
M m k

Thus if {4>m} is Cauchy sequence in S(I) then for each k,

i p a }is a Cauchy sequence in L (I). Then by sequential 
1 ” m 2

completeness of LgtDj there exists a ftjnction xk in LjU) 800,1 

" Xk •
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I

k+1
Similarly R

Then 

k=0,1,2,..., 

that 4>m - x 

that

4> —»• x » for ail k since R is closed.
m K+1

tHis
successive application of A result, for each 

shows the existence of a function x in S(I) such 

in S(I). To complete the proof we have to show

k
<R X 0’ 

k

4) ) = ( X , Rk )
m,n o m,n

Indeed, R x« and Xl. are th® same equivalence class in
O K

l_2 (I) - Again since the inner product is continuous with respect 

to the convergence in La(I) of one of its arguments.

(R + ) « (
m ,n

'I' )
m,n

lim
“hr*-00

(Rk 4>
m

* \|> )
m,n

. “m (* , R* * )
m* 00 m m,n

= (X * R ^ )
' A o m ,n

q.e.d.

Thus as sh^wn in lemma 2,6,2

a } is multinorm on S(I) . We assign to S(I) the topology 
K k=o „

generated by { J k_0 and this makes S(I) a countably 

multinormed space. Moreover, S(I) is complete and therefore 

a FrSnchet space. Under this formation S(I) turns out to be 

testing function space.
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LEMMA 2.6.5

The differential operator R is linear and continuous 

mapping of S(I) into itself.

PROOF

The proof of this lemma follows directly from the 

definition of testing function space S(I). Because if $ (S(I) 

then R (x,y) e S(I). Since S(I) consists of infinitely smooth 

functions therefore R is mapping from S(I) into S(I).

Also
3 b ^

a (R s* ) = [ / / |R R<j> (x,y) | dxdy ]2
k o o

a ( 4>) « »
k+1

And it exists for any nonnegative integer ktAgain f

R (+ 840 = aR(i|) ) + 8 R(4* ) <J> , i|j e S(I)

and u 8 e C.

Hence R is linear.

Furthermore, if ^ 0 in S(I) then

a. (* )♦ 0 in S(I) =? < (<t> )+ 0 in S(I)
k v K+i v

Thus 0 in S(I) ==*>R<|>^+ 0 in S(I)

Hence R is continuous.
Thus the mapping 4>(x,y)-> R <t»(x,y) is linear 

and continuous mapping of S(I) into S(I).

LEMMA 2.6.6

If 4>(x,y) e S(I), then for (x,y)e I 

<t> (x,y) » l l ( <t> (x,y),i|> _ i*»y)) (*>y)
m=o n=o m,n m»n
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where the series converges in S(I)

PROOF

In view of condition (ii) equation (2.6.1) of definition 
k

of S(I) , trueiy R 9 is a member of L2 (I) for each

nonnegative integer k and for any <j> (x,y) e S(I). Hence we
k

may expand R 9 into a series of the orthonormai functions

iij (x,y) . By using (2.6.2) and the fact that
m ,n

R 9 = 9 , we obtain;n,n m,n m,n’

k .
R 9 =

a
z

m=o
2 (Rk <j> , 9 ) ♦
n=o * m ,n m,n

00
= 2

00 r,
2 (9 ,Rk 9 ) 9

m=o n=o m »n m,n

00
= zm=o

k
Z( * 

n=o m ,n 9 )*m,n m,n

00
z

'JO

z (9 » 9 )
k

X 9

m=o n=o m,in m,n m,n

OO

= Z ? (9 , 9 ) Rk 9 2.6.7m=o n=o m ,n m ,n

This series definitely converges in 1-2(1). 

Consequently, for each k
r Na [9-2

** m=o n=o
Z (9 » 9m ) ^ Jm ,n m ,n

a Cr1<9 - Z Z ( 9 , 9 )Rk9 1
0 VT,Tm,n m,n

This implies

0 as N -*■ 00
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N (4
[4> - E £ (<j> , 4* ) l!> ] -► o as N

m=o n=o m ,n m ,n
00

Hence

Z t ( 4> , ) 4> In S(I)m,n m ,nm=o n=o
Q.E.D

LEMMA 2.6.7

The operator R Is self-ad joint on S (I)

PROOF

By virtue of (2.6.2) and (2.6.7) and the fact that 

the Inner product Is continuous with respect to each of Its 

argument implies that R satisfies the relation

( R 't* 14>2) * ( V R<t>2) 2.6.8

where 4>.j(x,y) and <t> ^x ,y) are arbitrary members of S(I). This 

j&hows that R is (slef)adjoint on S(I).

Indeed, for any <t>i » 4* 2 e S(I) and by equation (2.6.7) we

have
a b __

(R^ ,4>2) = / / R 4>1 (j>2 dxdy
o o 

a b
o o S ” ( ♦, * ) R * n LdXdy

1 m,n m ,n im=o n=o

z r (♦..*> / s%R*n dxdyi m ,n z m,nm=o n=o

00 00

O O

a b1 f r 4* R <t> dxdyn=o n=« 1 / / m,n 2 *uy
o o

= / / CD CO

in 2 E ( ^ ^ R 4> dxdy
0 0 m=o n=o 1 m»" m’n 2
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? p * R dxdy
■ i 2
o o

( (i> 1 * R<t> 2)

Q.E D

Now the next lemma gives a characterization of orthcnormai 

series that converges in S(I).

LEMMA 2.6.8

Let m,n denote complex numbers, then, for (x,y)e'f",
00 f/>

the series E Z a (x y) converges in S(I) if
m=o n=o m,n rrijn * 

and only if the series £
m=o n=o ‘

n=J converges ,or

dvery nonnegative integer k.

PROOF

We employ the fact that

to write

n form an orthonormal set

a b
/ / 

o o

k N N a * 
RE E m ,n m ,n dxdy

m*q n=q

a b
- 1 1 !

N N
E E a R ^ I dxdy 

_ m,n m,n yo o m=q n=q ’

b b 
/ /

N N N N rr X* *

E E E E m,n rs m»n r,s

m=q n=q r=q s=q

N n 
E E 

m=q n=q
| ^ |2k|a \£ $ ^ 'L n ^ dxdy

m,n 1 m,n nn ,r» r,s

*P dxdy
m,n rs

a b
i2

o o
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N
Z

w
Z I Xm=q n=q m ,n

12k
am,n

Thus our assertion follows directly from this equation

THE DUAL SPACE S'(I) OF S(I)

Let S'(I) denotes the dueal of S(I), which consists 

of all continuous linear functionals on S(I). The members of 

S'(I) are called generalized functions. Instead of working with 

the number < f, $> that fc S'(I) assigns to 4> e S(I) is more 

convenient to work with the number that f assigns to the 

complex con jugate number of 4>, we write

(f, 4> ) = < f, ? > 2.6.10Z
This is consistent with the inner product notation In L2 (I). 

That is the use of notation (•• , • • ) both as an inner product 

in L2(I), and for the number that f e S'(I) assigns to 4>e S(I) 

does not lead to any inconsistency.

S'(I) is linear space. Since S(I) is complete, so does 
S'(I) also [37 Theorem 1.8.3 p.21]. In view of the ^tef^adjoint 

nature of the operator R, we define the generalized differential 

operator R'=R on S'(I) through the definition

(Rf,<t> ) = (f,R<t> ),f eS'(I), ♦ e S(I) 2.6.11

since (f,Ru» = <f,R ♦ >=<R'f,<|» = (R'f,$ )= (Rf, <}>)

LEMMA 2.6.9

The generalized differential operator R' is linear and 

continuous mapping of S'(I) into S'(I)
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PROOF

In view of (2.6.10) and (2.6.11) we shall show that 

R'f=Rf Is a member of S'(I).

For any <j> , vpe S(I) and a , 0 e C we have

R'fkaf +0$>=« ffR(a(t> + B40> 

=«f, a R <j> + B R^>

V (R is linear on 
SCI) 5

= a<£ ,R (J» +0< f,R 4* >

=a< R'f><j»+0< R'f> 4»

which shows that R'f is linear functional on S(I)

Furthermore let l ^v}°°v _i converges in S(I) to zero,

then as v+°° ,R <b > 0 In S(I) and so that, 
v

< R'f ,4> > =« f,R <j> > 0 in S(I) 4
v v J

Which shows that R'f Is continuous functional on S(I). Thus 

R'f Is continuous and linear functional on S(I) therefore R'f £ s'(I)

Thus f £ S'(I) and R'f e S'(I) , which means that R' 

Is mapping of S'(I) onto S'(I).

Now we shall show that R' Is linear and continuous

Let f,g £S'(I) ,<t>c S(I) and a ,3 e C then, we have 

<R'(a f +3g),4» = f +0 g, R 4> >

-•*<•0 f, R <j» + «0 g, R 4»

=a< f»R <|>> + 0< g, R<|> >
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=a« R'f^<|>> +3< R'g,

=<a R»f, <}» +<3 R'g^, >

=<a R» + BR'g, $ >

which implies R'( <*f +Q g)= a R*f +3 Rf>g IN S'(I)

That is R' is linear on S'(I)

Now let fy* 0 in S'(I) , then for every <j> e S(I)

< R'fv ,4, > - < fv ,R *> - 0 

therefore R'fv+ 0 in S'(I)

Thus fv* 0 in S'(I) =«> R'f^ 0 in S'(I) 

which means that R' is continuous on S'(I).

2.7 SOME PROPERTIES OF S(I) AND S'(I)

i) S(I) is a subspace of 1-2(1) when we identify that each

fvnction in S(I) with the corresponding equivalence

class in L2 (I).

Moreover convergence in S(I) implies convergence in

4(1).
ii) S(I) is a locally convex, sequentially complete 

Hausdorff topological vector space.

Ui) 0(1) is a subspace of S(I) AND CONVERGENCE in D(I) 

implies convergence in S(I). The topology of D(I) Is 

stronger than that induced on it by S(I). Consequently, 

the restriction of any fe S' (I) to D(I) is in D'(I). 

Moreover, convergence in S'(I) implies convergence 

in D'(I).
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HENCE members of S'(I) are called distributions in 

the sense of Zemanian [37,pp.39],

iv) S(I) is subspace of E(I) .Furthermore, if { }°° ^
r , °o ^

converges in S(I) to the limit i then { :j> } also

converges in E(I) to the same limit .

v) Since D(I) ^ CS(I)^ C E(I) and since D(I) is dense in

E(I), implies that S(I) is also dense in E(I). The

topology of S(I) is stronger than that induced on it 

by E(I). Hence E'(I) can be identified with a subspace 

of S'(I) which follows from [37,corollary 1.8.2a and 

lemma 9.3.4].

vi) We imbed L2 (I) (and, therefore, S(I) since S(I) is

subspace of L2(I) into S'(I) by defining the number

that f et-2(I) assigns to any $ £S(I) as

(f» ♦ ) * f jP f(x,y) <Mx,y) dxdy )
o o

f is clearly linear on S(I). Its continuity on S(I)

follows from the fact that if sequence { ^ }°° , 'Converges
m m*i

in S(I) to zero, then by the Schwarz inequality

I (f» <L )h <* (f) « 0 , as m ♦ «.

The above definition (*) is consistent with the facts

that he dual of L (I) is L2(I) and that the inner

product( h , x) is precisely the number that an 

arbitrary, continuous linear functional h on L (I)
it

assigns to an arbitrary x e (I) •
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This imbedding of L 2(1) into S'(I) one-to-one . Indeed, 

if two members f and g of L2(I) become imbedded as 

the same element of S'(I) , then

(f» <t>) = (g»4> ) for every <j> e D(I). But this implies 

that f=g almost everywhere on I. Hence f and g are

In the same equivalence class in L2(I). 

k
>/ii) If f(x,y)= R g(x,y) for some g(x,y) £ l2(I) and for

some nonnegative integer k, then f(x,y) £ S'(I). This 

Follows directly from the facts that Lji(I) C S'(I) and 

that R maps S'(I) into S'(I).

viii) For each f e S'(I) there exists a nonnegative integer

r and a positive constant C such that

1 (f, <t>)| < C max a k(<t>) 
o« k < r

for every 4> s S(I).

Here r and C depends upon f but not on $ .

ix) Since the conventional operator R is self adjoint on 

S(I) implies that the conventional operator R and the 

generalized operator R=R' coinsides on S(I).

2.8 ORTHONORMAL SERIES EXPANSION AND GENERALIZED 
INTEGRAL TRANSFORMATION

The following fundamental theorem provides an 

orthonormai series expansion with respect to ^m>r, of generalized 

functions in S'(I) which in turn yields an inversion formula 

for a certain generalized integral transformation.
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THEOREM 2.8.1

Any generalized function in S' (I) possesses an

orthonormal series expansion with respect to 4*___ used inm ,n

construction of S(I)

Symbolically If f e S'(I) then
00

f =* 2m-o
z (f, 4> J 4*n=o m ,n m ,n 2.8.1

where the series converges in S' (I). 

PROOF

To prove this theorem we need merely invoke the 

previous lemmas (2.6.1) and (2.6.6)yThen for any <t>(xyy}€ S(I) 

we have

(f, 4> ) ■ (f, ? z 
m=o n=o

i> ) 4)m ,n m ,n

■ Z £ (f, 4> ) (<t» , 4> )
m=o n=o m’n m’n

£ £ (f, 4< )(4> ,*)
m=o n=o m,r* vm,n

<x> go

* £ £ ((f, 4» ) d, ) 2.8.2
m=o n=o m,n m,n

And the right hand side of (2.8.2) truely converges for any 

4> e S(I) . Which means that the series (2.8.1) converges in 

S#(I). Q.E.D.

DEFINITION : DISTRIBUTIONAL FOURIER COSINE-SINE TRANSFORMATION

The members of S'(I) lead to the distributional

(generalized) Fourier cosine sine transformation f' defined
cs

by
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♦

fCS ^ = F^m»n^ = ^ ab/2 (f» *!{,, „) 2.8.3

for all feS'(I) ,m,n=0,1,2,...

And this f' is a mapping of f eS'(I) into the space of 
cs

complex valued functions F(m,n) defined on the set of ordered 

pairs of nonnegative integers.

The inverse distributional Fourier cosine sine 

transformation f is defined by the series (2.8.1) which
CS

we rewrite as

f'J1 = 2//ab f z F(m,n)i|>I jl 1/ *f
m=o n=o m ,n

that is

f = 2// ab [ ? F (°»n> * „ + ?
n=1 cs O.n m 1 n£1F^(m,n) ^ 5' m=i n=i cs m,n

pa Sin "IX
= 2/ /ab

/ abn = 1 cs

+ 2/ /ab

Cos

2 F (m,n) 2// ab
n=1 cs

Sin
a b

= 2/ab p (o,n) Sin(-”-i + 4/ab 2 2 F (m,n)
cs b m=1 n=1 cs

_ (itm.. x .n iry
Cos Sin (-g--)

THEOREM 2.8.2 

UNIQUENESS THEOREM

If f, g e S’(I) and if their transformations F(m.n) and 

G(m.n) defined by (2.8.1) satisfy F(m.n)=G(m.n) for every
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pair (m,n) of nomegative integers then f=g in the sense of 

©quality in S'(I).

PROOF

By theorem (2.8.1) for any4> e S(I) and f,ge S'(I) we

have

m,n m*n >

/ / . <*> CO

2/ /ab ( Z 2 [F(m,n) -G (m,n)] , :t, )
m=o n=o m,n

2/ /ab ( 0, 4> )

f-g * o

In the sense of equality in S*(I). This means that f=g in 

S'(I). Q.E.D
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