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CHAPTER-I1
DISTRIBUTIONAL FIITE FOURIER COSINE SINE TRANSFORM

2.1 INTRODUCTION

The concept of orthonormal series related to generalized
functions is some what different than other usual concept of
integral transformation of ogneralized function. Expansion of
certain schwartz distribution In the series of orthonormal
functions were given by Zemanian A.H. and thereby he extended
rumber of integral transformations to distributions [37]. By
using the technique of Zemanian we have extended Finite

—————

Fourier Cosine-sine transform to distribution.
/‘______/____,_.’-——.——-——-M——-“—\—“ e e o e

The method involved in this work is very much related
to Hilbert space technique, and its prototype is the Fourier
series expansion of a periodic distribution (generalized
function) with finite period. A proceduree will be developed
for expanding a generalized function f into a series vof the
form

X0

f=) ] Flmmd | 2.1.1

m=0 n=o "

where the q/:m,n constitute a complete system of Orthonormal
functions. And F(m,n) are the corresponding Fourier coefficients
of f, This procedure will leads to a whole new class of
generalized integral transformations. THe basic idea is to view

the linear mapping f —F(m,n) as a transformation f cs from
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certain class of gemeralized functions f into the space . of
functions F(m,n), mapping the integers into the complex plane.
Then (2.1.1) defines the inverse transformation; of course;
the convergence of series (2.1.1) must be Interpreted in a
generalized sense. Moreover, the permissible orthonormal
functions ¥ m,n will be eigen functions of self adjoint operator
R. As a result, the corresponding transformation fcs wil’

generate an operational calculus for solving differential

equations involving the operator R.

We have extended Finite Fourier cosine sine transformation
of classical functions f(x,y) to a class. of generalized functions
and proved inversion and uniqueness theorems.

- We shall define the Finite Fourier Cosine Sine

Transformation of classical functions f(x,y) over the

open rectargle I as follows :

2.2 DEFINITION

Let f(x,y) be a function of two independent variables
x and y, which is defined on open rectangle I such that
f(x,y) is contiruous on I and its first order partial derivative
is piecewise (sectionally) contiruous on I where I is given
by

I =14 (x,y) : 0O< x<a, O<y<b }
Then, here we may treat f(x,y) as a function of y alone (i.e.
considering temperarily f(x,y) as function of y) so that f(x,y)
will posssess finite Fourier sine transform (with respect to

y) which we may denoote by Fs (x,n) defined by the equation

28



hwwﬁ”ﬂ‘ /

Fg (xyn) = fo(x,y) 5y » n]

= [ f(x,y) sin (OLL-)ay 2.2.1

Now F5 (x,n) will itself have a finite Fourlier cosine transform
with respect to x which we denote by F 4 (m,n) and is defined

oy the equation

Fog (myn) = £ [F, [f(x,y); v > n}; x » m]

fc[Fs(x,n) s X+ m ]

fc[fs[f(x,y); y* nl; x * mj 2.2.2

]

fog [F(xay)i(x,y) > (myn)]

a b -
=S [ f(x,y) Cos (T-TX)sin(CLY)axdy
o o a b

2.2.3

Squation (2.2.3) defines the Finite Fourier cosine-sine

transform of f(x,y).
2.2.3 INVERSION FORMULA

By applying inversion theorem for finite Fourier sine
transformation to equsation (2.2.1) we obtain the relation

my

X n
f(x,y) = 2/BI F_(x,n) Sin (~---=) 2.3.1
n= S b

1
Similarly by applying Inversion theorem for finite Fourier
cosine transformation to equation (2.2.2) we shall get the

relation [27 ]
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Fo(x,n) = 2/a F _(0,n) + 1/a T Fg (myn) Cos (=12 )
! m=1

Now by using (2.3.2) in (2.3.1) we obtain

f(x,y) =2/b r%‘:‘ [1/a F (0,n)+2/a Z F ém,n)cos(m...lf.X)51n(-..-_)

That is
w© mix
f(x,y)=2/ab & F (o,n)Sm(--—)+4/ab b (m,n)Cos(-—-—)
n=1 m=1 n=1
Sin('-!g— 2.3.3

2.4 FINITE FOURIER COSINE SINE TRANSFORM OF DERIVATIVES

The finite Fourier sine transformation of derivative of

f(x) i.e. af/ Ax will be given by

af 3f Ny X
fo [-5 x> nl = s S Sin(=-=)ax

f(x) sin{-1%12 - Fe(x) (DL Cos-!‘ LX) dx
a ‘s o a

nm
= [0-0] - =—=- F_(n), Dol
3imilarly finite Fourier cosine transformation of %—5- will be
given by
a
of B o f | n Tx
PGz x » nl = [ 53-Cos (—7=) dx
n 71x.2 arm X
= [f(x) Cos(===m-=)]+ T #(x) sm(--’-‘--.)d
a o o
n n
= (1) £@)=F(0) + -=3"- F_(n) 2.4.2
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1If we assume at the boundary of f(x) , f(a)=f(a)=0 then

12.4.2) gives

of nm
LN [""a"i' 3 x > n} o= —g-= Fs(") 2.4.22

The result of higher order derivatives may be established
by repeated use of fundamental results (2.4.1) and (2.4.2)
viz.

2
'«?f agq_ f nm x
fxa=3 x * nl= [ Sin(
s ax2 ’ o 'BXZ a

)dx

a

f nmx
[--=- Sin( )1-
£ a o

nTo2 af nmx
a gax Cos(a ) dx

n dF
0- —;—-— fc [-'a—,-')-('—,x +*  n]

,_(2-%7.%[:’ (n) + ’3;-“ [(-1)"f(a)+(0)] 2.4.3

Zimilarly

3‘2 ¢ 8 .2 .
Flr—3 i x > n] = [ --=5 Cos (-—2-- )dx
€9 x o I

L}
——
o
¢
i
i
8
~
|
i
i
|
1
S’
aad
-

("1 @)= (0) 2T £ (-2

$X> n}

n
(-1) £ (a)=f*(0) + 2% [ 2 F (n)]

=(-1)"§" (a)—F* (0)-(-212)2;:6(.1) 2h.4
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Now if we regard the function f as function of two independent
variable x and y defined on the domain I i.e. open rectangle
7 Nl= { (x,¥); 0 (x<Ca, 0Ly b 3 . then the double transform
of partial derivatives of a function f(x,y) may readily be
written down as
2
O m s B 0™ ey -2 imyy) -

1
= THEO) ¢ (D fay) 1= LExy); x + m

Now by taking Fourier cosine transform of above equation

ubtain

2
teslsz 100y) 8 (mn)l= (myn)=(-==)F g (m,n) 2.4.5

1
where 9 (m,n)= —=2 [f [f(O y)iy > nl + (_1)"”‘ f (f)(a,y); v > nll
1 9 a c b ] c ) 4

in particular if f(0,y)=f(a,y)=0, O <y €B then

32 ¢ mZ TIZ
tol5g (xey) > (myn)] = = ===5= Fgg (myn) 2.4.5a
X , a
82 (x,y)
Similar result hold for Fourier cosine sine transform of ’a---z-----
y
that is
3‘2 f nm n+1
Since fs 5-:-2- s Y+ n ] = -—5- [f (X,O) +(—1) f(x,b)]
’ 2 Tr2
n
= ==z ff(x,y) 5y » n]
b

So that by taking Fourier cosine transform of above equation

we have




g,

—>

2 2 _2
3§ nm
¢ [-a-;-;’-i i (x,y) > (myn)] =9 2(m,n) - -t-)i- Fodm,n) 2.4.6

tn particular if f(x,0)=f(x,b)=0, O0<x<ca then
32 2 .2

! T
fs [7{:% i (x,y) "(myn)] = - '3";2 Feg (myn) . 2.4.6a

-

From result (2.4.5a) and (2.4.6a) we deduce that

o~ o
Bg Lidiye <5) fxy) 5 (xpy) > () 1 =
2 2

=81 (myn) + Gz(m,n) -1\‘2 (T.2+ QE) Fog (m,n),
a b

2.4.7
In particular if f(x,y) vanish along the boundaries of the open
rectangle I={ (x,y): O< x<a , O<y <b} we have

32 ;)2 2 m2 n2
f [(5;5 + é-;'z' ) f(x,y) ;(x,y) > (m,n)]= -T0 (“;z + ~;§)ch (m,n)

2.4.8

2.5 THE SPACE L2 (1)

Let I denotes the open rectangel given by I={(x,y): 0 <x<a,

0 <y < bl . A function f(x,y) is said to be quadratically

gt o

integrable on I if it is a locally integrable fufGtion on 1 such

that
2 1

ab 2 Y541
& (f) = [ |flx,y)] dxdy 17 ¢ o
° ol of ’

The set of all quadratically integrable functlons can be
partitioned into equivalence classes of such functions by

stipulating that two such functions f and g are in the same

33
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class if and only if a,(f-g)=0. This is the case if and only
if f=g almost everywhere on I. The resulting space of
equivalance classes is denoted by L2 (I). It is customary to
speak of L, (I) as space of functions, even though it is

i#ctually a space of equivalence classes.

The functional “o is also defined by (2.5.1) on L, (1)
that is, the rumber that “o assigns to any equivalence class
is defined as the rumber that % assigns to any one of its

members, this rumber being the same for all members of a

given class.

l_2 (I) is a linear space whose zero element is the class
of all functions that are equal to zero almost everywhere on
1. Moreover, Oto is a norm on L2 (I) and is therefore a special
case of a countable multinorm (the multinorm has only one
glement). L 2(I) is assigned the topology generated by a Jt
turns out that L, (I) is a complete space.

An imner product, which is a rule assigning a complex
tumber ( ¢ ,¥ ) to each ordered pair ¢, § of elements in L,

(1), 1is defined by e ?Q

a b e )
Coav) =f { ’m—\ (x,y) dxdy 2.5.2

where U (x,y) denotes the complex conjugate of ¥ (x,y). It

possessaes the following properties

34



1) (f+h,g) = (f,g)+ (h,g) fygh e LZ(I)

1) (Bf,g) = (f,3g)= 3(f,g), here 3 denotes complex rumber
iii) (f,g) = (g,f)
W) 60 = [ (1) 30

And if (f,f) = O, then f is the zero element in Ly ().

@%ﬁ ) Furthermore, the 1imner product 1is continuous with

respect to each (offy its arguments, that is if fm* f in L2 (1)
> 00/_:@ then
™
‘fm ,9) > (f,g) and (ngm ) + (Qaf)

" Also Schwarz inequality hold in L2 (I). That is l(f,g)l‘(%(f) a o(g)
The dueal of L, (I) is L,(I). That is for each continuous linear
functional H on L2 (I) there exists a unique member h of LZ(I)
such that H(f)=(h,f) for every fe l2 (I) where H(f) denotes

the rumber that H assigns to f.

Let R denote the differential operator given by

2 2
SRR 2.5.3
Ax dy
Also let ¥ _ _(x,y) be defined by
m,n
‘ 1 n_ny
! = ==i-  Sin (2-I-
ll’o’n X,Y) = (=-2-%)
n o= 12,3, | 2.5.4
nmy
b (x,y) = 2= Cos (-T"%) Sin (=m=m-)

myn= 1,2,3,....
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o0
Then there exists a sequence { V of real numbers

m,n } m ,n=0
called eigen values of differential operator R. And a sequence

iy }m of smooth functions in L, (I) called eigen
m,Nn m ,n=0

frctions of R, such that| ¥ ni*w as m and n-+w
¥

And
R \g’n,n = -Xm,n wT",“
2
m’n&'l’z’.... 2.5.5
wihere
A =g (M, D 2.5.6
m,n aZ bZ
LEMMA 2.5.1
{ }e Is an orthonormal system of eigen

m,n m ,n=0
iunctions of operator R.

Proof
To prove the lemma we shall show that,
(¥ n? %,3 =1 if (myn) = (p,q)
= 0 if (m,n) # (p,q)
- Case(i)
iIf (m,n) = (p,q) then the inner product gives
d = = a
(',m,n’ q)p,q) (qun,n m,n) {_’ {;%,n %’ndxdy
a b i Ny y myg X nny
= 7 === Cos B-Xsin -—— 73: Cos 3 Sin dxdy .
oo ab a b Y ab b
a b mq X nn y
4 2 1
A N — ———
350 o Cos 3 Sin dx dy



T

4 ba 2m n:
= ;b-- rrr1/2[1+ Cos -_ger] dx[1/2[1~ Cos --é-!-]dy

° b
2n_ T X
. b a
S O g s - N— 1[1- Cos gr-‘-1-[-!] dy
il
») a 0
b 2n
. 3+ [ a=0] [1- Cos _..6.".."] dy
(o)
gm0ty . b
B Y PV W
ab AL
b o
= ——mm— [ b - 0]
= 2o
ab
Case (ii)
If (m, n) # (p,q) then
ab
Cinnt Vo ) v 2 mux L
m,n'  p,q o (;"J; [ Cos --;- Cos
nmy Qmy oo QY]
[ Sin =———= 22Y (sin 2LL4 ] dxd
L [ Sin -5 Sin =5 &‘»‘\in 54 1 dxdy
I o\ mp
= ' 1/2(COS("—;") x + Cos (-——;—-) x Jdx]
n L
ESin ony sin 2 by 1 dy
sin(-Z2B)1 x  sin (2-2-Pyrx |
a a nrty
= 2/ab fb ————— =" e Sin  =-—=
o {( mp yr (T-;-E-) b
(o]
m
sin -3==7  ay

37
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4

. b nmy __—
2 /ab Jo {0-0) Sin (---E-—) sin ( S.EY... ) dy

b
2/ab f [ 0] dy
o

Honce by definition of orthonormality our assertion follows

Again by completeness of {‘Pn n };’nﬂmeans that every fe L (I)

can be expanded into the series

ow

[»e] n
f - Z Z ':f’ ‘.p ) q) 43.5.7
m=0 n=0 m,n . m,n

which converges in L,(I) , that is

N N
- I z y P + 0 N+ = 2,58
% [f- m= n=o (f m,n) m,n:l as

we call (2.5.7) the orthonormal expansion of f with respect

] )
tc’{'m,n } m,ne0

Moreover, for given operator R there may be more than one

somplete orthonormal system of given functions.

An important classical result states that {Q’m ‘i is

complete if and only if, for every f ¢ L,(I), the coefficients

(f, ¥ m, ) satisfy Parseval's equation.

; ; 0 % fafb 2 )
= ’ d - '
m=0 =0 | (£, mn { o olf,(x y) |dxdy [ao(f)]

2.5.9
)

38



RIESZ FISHER THEOREM

Let “r}n ,n} be a complete orthonormal system, and let

C e+

{ m,n }m,n=0 be a sequence of complex rumbers such that
x o ?'

mﬁo A=o \Cm ,n‘ converges, then there exists a unique

£ P
! Lz(I)msuch that Cm n:(f, Ymn ) consequently

?
oo

f= 2 I e P
m=0 n=0 m,n m,n

2.6 THE TESTING FUNCTION SPACE S(I)

Now we shall construct a testing function space S(I)
which depend upon the choice of the domain I, the differential
operator R and complete orthonormal system {q’m n }mm n=0 of sigen
functions. It's dual is a space of gene/m‘/alized functions, each

of which can be expanded into a series of the eigen functions
m,n
S(I) consists of all functigns $ (g,y) that possesses
the following properties.
i) ¢‘(x,y) is defined, complex valued and smooth on I

ii) For each nonnegative integer k

Kk a b k . 2
ak( $) = aO(R ) =0 T | R ¢ (X,y)] dxdyl? ¢ w

°© o 2.6.1
iii) For nomnegative integers m,n and k
Kk
(ROY ) =(¢,RY ) 2.6.2
m,n m,n
where R denotes the differential operator
R
= ““'i + me—— 2-6-3
dy hY y2

And



w = -2- @-TL’-(- 3 Q.JL!
.m’n(x,y) s Cos (a ) Sin (=5%)

for each my,n = 1,2,3 2.6.4

L nny_
\Do n (x,y) -/;b Sin ( =

for each n=1,2,3,...
K
(R

’qrjn,n) is an inner product in L, (I)

Then both sides of equation (2.6.2) exists because In

view of Lemma 2.5.1 and by Schwartz inequality we have

For all ¢ (x,y)e S(I)

1 1
a b K ab 2 2 a b, k 2 2
fop PR laxdy € [J 8 dxdyl® [ FIRg | “axdy)
(o] [o] (] o] o o
£ 1_ ak (q))
2.6.5
< o
And
a b Kk Kk a b
I Jer™Y | dxdy = | A f oY |dxdy
o o m'n m,n 0 O ’n
" (
< | | o ()
m,n °
< 206.6

Moreover, under the pointwise addition of functions and their
multiplication by complex rnumber S(I) is a linear space.

LEMMA 2.6.1
Every lllm’n (x,y) is a member of S(I) for each pair
of nonnegative integers (m,n),

for all myn = 0,1,2...., and (x,y) e I
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PROOF

Since each ‘l’mn (x,y) is complex valued smooth function

K k
anIland RY - =] ¥
’ m,n m,n
9
we have
2 a b k n 2
[ak(\vm,n) 1= (IR m’nldxdy
o o
2k a b 2
U AR |® axdy
m,n o O
2k
=0 1 Sii U] is or'thonor'mal)
m,n (Since { m,rr}
2Kk
= )\ £ 00
m,n

HICR Gk(\vm’n) exists for all m,n =0,1,2....

Finally for each nonnegative integers m,n and k if (m,n)#(p,q:,we
have

K

m’n’ p’q m’n, p,q

H
>
—
<~
<=~
A d

= (Y A )
m,n , Pyq P»yq
K
R
= (Voo wp,q)
And for (m,n) = (p,q)
K
(R v )= (X )
m,n, P»q m,n, m,Nn
K
= ( ) 3 A ‘p )
m,n m,n m,n
= ( \pm’n , Rk \p )



Hence \Pm n is member of S(I) for all m,n= 0,1,2,...

3
LEMMA 2.6.2

o

For every nonnegative integer k, {ak }k 0 is multinorm

on S(I).
PROOF
6 First we shall show that @, is seminorm,
CQG*Q//;I;;, fo}-//:nfy\ S(I) and any constant B e C by equation

{2.6.1) we have 1

k 2
) a BO)y = TP IRBO (y) |© ax ay 1P
k 2 0

IB1E S ST IR ¢ (x,y) | dx dy ]2
o o
=By (9
A8 ()
1) Again for any ¢1(X,Y), ¢2(X’Y) in S(I) we have
a b 2 1
“k( ¢1+ 4’2) = i fole( ¢ (xay) + ¢2(x,v)l dxdy ]2
a b K 1
< [J [ R ¢1("'Y) ‘dxdy]2 +
o o

a b k 2 .1.
+ [ S S IR ¢2(x,y){- dxdy 12
(o] o

(By Minkowskis inequality)

=a (9)+ (%) o(

Thus @ (0, +9)) <@ (¢,) +@ 08 ), vk, b 8 s
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Thus (i) and (ii) imply that “k is seminorm on S(I)

Now let {Olk }° be a collection of seminorm on S(I).
k=0

Then for every ¢(x,y) # O in S(I) there exists at least one

Otk such that ak(¢) #0

In particular 1.

a b 2 -
C(0) =[5 T ek axdy 12 £ 0
o o o :

Then clearly %(¢) = 0=p¢ =0 that is g, is norm on S(1).

Thus at least one of the seminorm 1is norm the

[+
collection is separating therefore { 9. } is multinorm
k=0 k=0
on S(I).
Furthermore, since { 1 is countable separating
k= 0

collection of seminorm. Therefore { 4 % _gis countable multinorm

on S(I) Thus S(I) is countably multinormed space.

LEMMA 2.6.3
S(I) is subspace of Ly (1)
PROOF -

Since L, (I) is the class of quadratically integrable

functions on 1 such that,
2 1
@) =1 Ffb |£(x,y)| dxdy 12 £ oo C*)
o o

Then clearly LZ(I) is a linear space.

Moreover, a is norm on L2(I) and is therefore a special case

of countable multinorm (i.e multinorm as only one slement). Therefore
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Ly (I) is countably multinormed space. And we have shown in
previous Lemma that S(I) is countably multinormed space.

Then to prove our assersion, we have to prove that
s(I) C LZ (1)

Now by (2.6.1) for all ¢ (x,y) € S(I) we have
1

K a b Py
Y O = RO =1 f SRRy (k) | dxdy 12 < =

o o
Then from (*) it follows that,

K .
R ¢€ LZ(I) for eac‘l;\ kz O
In particular if k=0 then R $ = 9

So that 3 (x,y)e S(I) = d(x,y)c LZ(I)
That is S(I) C L, (1)
Hore S(I) is subspace of L ,(I) , when we identify each
function in S(I) with the corresponding equivalence class in
Ly ()
CONVERGENCE IN S(I)

A sequencel ¢v}m\) -1 is said to converge in S(I) to ¢ ,

if and only if for each nonnegative integer k,

(:k (¢\)-¢)* O, a3 v+ =@

[s o]
And a sequence{ $ v }v=1 is called a Cauchy sequence

in S(I) , if and only if for each nonnegative integer k,
a - e 0.
« (¢v ¢u)
as v and u tends to infinity independently.
In the preceding lemma we shall show that every

Cauchy sequence in S(I) is convergent which will imply that

S(I) is complete. So that S(I) becomes complete countably
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multinormed space and hence a Frechet space.
LEMMA 2.6.4
S{I) is complete
PROOF
To prove this lemma we have to show that every
Cauchy sequence in S(I) is cmvergeznt. Let R be thé self
9

: 3
adjoint operator given by R = 573 + 3-;5

(see lemma 2.6.7. [16,p.187)
Then R is closed. It is convenient to regard S(I) as

a countably Hilbert space with scalar product
k
h h
(6 ¥) =2 (R & , R V)
h=0

giving rise to the increasing set of seminorms.

Holle= (o 50 5 s,

equivalent to the muJ.tlnomr{otk }°° on S(I)(see lemma 2.6.2) .
k

=0
Indeed,
@ 4 ‘ s ] see
k(¢)..H ¢ HK k max { u1(¢) c2(¢) ak(¢ ) }
Therefore ¢ > ¢ in S(I) as m»> o means that

I - ¢mnk+ 0O,as m > and for each k,k=0,1,,2...

Thus  if {¢m} is Cauchy sequence in S(I) then for each k,
{ chp }is a Cauchy sequence in LZ(I). Then by sequential
m

completeness of L, (I), there exists a function x, in L,(I) such
: k y
that R & > X -
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Similarly Rk” %‘*XKH’ for all k since R is closed.

this
Then successive application of 4, |Pesu1t, for each
k=0,1,2,..., shows the existence of a function x iIn S(I) such

that ¢, + x in S(I). To complete the proof we have to show

that

4
(R x* ¥

)= (x, R ¥ )
m,n o

m,n

K
Indeed, R xo and )(k are in the same equivalence class in
Ly (I). Again since the imner product is continuous with respect

to the convergence in L,(I) of one of its arguments.

(R kx ¥ b
o? m’n) = ( ng m’n)
1im k
L. (R ¢m ’\Pm'n)
1lim
= (6 LR ¥ )
m* = m m,n
K
N R
= (Xot qr)'n,n)
Q.EOD.

Thus as sh?wn in lemma 2.}6._2,

{ak }e is: multinorm on S(I) . We assign to S(I) the topology
generat::io by { ¥ }mkw and this makes S(I) a countably
multinormed space. Moreover, S(I) is complete and therefore

a Fr8nhchet space. Under this formation S(I) turns out to be

testing function space.
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LEMMA 2.6.5

The differential operator R Is linear and contiruous
mapping of S(I) into itself.
PROOF

The proof of this lemma follows directly from the
definition of testing function space S(I). Because if ¢ « (S(I)
then R 9 (x,y) € S(I). Since S(I) consists of infinitely smooth

functions therefore R is mapping from S(I) into S(I).

Also
e (Rée) =0 J IR" Ro (x,y) | dxdy 12
k o o
= ak”(@) < ®

And it exists for any nonnegative integer k Again,

R (ap +BY) = aR@® ) + BR(¢ ) ¢ ¢ e S(I)

and #4838 ¢ C.

Hence R is linear.
Furthermore, if ¢v-> 0 in S(I) then

ﬂk(¢v )*> 0 in S(I) =§-'<-Nﬂ(¢v )> 0 in S(I)'

Thus @v" 0 in S(I) ==> R¢\,‘* 0 in S(I)
Hence R is continuous.
Thus the mapping @¢(x,y)> R & (x,y) is linear
- and continuous mapping of S(I) into S(I).
LEMMA 2.6.6
If $(x,y) € S(I), then for (x,y)e I

O (xyy) = L 5 (0 (x,y),0 _ (x,y)) ¥ (x,y)
8 m=0 N=0 myn ) m,n
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where the series converges in S(I)

PROOF

In view of condition (ii) equation (2.6.1) of definition

Kk
of S(I) , truely R ¢ is a member of L, (I) for each
nomegative integer k and for any ¢ (x,y) & S(I). Hence we

. K
may expand R ¢ into a series of the orthonormal functions
W {x,¥) . By using (2.6.2) and the fact that

Kk
Rklll. = Y , we obtain
inyn m,n m,n
4 0 ‘%
R ¢= 3 1 (R ¥
m=0 n=o( ¢, *n,n) m,n
oo [e ] k *
m=0 n=o0 m,n° m,n
Kk
= ¥ T A IR A
m=0 N=0 m,A myn  m,n
=2 L (4, Ay
m=0 n=0 m,n m,n  m,n
o 'f \p Kk
= I (%, ) RT 2.6.7
m=0 n=0 m,n m,n

Tnis series definitely converges in L2 (n).

Consequently, for each k

N N
- . Y
’ K Lo ni:ao nio (o ‘l’m’n) m,n]
K NN K
GO[R y -Z Z(q)’qu,n)R ‘pm,n] 0 as N+ o

This implies
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) ¥
m=0 n=0 m,n

b

LEMMA 2,6.7 -

] -

m,n

N

0 as N + o

in s(I)

Q.E.D

The operator R is self—adjoint on S(I)

PROOF

By virtue of (2.6.2) and (2.6.7) and the fact that

the Iinner product is continuous with respect to each of its

argument implies that R

". R ¢1’¢2) = (¢1’ R¢2)

where

ggﬁ% W is@adjolnt on S(I).

satisfies the relation

2.6.8

$,(x,y) and ¢ fx,y) are arbitrary members of S(I). This

Indeed, for any ¢ , ¢5€ S(I) and by equation (2.6.7) we
Nave
a b .
= R dxd
(R4>1 ,¢2) I r ¢1 ¢2 xdy
o o
a b
= f f w0 =] —-—
N ¢ dxdy
o o 1L ( ¢1 ¢m,n) m,n 2
m=0 n=o
S 7 (0., P v
= D R dxd
= L r ( 1? m’n) J ¢2 m,n xay
m=0 nN=o0 o o
[~ @ b
= I z( a R o
m=o n=o o 1’ \pm,n S f \pm,n R ¢2 dxdy
o o
SR e w
B s z (6.,¥ )V R ® dxdy
o 0 n=o |} M ) 2



"
o~~~
~Z

-

o)
R=2

g

Q.ED

Now the next lemma gives a characterization of orthonormal
series that converges in S(I).

LEMMA 2.6.8

Let : In yn denote complex rnumbers. then, for (x,y) €1,

X oy
the series I I 4 ¥ (x,y) Converges in  S(I) if
m=0 n=0 m,n mn
and only if the series I ¥ | A |2“ ‘2

a converges
m=0 nN=0 m,n {m,n v for

svery nonmnegative integer k.

PROOF
We employ the fact that ‘lr’n’n form an orthonormal set
to write N 9
b K
e P IR 2 1 %mn ll’m,nl dxdy
°o o m=q n=q
a b N N
= 5 RNV |
z r a m.n m.n dxdy
© 0 m=q n=q ! !
K
b b v N N N — X
= f S T T T 5 m,n r's m,n Y.S
o
m=q n=q r=q s=q
) ) )  dxdy
: m,n rs
N ) a b
N A |2k y I R
= dxd
L L ‘ m,n‘ Iam,n‘ m, r,S y
m=q n=q o o

50



N [ 2k
z oA | la

2

Thus our assertion follows directly from this equation

THE DUAL SPACE S'(I) OF S(I)

et S'(I) derotes the dueal of S(I), which consists

of all continuous linear functionals on S(I). The members of
S*(I) are called generalized functions. Instead of working with
the rumber < f, $> that fe S'(I) assigns to ¢ € S(I) is more
convenient to work with the rumber that f assigns to the
complex conjugate rnumber of ¢, we write

(F,0) =< £, ¢ > . 2.6.10

This is consistent with the inner produ/?( notation in L,y (I).

That is the use of notation (-* , ‘- ) both as an inner product
in L, (I), and for the rnumber that f € S'(I) assigns to ¢c S(I)

does not lead to any inconsistency.

S'(I) is linear space. Since S(I) is complete, so does

S'(I) also [37 Theorem 1.8.3 p.21]. In view of the @;jolnt
rnature of the operator R, we define the generalized differential
operator R'=R on S'(I) through the definition
(RF, 0 ) = (f,R® ),f €S*(I), ¢ € S(I) 2.6.11
since (f,R9) =<f,R ¢ >= <R'f,¢> = (R'f,9 )= (Rf, o)
ILEMMA 2.6.9
The generalized differential operator R' is linear and

sontinuous mapping of S'(I) into S'(I)
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In view of (2.6.10) and (2.6.11) we shall show that

R'f=Rf is a member of S'(I1).

For any ¢ , ye S(I) and a , B € C we have

-2 R'fwigbaé f,R@d + BYy> ** (R is linear on
— ,,A/"/ S(I) )
0<dl)(©\¥ =<f, 0 RO +8 RY >

= a<f,R ¢>+8< f,R § >

=a< R'fO>+8< R'F, >

which shows that R'f is linear functional on S(I)
{ 0
Furthermore let %} v =7 Converges in S(I) to zero,

then as v+ ,R ¢v"* 0 in S(I) and so that,

< R'f > =¢ f,R > + 0 in S(I
’¢\) ’ ¢’\) n S(I) )
Wnich shows that R'f is continuous functional on S{I). Thus

R'f {s continuous and linear functional on S(I) therefore R'f € S(I)

Thus f € S'(I) and R'f € S'(I}) , which means that R’
is mapping of S'(I) onto S'(I).

Now we shall show that R' is linear and continuous
Let f,g €S'(I) ,¢€¢ S(I) and a.,8 € C then, we have
LR f +Bg),0> =<if +B g, R & >

=< f, R¢> +<B g, R ¢>

=qg< f,R ¢> +8< g, R¢ >
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=a< R'f¢> +38< R'g, ¢>
=< R'f, $> +<B R'g ¢, >
3

=<¢ R' + BR'g, ¢ >

which implies R'( @f +8 g)=a R f +3 Rbg IN S'(I)
9

That is R' is linear on S*(I)

Now let f,” O in S'(I) , then for every ¢ € S(I)

‘fR'fv,Q)) =<f\),R¢='+0

therefore R'f,» 0 in S*(I)

Thus f > O in S'(I) == R'f,> 0 in S'(I)

which means that R' is contimnuocus on S'(I).

2.7

i)

ii)

iil)

SOME PROPERTIES OF S(I) AND S*'(I)

S(I) is a subspace of L, (I) when we identify that each
function in S(I) with the corresponding equivalence
class  in L, (1),

Moreover convergence iIn S(I) implies convergence In

S(I) is a locally convex, sequentially complete

Hausdorff topological vector space.

D(I) is a subspace of S(I) AND CONVERGENCE in D(I)
implies convergence in S(I). The topology of D(I) is
stronger than that induced on it by S(I). Consequently,
the restriction of any fe S'(I) to D(I) is in D'(I).
Moreover, convergence in S'(I) implies convergence

in D' (I).
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iv)

vi)

HENCE members of S'(I) are called distributions in
the sense of Zemanian ([37,pp.39].

S(I) is subspace of E(I).Furthermore, if  { ;pv }°°v i

converges in S(I) to the limit , then { b, \},:l also

converges in E(I) to the same limit .

. Since D(I)JCS(I)}C E(I) and since D(I) is dense in

E(I), implies that S(I) is also dense in E(I). The
topology of S(I) is stronger than that induced on it
by E(I). Hence E'(I) can be identified with a subspace
of S'(I) which follows from [37,corollary 1.8.2a and
lemma 9.3.4}.

We imbed Lo (I) (and, therefore, S(I) since S(I) is
subspace of LZ(I) into S'(I) by defining the rumber
that f ELZ(I) assigns to any ¢ €S(I) as

(F,0) = F 7 f(x,y) ® (x,y) dxdy %)

o o
f is clearly linear on S(I). Its continuity on S(I)

follows from the fact that if sequence { 3‘ }":’m1 onverges

In S(I) to zero, then by the Schwarz inequality
| (f, ¢m)l<“°(f) ao(q)m)» 0,as m+» o
The above definition (*) is consistent with the facts
that he dual of L.2 (I) is LZ(I) and that the inner
product( h , X) 1is precisely the nrumber that an
arbitrary, continuous linear functional h on L _ (I)

2
assigns to an arbitrary X € LZ(I)!
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vﬁ)

viii)

ix)

This imbedding of LZ(I) into S'(I) one-to-one . Indeed,
if two members f and g of LZ(I) become imbedded as
the same element of S'(I) , then

(f, ¢) = (g,¢ ) for every ¢ ¢ D(I). But this implies
that f=g almost everywhere on I. Hence f and g are

in the same equivalence class in L, ().

If f(x,y)= Rk g(x,y) for some g(x,y) € Lo(I) and for
some nonnegative Integer k, then f(x,y) € S'(I). This
follows directly from the facts that L,(I) C S'(I) and
that R maps S*'(I) into S*'(I).

For each f € S'(I) there exists a nomnegative integer
r and a positive constant C sucr; that

|(f, )] < C max e (9
o<k <r

for every $ € S(I).

Here r and C depends upon f but not on $ .

Since the conventional operator R is self adjoint on
S(I) implies that the conventional operator R and the

generalized operator R=R' coinsides on S(I).

ORTHONORMAL SERIES EXPANSION AND GENERALIZED
INTEGRAL TRANSFORMATION

The following fundamental theorem provides an

orthonormal series expansion with respect to ‘l’m N of generalized

functions in S$'(I) which in turmn yields an inversion formula

for a certain generalized integral transformation.
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THEOREM 2.8.1

Any  generalized fu.nction in S'(I) possesses an
orthonormal serles expansion with respect to ‘pm,n used in
construction of S(I)

Symbolically If f € S'(I) then

D+ [es]
- f ‘p 2’ '1
f= m—zo nz=o (f, m,n) ¢m,n 8

where the series converges in S'(I).

PROOF

To prove this theorem we need merely invoke the
previous lemmas (2.6.1) and (2.6.6)yThen for any ¢ (x,y)e S(I)

we have

¢ £ T, v

m=0 nN=0 m,n m,n

(f, ¢)

]

= I ZoE,v ) (0, v )

m=0 n=o0 m,n m,yn
m=0 n=0 m,n >~ m,n

= % e )y $) 2.8.2
m=0 nN=0 m,n ' m,n

And the right hand side of (2.8.2) truely converges for any
$ € S(I) . Which means that the series (2.8.1) converges in

S*'(1). Q.E.D.

DEFINITION : DISTRIBUTIONAL FOURIER COSINE-SINE TRANSFORMATION
The members of S'(I) lead to the distributional
(gereralized) Fourier cosine sine transformation f ;s defined

by
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fog () = F(m,n) =/ ab/2 (1, b 2.8.3

for all fe S'(I) ,m,n=0,1,2,...

And this f' is a mapping of f € €S'(I) into the space of
cS )

complex valued functions F(m,n) defined on the set of ordered

pairs of nonnegative integers.

The inverse distributional Fourier cosine sine

transformation f‘cs is defined by the series (2.8.1) which
we rewrite as

£ -1 (F(m,n)] =2/ab ¢ %

Fi{m,n of
Ccs m=o =0 ( ,N’m

’n
that is
f=2//ab [ F F (o) ¥ + % ¢
=1 ©°° %" m=1 n=t cs(m’n) \pr_n,n]
- b 2. F (on) caeeBoo
= 2//ab . cs( ") =

+2/ /ab § £ F (m,n) 2// ab
m=1 cs

2 =1
mm X mT
Cos ---- Sin (--«--?-)
=2/ab X F sin{01Yy 4 &4 I I F
A=1 F o (o,n) Sin{ 5 } + 4/ab R r§=1 cs(m,n)
m n
Cos (--=— ) Sin (-ST-‘--)

THEOREM 2.8.2

UNIQUENESS THEOREM

If f, g € $S'(I) and if their transformations F(m.n) and

G(m.n) defined by (2.8.1) satisfy F(m.n)=G(m.n) for every
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pair (m,n) of nonmnegative integers then f=g in the sense of

equality in S'(I).

PROOF

By theorem (2.8.1) for any¢ € S(I) and f,ge S'(I) we

have 6// : —
(£-9¢ ) ( n;}f;’:o nzso(f @y ) b0 ® )

?

it

=( £ ¥ b - (g, ¥ v
m=0 m:-c)r f m,n) m,n (9, m,n) m,n]s' ® )
= 2//ab ( § % [F(m,n) =G (myn)] ¥, 4 )
m=Q n=0 M

2/ Vab ( 0,9%)

i

= fg9 =0
In the sense of equality In S'(I). This means that f=g in

s'(1). Q.E.D
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