2.1.1 The space $H_{\mu,\lambda,\alpha}$ -

The space $H_{\mu,\lambda,\alpha}$ is the space of smooth functions $\mathcal{D}^{\mathcal{H}}$ Ø on 0 < x < ∞ satisfying

> mile and

 $\gamma_{m,k}^{u,\lambda,\alpha}(\emptyset) = \sup_{x} \left| x^{m\lambda} (x^{1-2\lambda}D)^k x^{-\lambda u-\lambda + 1/2} \theta(x) \right|$

$$< A_{k} B^{m\lambda}m^{m} \lambda \alpha$$

where m, k = 0,1,2... and $\alpha > 0$. The constants A_k and B depend upon \emptyset . For m = 0, we shall take $m^{m\lambda\alpha} = 1$.

2.1.2 The space $H^{\beta}_{\mu,\lambda}$ -

The space $H^{\beta}_{\mu,\lambda}$ is the space of smooth functions \emptyset on $0 < x < \infty$ satisfying

 $\begin{array}{c} \gamma_{m,k}^{\mu,\lambda} \left(\emptyset \right) = \sup_{\mathbf{x}} \left| \begin{array}{c} \mathbf{x}^{m\lambda} \left(\mathbf{x}^{1-2\lambda} \mathbf{D} \right)^{k} \mathbf{x}^{-\lambda\mu-\lambda+1/2} & \emptyset(\mathbf{x}) \right| \\ < A_{m\lambda} B^{k} \mathbf{K}^{k\beta} \end{array} \right.$

where m, k = 0,1,2 and $\beta > 0$ The constants $A_{m\lambda}$ and B depend upon \emptyset and for k = 0, $K^{k\beta}=1$.

2.1.3. The space
$$H^{\beta}_{\mu,\lambda,\alpha}$$
 -
The space $H^{\beta}_{\mu,\lambda,\alpha}$, $\alpha > 0$, $\beta > 0$ is the space of

smooth functions \emptyset on $0 < x < \infty$ satisfying _

$$Y_{m,k}^{A} \alpha \quad (\emptyset) = \sup_{x} \left| x^{m\lambda} (x^{1-2\lambda} D)^{k} x^{-\lambda\mu-\lambda+1/2} (\emptyset) (x) \right|$$
$$< AB^{m\lambda} C^{k} m^{m\lambda\alpha} K^{k\beta}$$

where m, k = 0, 1, 2...

The constants A, B, C depend upon \emptyset .

Note: These spaces are the countable union of the spaces

$$H_{\mu,\lambda,\alpha}^{0} \text{ written as}$$

$$H_{\mu,\lambda,\alpha}^{\infty} = \bigcup_{\substack{j=1\\ \beta_{1}=1}}^{\infty} H_{\mu,\lambda,\alpha}^{\beta_{1}}$$

$$H_{\mu,\lambda,\infty}^{0} = \bigcup_{\substack{\alpha_{1}=1\\ \alpha_{1}=1}}^{\infty} H_{\mu,\lambda,\alpha_{1}}^{\beta_{1}}$$

$$H_{\mu,\lambda,\infty}^{0} = \bigcup_{\substack{\alpha_{1},\beta_{1}=1\\ \alpha_{1},\beta_{1}=1}}^{\infty} H_{\mu,\lambda,\alpha_{1}}^{\beta_{1}}$$
2.2 Another way of defining the spaces of the type $H_{\nu,\lambda,\alpha}$ -
2.2.1 The space $H_{\mu,\lambda,\alpha}$ -

Definition of the space $B_{\mu,A}$ -The space $B_{\mu,A}$ is defined as follows -

.

.

It is a space of smooth functions \emptyset s.t. \emptyset (x) = 0 for x > A and

$$y_q^{\mu}(\emptyset) = \sup_{\substack{0 < x < \infty}} |(x^{-1}D)^q x^{-\mu-1/2} \emptyset(x)| < \infty$$

where $q = 0, 1, 2...$

If $\alpha = 0$ and $\lambda = 1$ we have

 $B_{\mu,A} \subseteq H_{\mu,1,0}$.

Now let $\alpha > 0$, we shall prove the following theorem :

Theorem 2.2.1 -

Let
$$\emptyset \in H_{\mu,\lambda,\alpha}$$
, $\alpha > 0$. Then

$$\left| (x^{1-2\lambda} D)^k x^{-\lambda\mu-\lambda+1/2} \emptyset(x) \right| < A_k^* \exp(-a(x)^{1/\alpha})$$
where $a = \frac{\lambda \alpha}{-\pi 17\alpha}$

fill a

[___]

mi col.

Proof -

We have defined the space $H_{\mu,\,\lambda,\,\alpha}$ as the space of smooth functions Ø on O < x < ∞ s.t.

$$\sup_{\mathbf{x}} \left| \mathbf{x}^{m\lambda} (\mathbf{x}^{\frac{1}{2}-2\lambda} \mathbf{D})^{k} \mathbf{x}^{-\lambda\mu-\lambda+1/2} \mathbf{g}(\mathbf{x}) \right| < \mathbf{A}_{k}^{\mathbf{B}} \mathbf{m}^{m\lambda\alpha} \vee$$

where m, k = 0, 1, 2...

Divide both sides by $|x|^{m\lambda}$ and take the infimum, we get

$$|(x^{1-2\lambda} D)^k x^{-\lambda\mu-\lambda+1/2} \emptyset| < \inf_{\substack{m \\ m}} \frac{Ak B^{m\lambda} m\lambda\alpha}{|x|^{m\lambda}} < A_k \mu_{\alpha} (x/B)$$

where
$$\mu_{\alpha}$$
 (ξ) = inf $\frac{m^{m\lambda\alpha}}{|\xi|^{m\lambda}}$
Now if $\alpha = 0$, $\mu_{0}(\xi)$ = inf $\frac{1}{|\xi|^{m\lambda}}$
= 1 if $\xi < 1$
= 0 if $\xi > 1$
 $\mu_{\alpha}(x/B) = 1$ if $\frac{x}{B} < 1$ i.e. $x < B$
= 0⁻ if $\frac{x}{B} > 1$ i.e. $x > B$

Thus the function $\emptyset(x) = 0$ for x > B. Now let $\alpha \ge 0$ Let $f(m) = \frac{m^{m\lambda\alpha}}{\xi}$(1)

To find the minimum of the function f(m), we shall take logarithm, differentiate and equate the result to zero.

$$\log f(m) = \log \frac{m\lambda \alpha}{\xi}$$
$$= m\lambda \alpha \log m - m\lambda \log \xi$$

Differentiating both sides, we get

$$\frac{1}{f(m)} = m\lambda\alpha \cdot \frac{1}{m} + \log m \cdot (\lambda\alpha) - \lambda\log \xi \cdot 1$$

$$= \lambda \alpha + \lambda \alpha \log m - \lambda \log \xi$$

Equating R.H.S. to zero we get

 $\lambda \alpha + \lambda \alpha \log m - \lambda \log \xi = 0$ i.e $\alpha + \alpha \log m - \log \xi = 0$ If m₀ is the value of m at which f(m) is minimum, we have

$$\alpha + \alpha \log m_0 = \log \xi$$

$$\cdot \cdot \log m_0 = \frac{1}{\alpha} \log \xi - \frac{1}{\alpha} \cdot \alpha$$

$$= \log \xi^{1/\alpha} - 1$$

$$= \log \xi^{1/\alpha} - \log e$$

Thus $\log m_0 = \log \xi^{1/\alpha} - \log e$
i.e. $\log m_0 = \log (\xi^{1/\alpha} / e)$

$$\cdot \cdot m_0 = \frac{1}{e} \xi^{1/\alpha} \qquad \dots (2)$$

Now log
$$f(m_0) = \log \left[\frac{m_0 m_0 \lambda \alpha}{\xi m_0 \lambda} \right]$$

$$= m_0 \lambda \alpha \log m_0 - m_b \lambda \log \xi$$

$$= m_0 \lambda \left[\alpha \log m_0 - \log \xi \right]$$

$$= \frac{1}{e} \xi^{1/\alpha} \cdot \lambda \left[\alpha \log \left(\frac{1}{e} \xi^{1/\alpha} \right) - \log \xi \right] by (2)$$

$$= \frac{\lambda}{e} \xi^{1/\alpha} \left[\alpha \cdot \frac{1}{\alpha} \log \xi - \alpha \cdot \log e - \log \xi \right]$$

$$= \frac{\lambda}{e} \xi^{1/\alpha} \left[\log \xi - \alpha - \log \xi \right]$$

$$= \frac{\lambda}{e} \xi^{1/\alpha} \left[- \alpha \right]$$

$$\int \log f(m_0) = -\frac{\lambda \alpha}{e} \xi^{1/\alpha}$$
i.e. $\log \min f(m) = -\frac{\lambda \alpha}{e} \xi^{1/\alpha}$

$$\int \frac{\lambda \alpha}{e} \xi^{1/\alpha}$$

$$\int \frac{\lambda \alpha}{e} \xi^{1/\alpha}$$

$$(3)$$

Differentiating the function f(m) again we get

$$(\log f(m))^{n} = \frac{\lambda \alpha}{m}$$

Now let the integer m_1 be very close to m_0 . Then at m_1

$$\log f(m_1) = \log f(m_0) + \frac{\lambda \alpha}{2m_2} (m_1 - m_2)^2$$
$$< \log f(m_0) + \frac{\lambda \alpha}{2m_0}$$
$$= \frac{\lambda \alpha}{2m_0}$$

$$\log f(m_1) < \frac{-\lambda \alpha}{e} \quad \xi^{1/\alpha} + \frac{\lambda \alpha e}{2} \quad \xi^{-1/\alpha}$$

Thus

min log $f(m) < \min \log f(m_1)$

<
$$\log f(m_0) + \frac{\lambda \alpha}{2m_0}$$

< $\frac{-\lambda \alpha}{e} \xi^{1/\alpha} + \frac{\lambda \alpha e}{2} \xi^{-1/\alpha}$

i.e. min f(m) < exp $\left[-\frac{\lambda\alpha}{e} \frac{1/\alpha}{\xi} + \frac{\lambda\alpha e}{2} \frac{\xi^{-1/\alpha}}{2}\right]$ or min f(m) < exp $\left(-\frac{\lambda\alpha}{e} \frac{1/\alpha}{\xi}\right)$. exp $\left(\frac{\lambda\alpha e}{2} \frac{\xi^{-1/\alpha}}{\xi}\right)$

If $\xi \ge 1$, $\exp\left(\frac{\lambda\alpha e}{2} - \frac{\xi}{2}\right)^{-1/\alpha}$ is bounded by the constant $C = \exp\left(\frac{\lambda\alpha e}{2}\right)$ If $0 < \xi < 1$, min $f(m) < 1 < \exp\left(\frac{\lambda\alpha}{e}\right) \exp\left(-\frac{\lambda\alpha}{e} - \frac{\xi}{2}\right)^{1/\alpha}$ \therefore For any ξ , $0 < \xi < \infty$ $\exp\left(-\frac{\lambda\alpha}{e} - \frac{\xi}{2}\right)^{1/\alpha} < \mu_{\alpha}(\xi) < C$, $\exp\left(-\frac{\lambda\alpha}{e} - \frac{\xi}{2}\right)^{1/\alpha}$, where $C = \exp\left(\frac{\lambda\alpha e}{2}\right)$ and min $f(m) = \mu_{\alpha}(\xi)$

Therefore,

$$\left| \begin{array}{c} (x^{1-2\lambda} \ D)^k \ x^{-\lambda\mu-\lambda+1/2} \ \emptyset(x) \end{array} \right| < A_k \ \mu_{\alpha} \ (x/B)$$

$$< A_k. \ C. \ \exp \left(\begin{array}{c} -\lambda\alpha \\ -\frac{-\lambda}{e} \end{array} \left(\begin{array}{c} x \\ B \end{array} \right)^{1/\alpha} \right)$$

$$< A_k^* \ \exp \left(-a. \left| x \right| \right)^{1/\alpha} \right)$$

where $a = \frac{\lambda \alpha}{e B^{1/\alpha}}$

Hence the theorem.

Thus we can say that all functions $\emptyset(x)$ belong to this space, together with all their derivatives decrease expo-

nentially at infinity, with an order $> 1/\alpha$ and a type > a, dependent on the function Ø. [see definition 1.1]

2.3 Topological property of the space $H_{\mu,\lambda,\alpha}$ -

The space $H_{\mu_{\sigma},\lambda_{\sigma},\alpha}$ as the union of countably normed spaces -

Let $H_{\mu,\lambda,\alpha,B}$ be the space of all testing functions $\emptyset \in H_{\mu,\lambda,\alpha}$ such that the condition

$$|x^{m\lambda} (x^{1-2\lambda}D)^k x^{-\lambda\mu-\lambda+1/2} g(x)| < A_{k\overline{A}} \overline{B}^{m\lambda} m^{m\lambda\alpha}$$

is satisfied.

where B is the constant greater than B. OR

 $H_{\mu,\lambda,\alpha,B}$ is the space of all testing functions $\emptyset(x)$ satisfying the inequality

 $|\mathbf{x}^{m\lambda}(\mathbf{x}^{1-2\lambda}D)^k \mathbf{x}^{-\lambda\mu-\lambda+1/2} \mathbf{g}(\mathbf{x})| < A_{k\delta} (B+\delta)^{m\lambda} m^{m\lambda\alpha}$

for any $\delta > 0$.

Then according to theorem 1, the another definition of $H_{\mu,\lambda,\alpha,B}$ is that, it is a space of all functions $\mathscr{G}(\mathbf{x})$ which satisfy the inequality

$$\left| (x^{1-2\lambda}D)^k x^{-\lambda\mu-\lambda+1/2} g(x) \right| < A_{k\delta} \exp \left[(-a+\delta) |x| \frac{1/\alpha}{d} \right]$$
where $a = \frac{\lambda \alpha}{e^{-1/\alpha}}$ and $\delta > 0$.

Now let us define

$$M_{p}(x) = \exp \left[a \left(1 - \frac{1}{p} \right) 1 x \right]^{1/\alpha}$$

p = 2,3...

If we define

$$Q_{p}^{\mu,\lambda_{b}\alpha}(\emptyset) = \max \qquad \sup M_{p}(x) \left| (x^{1-2\lambda}D)^{k} x^{-\lambda\mu-\lambda+1/2} \emptyset(x) \right|$$
$$0 < k < p x$$

Then ρ is a norm for the space

space H_{μ} , λ , α , B.

Thus $H_{\mu,\lambda,\alpha,B}$ is a space of all functions $\mathscr{G}(x)$ such that

$$e_{p}^{\mu,\lambda,\alpha}(\emptyset) = \max \qquad \sup_{0 < k < p} M_{p}(x) | (x^{1-2\lambda} D) x^{k-\lambda\mu-\lambda+1/2} \vartheta(x)|$$

is finite.

Since the space $H_{\mu,\lambda,\alpha,B}$ belongs to the class of space $K \{ M_p \}$ and every $K \{ M_p \}$ is complete countably normed space [1] p. 88-89.

Therefore, the space $H_{\mu_{\sigma}\,\lambda_{\sigma}\,\alpha_{\sigma}\,B}$ is complete countably normed space.

Now the condition for the space to be Perfect is that, for each subscript p, there exists a subscript p' > p such that

$$\lim_{x \to \infty} \frac{M_{p}(x)}{M_{p}(x)} = 0.$$

Since $M_p(x) = \exp \left[a (1 - 1/p) + x + \frac{1/\alpha}{2} \right]$

We have for any p' > p

$$\frac{M_{p}(x)}{M_{p} \cdot (x)} = \exp \left[a(1 - 1/p) + x + \frac{1/\alpha}{\alpha} - a(1 - 1/p) + x + \frac{1/\alpha}{\alpha} \right]$$

$$= \exp \left[a(\frac{1}{p^{*}} - \frac{1}{p}) + x + \frac{1/\alpha}{\alpha} \right]$$

$$\longrightarrow 0 \text{ as } x \longrightarrow \infty$$
Hence the condition is satisfied.
Therefore the space $H_{\mu, \lambda, \alpha, B}$ is perfect.

Now let us consider the another system of norms in the space $H_{\mu_s,\lambda_s\,\alpha_s\,B}$ as

$$\begin{array}{c} \begin{array}{c} \mu_{\theta},\lambda_{\theta},\alpha\\ \eta_{0} \end{array} \begin{pmatrix} \varphi \end{pmatrix} = \sup_{m} \sup_{\mathbf{x}} \frac{\left| \begin{array}{c} \mathbf{x}^{m\lambda} (\mathbf{x}^{1-2\lambda} \mathbf{D})^{k} \mathbf{x}^{-\lambda\mu-\lambda+1/2} \end{array} \right| \\ (B+\delta)^{m\lambda} \mathbf{m}^{m\lambda\alpha} \end{array}$$

Now we shall show that the two norms are equal. For that, we shall find the suprimum with respect to the index m. We get

 \mathcal{G}

$$\sup_{m} \frac{\frac{1}{(B+\delta)^{m\lambda} m^{m\lambda\alpha}}}{(B+\delta)^{m\lambda} m^{m\lambda\alpha}}$$

$$= \frac{1}{\inf (B+\delta)^{m\lambda} m^{m\lambda\alpha} / |x|^{m\lambda}}$$

$$= \frac{1}{\mu_{\alpha} (\frac{|x|}{B+\delta})} \quad \text{where } \mu_{\alpha} (\xi) = \inf \frac{\kappa^{k\alpha}}{(\xi)^{k\alpha}}$$

Now using the inequality of the previous section (2.2.1)

 $\frac{1}{\mu_{\alpha}(\xi)} < \exp\left(\frac{\lambda\alpha}{e} - \frac{\xi^{1/\alpha}}{\xi}\right) \text{ we get}$

$$\frac{1}{\mu_{\alpha} \left(\frac{|\mathbf{x}|}{B+\delta}\right)} < \exp \left[\frac{\lambda \alpha}{e} \left(\frac{|\mathbf{x}|}{B+\delta}\right)^{1/\alpha}\right] < M_{p} (\mathbf{x})$$
for some p

Therefore,

Thus $e_{q\delta}^{\mu,\lambda,\alpha}$ (ø) < $e_{p}^{\mu,\lambda,\alpha}$

Similarly we can show that

$$e_p^{\mu,\lambda,\alpha}$$
 (ø) < $e_{q\delta}^{\mu,\lambda,\alpha}$ (ø)

Thus the two norms are equal.

Therefore they generate the same topology.

Now if $B_1 < B_2$. Then,

and topology of $H_{\mu,\lambda,\alpha,B_1}$ is stronger than the topology induced by $H_{\mu,\lambda,\alpha,B_2}$.

Therefore by definition, We can construct the union of countably normed spaces over all B^S

i.e.
$$H_{\mu,\lambda,\alpha} = \bigcup_{i=1}^{\infty} H_{\mu,\lambda,\alpha,B_{i}}$$

Thus the space $H_{\mu,\lambda,\alpha}$ is a union of countably normed spaces.
Therefore, a sequence $\{\emptyset_{\gamma}\}_{\gamma=1}^{\infty}$ converges to zero in
 $H_{\mu,\lambda,\alpha}$ that is all \emptyset_{γ}^{*s} belong to some $H_{\mu,\lambda,\alpha,B}$ and
they converge to zero in that particular space
 \int_{P}^{P}
This is true only $i \neq \beta$. $\{\emptyset_{\gamma}\}$ converges to zero exactly and
the norms $\bigotimes_{p}^{\mu,\lambda,\alpha} (\emptyset_{\gamma})$ are bounded for all p and \Im .

2.4)

2.4.1 Another way of defining the space of the type $H^{\beta}_{\mu,\alpha}$ -

By definition, $H^{\beta}_{\mu,\alpha}$ consist of smooth functions $\mathscr{O}(x)$ on $0 < x < \infty$ satisfying

$$| x^{m\lambda} (x^{1-2\lambda} D)^k x^{-\lambda\mu-\lambda+1/2} \mathscr{O}(x) | < A_{m\lambda} B^k K^{k\theta}$$

where m,
$$k = 0, 1, 2...$$
 and $\beta > 0$.

The constants $A_{m\lambda}$, B depend upon \emptyset . In this case the constraints are imposed on the growth of the derivative of the function $\emptyset(x)$. The restrictions are stronger, the smaller the value of the β .

Theorem 2.4.1 -

Let $\emptyset \in H^{\beta}_{\mu,\lambda}$ Then Sup $|x^{m\lambda}(x^{1-2\lambda}D)^k x^{-\lambda\mu-\lambda+1/2} \emptyset(x)| < A_{m\lambda,k} B^k \kappa^{k\beta}$

where m, k = 0, 1, 2...

where the constants $A_{m\lambda,k}$ depend on \emptyset , m and k.

2.4.2 Topological property of the space $H^{\beta}_{\mu,\lambda}$:-

The space $H^{\beta}_{\mu,\lambda}$ as a union of countably normed spaces: The space $H^{\beta}_{\mu,\lambda}$ is defined as, the space of all smooth functions \emptyset satisfying

$$|x^{m\lambda}(x^{1-2\lambda}D)^k x^{-\lambda\mu-\lambda+1/2} \phi(x)| < A_{m\lambda}B^k \kappa^{k\beta}$$

where
$$m, k = 0, 1, 2...$$

The constants $A_{m\lambda}$, B depend upon \emptyset and for k = 0 let $K^{k\beta} = 1$. Let the space $H^{\beta,B}_{\mu,\lambda}$ be defined as the space of all smooth functions $\emptyset \in H^{\beta}_{\mu,\lambda}$ satisfying

$$|x^{m\lambda}(x^{1-2\lambda}D)^k x^{-\lambda\mu-\lambda+1/2} g(x)| < A_{m\lambda} q^{(B+q)^k} K^{k\beta}$$

for any q > 0 and m, k = 0, 1, 2...

The space $H_{\mu,\lambda}^{\beta,B}$ does not belong to the class of spaces K $\int M (P) \int_{\tau}$.

Let us introduce a system of norms in the space $H^{\beta,B}_{\mu,\lambda}$ by

$$\frac{\sup_{\mathbf{x},\mathbf{k}} \left| \mathbf{x}^{m\lambda} (1^{1-2\lambda}D)^{k} \mathbf{x}^{-\lambda\mu-\lambda} + 1/2 \mathbf{g}(\mathbf{x}) \right|}{\mathbf{x},\mathbf{k}}$$

$$(B + \mathbf{e})^{k} \mathbf{x}^{k} \mathbf{g}^{k}$$

where q = 1, 1/2, 1/3and K = 0, 1, 2...

We shall show that with this system of norms, the space $H^{\beta,B}_{\mu,\lambda}$ becomes complete countably normed space.

We shall prove some lemmas.

Lemma 1 -

If the sequence $\emptyset_{\mathcal{P}}(x)$ converges correctly to some function $\emptyset(x)$ and for some m, φ the norms $|| \vartheta_{\mathcal{P}} ||_{m\lambda} \varphi$ are bounded. $|| \vartheta_{\mathcal{P}} ||_{m\lambda} \varphi$ < C, then the norm $|| \cdot ||_{m\lambda} \varphi$ exists for the function $\vartheta(x)$ and $|| \vartheta ||_{m\lambda} \varphi$ < C.

Proof -

Consider the bounded interval - a < x < aIn this interval

$$\sup_{\substack{\mathbf{x} \\ \mathbf{m} < \mathbf{p}}} \left| \frac{x^{\mathbf{m}\lambda} (x^{1-2\lambda} \mathbf{p})^{\mathbf{k}} x^{-\lambda\mu-\lambda+1/2} \mathbf{g}(\mathbf{x})}{(\mathbf{B} + \mathbf{g})^{\mathbf{k}} \mathbf{K}^{\mathbf{k}\beta}} \right|$$

$$= \lim_{\substack{g \to \infty \\ g \to \infty}} \sup_{\substack{x \to \infty \\ k < p}} \frac{\left| x^{m\lambda} (x^{1-2\lambda} D)^k x^{-\lambda\mu-\lambda+1/2} g(x) \right|}{(B + Q)^k K^{k\beta}}$$

$$\leq \lim_{\substack{g \to \infty \\ y \to \infty}} \frac{\left| g_{y} \right|_{m\lambda}}{\left| g_{y} \right|_{m\lambda}} Q$$

Taking limit as a $\rightarrow\infty$ and p $\rightarrow\infty$ we have

$$\|g\|_{m\lambda} q = \sup_{x,k} \frac{|x^{m\lambda}(x^{1-2\lambda}D)^{k}x^{-\lambda\mu-\lambda+1/2}g(x)|}{(B+q)^{k}K^{k\beta}}$$

1

< C

Hence the lemma.

Lemma 2 -

The sequence $\emptyset_{\sqrt{2}}(x)$ converges correctly to zero because $\emptyset_{\sqrt{2}}(x)$ is fundamental. Therefore the sequence of differences $\emptyset_{\sqrt{2}}(x) - \emptyset_{\mu}(x)$ converges correctly to $\emptyset_{\sqrt{2}}(x)$ as $\mu \longrightarrow \infty$.

$$\frac{||\mathscr{B}_{g}||}{m\lambda g} \leq \sup_{\substack{\mathsf{sup} \\ \mathsf{sup} \\ \mathsf{sup}$$

··· 11 0, 11 m2 0 -> 0

Hence the lemma.

Theorem 2.4.2 -

The space $H_{\mu,\lambda}^{\beta,B}$ is complete.

Proof -

Let $\emptyset_{\mathcal{P}}(\mathbf{x}) \notin H_{\mu,\lambda}^{\beta,B}$ be fundamental in each of the norms $|| \cdot || m\lambda \varrho$. Since $\emptyset_{\mathcal{P}} \notin H_{\mu,\lambda}^{\beta,B} \cdot || \vartheta_{\mathcal{P}} || m\lambda \varrho$ is bounded. ... According to lemma 1. each norm exists for the function $\emptyset(\mathbf{x})$ and is bounded. Hence $\emptyset \in H_{\mu,\lambda}^{\beta,B}$

Also \emptyset_{∇} is fundamental.

. the sequence of differences $\mathscr{G}_{\mathcal{F}} - \mathscr{G}_{\mathcal{F}}$ converges correctly to zero and bounded in each of the norms.

. According to lemma 2.

11 \$ - \$ 11 m > 0 as 8 -> \$.

for any m & Q

Hence the space $H^{\beta,B}_{\mu,\lambda}$ is complete.

Lemma 3 -

If the sequence $\emptyset_{\mathcal{P}}(x)$ is bounded in each of the norms. ||• ||_m $\lambda_{\mathcal{Q}}$, and converges correctly to zero, in the topology of the space $H_{\mu,\lambda}^{\beta,B}$ i.e. in each of norms.

1

Proof -

Case (1) Let m, \mathfrak{S} and $\mathfrak{T} > 0$. be given, Let $\mathfrak{S}' < \mathfrak{Q}$. Now the numbers $||\mathfrak{S}_{\mathfrak{S}}||_{\mathfrak{m}} \mathfrak{Q}^{\mathfrak{s}}$ are bounded by constant $C_{\mathfrak{m}} \mathfrak{Q}^{\mathfrak{s}} \cdots \mathfrak{Q}^{\mathfrak{s}}$ (given)

. For sufficiently large K, K > K₀ the inequality

$$\frac{(B + Q')^{k}}{(B + Q)^{k}} < \frac{\eta}{C_{m} Q'} \quad \text{is true.}$$

$$C_{m} Q'$$

$$For K > K_{0}, \text{ we have the inequality}$$

$$\left| x^{m\lambda} (x^{1-2\lambda} D)^{k} x^{-\lambda P - \lambda + 1/2} g_{\gamma} (x) \right| <$$

$$< C_{m} Q' (B + Q')^{k} K^{k\beta}$$

$$< \eta (B + Q)^{k} K^{k\beta} \quad \dots (1)$$

.

Ì

Case (2) - Let
$$K < K_0$$

let $|x|^{\lambda} > \frac{C_{m+1}}{\eta}$

Then we have

$$\left| \begin{array}{l} x^{m\lambda} (x^{1-2\lambda} D)^{k} x^{-\lambda\mu-\lambda+1/2} \not \otimes_{S} (x) \right| = \\ = \frac{1}{|x|^{\lambda}} \left| \begin{array}{l} x^{(m+1)\lambda} (x^{1-2\lambda} D)^{k} x^{-\lambda\mu-\lambda+1/2} \not \otimes_{S} (x) \right| \\ < \frac{1}{|x|^{\lambda}} \cdot \left| \left| \begin{array}{l} \not \otimes_{S} \right| \right| (m+1)\lambda, \ & \left(\begin{array}{c} B + Q \right)^{k} K^{k\beta} \\ < \frac{\eta}{C_{m+1}} \left| \begin{array}{c} Q \\ \varphi \end{array} \right| \cdot \left(\begin{array}{c} B + Q \right)^{k} K^{k\beta} \end{array} \right| \\ < \eta \quad (B + Q)^{k} K^{k\beta} . \end{array}$$

.

Case (3) - Now let $K < K_0$ and

 $|x|^{\lambda} < \frac{C_{m+1}}{\eta}$

Now since $\emptyset_{\mathcal{G}}(x)$ converges correctly to zero, therefore by definition, $\emptyset_{\mathcal{G}}^{(q)}(x)$ converges uniformly to zero, in any interval, hence in $|x| < \frac{C_{m+1}}{\eta}$

Therefore the inequality

$$| x^{m\lambda} (x^{1+2\lambda}D)^k x^{-\lambda\mu-\lambda+1/2} \mathscr{A}_{\mathcal{C}} (x) | < \eta (B+\varsigma)^k \kappa^{k\beta}$$

is true and it is also true for sufficiently large \Im . Say $\Im > \Im_{a}$

Thus

$$||\mathscr{G}_{\gamma}||_{m\lambda} \varsigma = \sup_{x,k} \frac{\int_{x}^{m\lambda} (x^{1-2\lambda}D)^{k} x^{-\lambda\mu-\lambda+1/2} \mathscr{G}_{\gamma}(x)|}{(B + \varsigma)^{k} \kappa^{k\beta}}$$

$$< \eta$$

Hence the sequence $\emptyset_{\mathcal{Y}}(x)$ tends to zero in the norm $|| \cdot ||_{m\lambda} \circ$ Since \circ & m are arbitrary $\emptyset_{\mathcal{Y}} \longrightarrow 0$ in the topology. Hence the lemma.

Theorem 2.4.2 -

If the sequence $\emptyset_{\sqrt{2}}(x)$ is bounded in each of the norms and converges correctly to some function $\emptyset(x)$

then $\mathscr{O}(x)$ belongs to $H^{\beta,B}_{\mu,\lambda}$ and is the limit of the sequence $\mathscr{O}_{\mathcal{P}}(x)$ in the topology of $H^{\beta,B}_{\mu,\lambda}$.

Proof -

According to lemma 1

Now the difference $\emptyset(x) - \emptyset_{\mathcal{G}}(x)$ is bounded in all norms and converges correctly to zero. Then according to lemma 2, this difference converges to zero in the topology of the space $H^{\beta,B}_{\mu,\lambda}$. Thus $\emptyset(x)$ is limit of sequence $\emptyset(x)$ in the topology of $H^{\beta,B}_{\mu\lambda}$.

Thus $\emptyset_{\mathscr{D}}$ is a fundamental sequence in each of the norms and $\emptyset_{\mathscr{D}}$ converges to \emptyset with respect to each norm. Then the norms $|| \cdot ||_{\mathfrak{m} \lambda \mathfrak{Q}}$ are compatible. Thus the topology of the space $H_{\mathfrak{p},\lambda}^{\beta,\mathcal{B}}$ is generated by the collection of is generated by the collection of compatible norms. Hence $H_{\mathfrak{p},\lambda}^{\beta,\mathcal{B}}$ is complete countably normed space.

Now we shall prove that the space $H_{\mu,\lambda}^{\beta}$ is perfect-We have already proved that the space $H_{\mu,\lambda}^{\beta}$ is complete countably normed space. Now let us prove that each bounded set A $\neq H_{\mu,\lambda}^{\beta}$ is compact. Let $\emptyset_{\mathcal{R}} \notin A \quad \{\Im = 1, 2, 3..., \}$ be an arbitrary bounded sequence.

Now we shall show that it contains a convergent sub-sequence.

Now, since each norm is bounded (by lemma) ... ||ø||, is bounded.

Therefore the function $\begin{vmatrix} \partial & g \\ \partial & y \end{vmatrix}$ is uniformly bounded.

Hence by Arzela theorem, there exists a sub sequence $\emptyset_{11}, \ \emptyset_{12}, \ \emptyset_{13}, \dots$ which converges uniformly for |x| < 1. Now since $||\emptyset_{13}||_2$ is bounded. Hence according to Arzela theorem it contains a sub sequence, $\emptyset_{21}, \ \emptyset_{22}, \ \emptyset_{23}, \dots$ for which the value of the first derivative $0, \ 0, \ 0, \ 0, \ 0, \ 0, \ \infty$ converges uniformly in the domain $|x| \le 2$.

Thus from the convergence of functions $\emptyset_{2\gamma}$ for $|x| \leq 1$ and the uniform convergence of their derivatives for |x| < 2, there results the uniform convergence of these functions for |x| < 2Continuing in this way we get the sub sequences -

Then applying the diagonalization process, we obtain a

27

bounded sub sequence β_{11} , β_{22} , β_{33} which converges uniformly together with all its derivatives to some limit function $\beta_0(x)$ in any bounded domain (Since $H_{F,\lambda}^{\beta}$ is complete).

Thus A is compact. Thus each bounded set is compact. Hence $H^{\beta}_{\mu,\lambda}$ is perfect. Thus $H^{\beta}_{\mu,\lambda}$ is a complete, countably normed perfect space.

Now if $B_1 < B_2$ Then

$$H^{\beta B_{1}}_{\mu,\lambda} \subseteq H^{\beta,B_{2}}_{\mu,\lambda}.$$

and the topology of $H_{\mu,\lambda}^{\beta,B_1}$ is stronger than that the topology induced by $H_{\mu,\lambda}^{\beta,B_1}$

Therefore by definition, we can construct the union of countably normed space over all B_i^* .

i.e.
$$H_{\mu,\lambda}^{\beta} = \bigcup_{i=1}^{\infty} H_{\mu,\lambda}^{\beta,B_i}$$

Thus the space is a union of countably normed spaces. Therefore a sequence $\left\{ \emptyset_{\mathcal{F}} (\mathbf{x}) \right\}_{\mathcal{F}} = 1$

Converges to zero in $H^{\beta}_{\mu,\lambda}$ i.e. all $\mathscr{O}_{\mathcal{Y}}^{*s}$ belong to some $H^{\beta,B}_{\mu,\lambda}$ and they converge to zero in that particular space. This is true only if $\langle \mathscr{O}_{\mathcal{Y}} \rangle$ converges to zero correctly and where m, k = 0, 1, 2, 3...

In this space the restrictions are imposed on decrease of \emptyset as x -> ∞ and also on the growth of the derivative of \emptyset .

Therefore the space $H^{\beta}_{\mu,\lambda,\alpha}$ lies in the intersection of both the spaces $H_{\mu,\lambda,\alpha}$ and $H^{\beta}_{\mu,\lambda}$.

From the theorem 2.1.1, we can write

$$\left| (x^{1-2\lambda}D)^k x^{-\lambda\mu-\lambda+1/2} g(x) \right| < A_k^* C^k K^{k\beta} \exp\left[(-a+\delta) |x|^{1/\alpha} \right]$$
where the constant $a = \frac{\lambda \alpha}{e B^{1/\alpha}}, \delta > 0.$

2.5.2 Topological property of the space $H^{\beta}_{\mu,\lambda,\alpha}$ -

The space $H_{u,\lambda,\sigma}^{\beta}$ as a union of countably normed spaces-Let $H^{\beta,C}_{\mu,\lambda,\alpha,B}$ be a space of all testing functions $\emptyset \in H^{\beta}_{\mu,\lambda,\alpha}$ such that $\sup_{\mathbf{x}} \left| \mathbf{x}^{\mathsf{m}\lambda} (\mathbf{x}^{1-2\lambda} \mathbf{D})^{\mathsf{k}} \mathbf{x}^{-\lambda\mu-\lambda+1/2} \mathbf{g}(\mathbf{x}) \right| < \mathsf{A} \overset{\mathsf{m}\lambda}{\mathsf{B}} \overset{\mathsf{-k}}{\mathsf{C}} \overset{\mathsf{m}\lambda\alpha}{\mathsf{m}} \kappa^{\mathsf{k}\beta}$ where m, k = 0, 1, 2...is satisfied where the constant B is greater than B and C is greater than C. OR $\begin{array}{c} H^{\beta,C} \\ \mu,\lambda,\alpha,B \end{array} \quad \text{is a space of all functions } \emptyset \in H^{\beta}_{\mu,\lambda,\alpha} \quad \text{satisfying} \end{array}$ the inequality $\sup_{\mathbf{x}} \left| \mathbf{x}^{\mathsf{m}\lambda} \left(\mathbf{x}^{1-2\lambda} \mathbf{D} \right)^{\mathsf{k}} \mathbf{x}^{-\lambda\mu-\lambda+1/2} \mathbf{g}(\mathbf{x}) \right|$ < $A_{\delta (0)} (B + \delta)^{m\lambda} (C + \varrho)^{k} m^{m} \lambda \alpha \kappa^{k\beta}$

for any $\delta > 0$, $\rho > 0$ and m, k = 0, 1, 2...

Now we shall introduce a system of norms as follows :

$$\| \mathscr{O} \|_{\delta \mathcal{O}}^{\mu, \lambda} = \sup_{m, k} \sup_{\mathbf{x}} \frac{|\mathbf{x}^{m\lambda} (\mathbf{x}^{1-2\lambda})^{k} \mathbf{x}^{-\lambda \mu - \lambda + 1/2} \mathscr{O}(\mathbf{x})|}{(B+\delta)^{m\lambda} (c+\mathcal{O})^{k} \mathbf{x}^{m\lambda \alpha} \mathbf{x}^{k\beta}}$$

where $\delta_{1} = 1, 1/2, 1/3 \dots$

We shall show that with this system of norms the space $H^{\beta,C}_{\mu,\lambda,\alpha,B}$ becomes a complete countably normed space. For this we shall prove some lemmas.

Lemma 1 :

If sequence $\int \mathscr{G}_{\mathcal{G}}(\mathbf{x}) \langle$ converges correctly to some function $\mathscr{G}(\mathbf{x})$ and for some δ and ϱ , the norms $||\mathscr{G}_{\mathcal{G}}||_{\delta \varrho}$ are bounded i.e. $||\mathscr{G}_{\mathcal{G}}||_{\delta \varrho} < C$. Then the norms exist even for the function $\mathscr{G}(\mathbf{x})$ and $||\mathscr{G}(\mathbf{x})||_{\delta \varrho} < C$.

Proof -

Consider the bounded interval - a < x < a

Thus taking limit as a $\rightarrow \infty$, $p \rightarrow \infty$ and $1 \rightarrow \infty$ we get

$$\| \emptyset \|_{\delta Q} = \sup_{x, m, k} \frac{\left| \frac{x^{m\lambda} (x^{1-\lambda} D)^k x^{-\lambda \mu - \lambda + 1/2} \vartheta(x) \right|}{(B+\delta)^{m\lambda} (C + Q)^k m^{m\lambda\alpha} K^{k\beta}}$$

$$< C.$$

Thus the norms for the limit function exist and are bounded.

Lemma 2 -

If the sequence $\int \mathscr{G}_{S}(x) \int converges to zero at each$ $point and is fundamental in the norm <math>\|\cdot\|_{\delta Q}$. Then $\||\mathscr{G}_{\gamma}\||_{\delta Q} \longrightarrow 0$

Proof -

Since \emptyset is fundamental, it converges correctly to zero at each point. Therefore the sequence of differences $\emptyset_{\gamma}(x) - \emptyset_{\mu}(x)$ converges correctly to $\emptyset_{\gamma}(x)$ as $\mu \rightarrow \infty$.

 $\cdot \cdot ||\mathfrak{G}_{g}||_{\delta \varphi} \leq \sup_{\mu \geq \Im} ||\mathfrak{G}_{g} - \mathfrak{G}_{\mu}||_{\delta \varphi} \leq \varepsilon \text{ for sufficiently} \\ \text{large } \mathscr{C} .$

Theorem 2.5.2 -

The space
$$H_{\mu,\lambda,\alpha,B}^{\beta,C}$$
 is complete.

Proof -

Let $\emptyset_{\mathcal{F}}(\mathbf{x}) \notin H^{\beta,C}_{\mu,\lambda,\alpha,B}$ be fundamental in each of the norms $||\cdot||_{\delta\varrho}$. Since $\emptyset_{\mathcal{F}}(\mathbf{x}) \notin H^{\beta,C}_{\mu,\lambda,\alpha,B}$ $\left\| \begin{array}{c} \left\| \begin{array}{c} g \\ \end{array} \right\|_{\delta Q} \end{array} \right\|_{\delta Q}$ is bounded.

According to lemma 1,

each of the norms exists for the limit function $\emptyset(\mathbf{x})$ and

) | Ø | | is bounded.

Hence $\mathscr{G}(\mathbf{x}) \leftarrow \mathsf{H}^{\mathsf{S},\mathsf{C}}_{\mathfrak{P},\lambda,\alpha,\mathsf{B}}$

Also $\emptyset_{\mathcal{D}}$ is fundamental.

Therefore the sequence of differences \emptyset_{3} - \emptyset converges correctly to zero and bounded in each of the norms. Therefore according to lemma 2 -

 $|| \phi_{3} - \phi ||_{\delta Q} \longrightarrow 0 \text{ for any } \delta \text{ and } Q.$

Thus the sequence $\left\{ \emptyset_{\mathfrak{F}} \right\}$ converges to \emptyset in the space $H^{\beta,C}_{\mu,\lambda,\alpha,B}$ Hence by definition $H^{\beta,C}_{\mu,\lambda,\alpha,B}$ is complete.

Lemma 3 -

If the sequence is bounded in each of the norms $\|\cdot\|_{\delta}^{(\pi)}$ and converges correctly to zero. Then it tends to zero in the topology of the space $H_{\mu,\lambda,\sigma,B}^{\beta,C}$ i.e. in each of the norms. Proof -

Let $\eta > 0$, $\delta > 0$ and $\varrho > 0$ be given. Let $\delta' < \delta$ and $\varrho' < \varrho$. Since all $\mathscr{G}_{\mathcal{Y}}^{*g}$ are bounded. $\cdot \cdot ||\mathscr{G}_{\mathcal{Y}}||_{\delta^{*}\mathcal{Q}}$ are bounded i.e. $||\mathscr{G}_{\mathcal{Y}}||_{\delta^{*}\mathcal{Q}} < C_{1}$ OR for any m, k and x $|x^{m\lambda}(x^{1-2\lambda}D)^{k}x^{-\lambda\mu-\lambda+1/2}\mathscr{G}_{\mathcal{Y}}(x)| < C_{1}(B+\delta^{1})^{m\lambda}(C+\varrho)^{k}$. $\times m^{m\lambda\alpha} K^{k\beta}$

Now for sufficiently large m, $m > m_0$ the inequality $(B + \delta')^{m\lambda} < \frac{\eta}{C_1} (B+\delta)^{m\lambda} \text{ is true.}$ Therefore, for any k, x and $m > m_0$ $\left| x^{m\lambda} (x^{1-2\lambda}D)^k x^{-\lambda\mu-\lambda+1/2} g(x) \right|$ $< C_1 \frac{\eta}{C_1} (B+\delta)^{m\lambda} (C + \rho)^k m^{m\lambda\alpha} K^{k\beta}$ ie $\left| x^{m\lambda} (x^{1-2\lambda}D)^k x^{-\lambda\mu-\lambda+1/2} g_{\chi}(x) \right|$ $< \eta (B+\delta)^{m\lambda} (C + \rho)^k m^{m\lambda\alpha} K^{k\beta} \dots (3A)$

Thus for $m > m_0$, the inequality holds for any K and C.

34

Also since $\| \mathscr{D}_{g} \|_{\delta Q}$, are bounded.

. We have
$$\| g_{S} \|_{\delta Q}^{\circ} < C_{2}$$

OR for any m, k and x
 $\left| x^{m\lambda} (x^{1-2\lambda}D)^{k} x^{-\lambda\mu-\lambda+1/2} g_{S}(x) \right|$
 $< C_{2} (B+\delta)^{m\lambda} (C + e^{\circ})^{k} m^{m\lambda\alpha} K^{k\beta}$

Now for sufficiently large K, $K > K_0$ the inequality

$$(C + Q')^{k} < \frac{\eta}{C_{2}} (C + Q)^{k} \text{ is true.}$$

$$\therefore \text{ for any } x, \text{ m and } k > k_{0}$$

$$\left| x^{m\lambda} (x^{1-2\lambda}D)^{k} x^{-\lambda\mu-\lambda+1/2} \mathscr{I}_{\mathcal{Y}} (x) \right|$$

$$< C_{2} \frac{\eta}{C_{2}} (B + \delta)^{m\lambda} (C + Q)^{k} m^{m\lambda\alpha} K^{k\beta}$$

$$< \eta (B+\delta)^{m\lambda} (C + Q)^{k} m^{m\lambda\alpha} K^{k\beta} \dots (3B)$$

Thus for $k > K_0$, the inequality holds for any m and x. Now we shall consider the cases when $m < m_0$ and $K < K_0$. When $m < m_0$, |x| > 1

By (3A) we have for any ka and x

$$=\frac{\left|x^{m\lambda}(x^{1-2\lambda}D)^{k}x^{-\lambda\mu-\lambda+1/2}\mathscr{G}_{\mathscr{C}}(x)\right|}{\left|x/mo^{-m}\right|}$$

$$< \frac{1}{|x|} \eta (B+\delta)^{m_0\lambda} (C+\varrho)^k m_0^{m_0\lambda\alpha} \kappa^k\beta$$

for sufficiently large x, $|x| > x_0$
$$\frac{(B+\delta)^{m_0\lambda} m_0^{m_0\lambda\alpha} \kappa^k\beta}{|x|} < (B+\delta)^{m\lambda} m^{m\lambda\alpha} \kappa^{k\beta}$$

for $m = 0, 1, 2 \dots m_0 - 1$

Thus

$$\left| \begin{array}{c} x^{m\lambda} (x^{1-2\lambda}D)^{k} x^{-\lambda\mu-\lambda+1/2} \phi_{\gamma}(x) \right| \\ < \eta (B + \delta) (C + \varphi)^{k} m^{m\lambda\alpha} K^{k\beta} \qquad \dots (3) \end{array} \right|$$

Similarly when $K < K_{O'}$ we can show that the inequality (3) is satisfied.

Thus for $m < m_0$ and $k < k_0$, $|x| > x_0$ the inequality (3) is satisfied.

Now if $m < m_0$ and $K < K_0$ and when ϱ and δ are fixed, then the constants $(B+\delta)^{m\lambda}$, $(C+\varrho)^k$, $m^{m\lambda\alpha}$, $k^{k\beta}$ are bounded. Since $\emptyset_{\mathcal{Y}}^k(x)$ converges uniformly to zero in the segment $|x| < x_0$, then for any $\eta > 0$ and sufficiently large $\mathcal{P} > \mathcal{P}_{01}$ the inequality holds. Thus for $\mathcal{P} > \mathcal{P}_0$, the inequality holds for any m_0 k and x. i.e. $||\emptyset_{\mathcal{Y}}||_{\delta \mathcal{Q}} < \eta$ for $\mathcal{P} > \mathcal{P}_0$. It follows that $\emptyset_{\mathcal{P}} \rightarrow 0$ in each of the norms $||\cdot||\delta \varrho^*$ Since δ and ρ are arbitrary, $\emptyset_{\gamma} \longrightarrow 0$ in the topology of the space $H^{\beta,C}_{\mu,\lambda,\alpha,B}$ as $\gamma \longrightarrow 0$. Theorem 2.5.2 -

If the sequence $\emptyset_{\mathcal{G}}(x)$ is bounded in each of the norms. $\|\cdot\|_{\delta} \circ g$ and converges correctly to some function $\emptyset(x)$. Then $\emptyset(x) \in H^{\beta,C}_{\mathfrak{P},\lambda,B}$ and $\emptyset(x)$ is the limit of the sequence $\emptyset_{\mathcal{G}}(x)$ in the topology of the space $H^{\beta,C}_{\mu,\lambda,\alpha,B}$. <u>Proof</u> -

By lemma 1,

 $\emptyset(\mathbf{x}) \notin H^{\beta,C}_{\mu,\lambda,\alpha,B}$

Since $\emptyset_{\vec{x}}(x)$ is bounded in each of the norms, the difference $\emptyset(x) - \emptyset_{\vec{x}}(x)$ is also bounded in each of the norms and converges correctly to zero

. By lemma 3,

 $\emptyset(\mathbf{x}) - \emptyset_{\mathcal{Y}}(\mathbf{x})$ converges to zero in the topology of the space.

Thus $\emptyset_{\mathcal{G}}$ is a fundamental sequence in each of the norms and $\emptyset_{\mathcal{G}}$ converges to \emptyset with respect to each norm. Then the norms $\|\cdot\| \delta \otimes$ are compatible. Thus the topology of the space $H^{\beta,C}_{\mu,\lambda,\alpha,B}$ is generated by the collection of compatible norms.

Hence $H_{\mu,\lambda,\alpha,B}^{\beta,C}$ is a countably normed space. The space $H_{\mu,\lambda,\alpha,B}^{\beta,C}$ is perfect.

The proof of this is similar to that of the proof of the result 'H^{\beta}_{\mu,\lambda} is perfect'.

Thus $H^{B,C}_{\mu,\lambda,\alpha,B}$ is complete countably normed perfect space.

Now if $B_1 < B_2$ and $C_1 < C_2$ The space

$$H^{\beta,C_{1}}_{\mu,\lambda,\alpha,B_{1}} \subseteq H^{\beta,C_{2}}_{\mu,\lambda,\alpha,B_{2}}$$

Hence we can construct the union of countably normed spaces over all B and C's. Thus

$$H^{\beta}_{\mu,\lambda,\alpha,B} = U H^{\beta,C}_{\mu,\lambda,\alpha,B}$$

Hence sequence $\emptyset_{\mathcal{Y}}$ converges to zero in $H^{\beta}_{\mu,\lambda,\alpha}$ if $\emptyset_{\mathcal{Y}}$ belongs to some $H^{\beta,C}_{\mu,\lambda,\alpha,B}$ and converges to zero in that space. This is true if and only if, the sequence $\emptyset_{\mathcal{Y}}$ converges correctly to zero and the inequality

$$\left| \begin{array}{c} x^{m\lambda} (x^{1-2\lambda}D)^{k} x^{-\lambda\mu-\lambda+1/2} & g_{3}(x) \\ & < A (B + \delta)^{m\lambda} (C + g_{3})^{k} m^{k\lambda\alpha} K^{k\beta} \end{array} \right|$$

is satisfied. where the constants A, B, C are independent of $\overline{\chi}$.

2.6

2.6.1 Property -

The space D(I) is subspace of the space $H_{\mu,\,\lambda,\,\alpha}$ - <u>Proof</u> -

Let $\emptyset \in D(I)$

Then according to the definition of space D(I)

(1) \emptyset is smooth function having compact support.

(2) $\sup_{k} | D^{k} \phi(t) |$ is finite.

Now $\emptyset \neq D(I) \implies \emptyset$ is infinitely smooth function on some compact set K or we can say on $0 < x < \infty$.

. the first condition of the space $H_{\mu,\lambda,\alpha}$ is satisfied. Now since $\sup_{k} |D^{k} \mathscr{O}(t)|$ is finite.

$$\sup_{\substack{0 < x < \infty}} \left| x^{m\lambda} (x^{1-2\lambda} D)^k x^{-\lambda\mu-\lambda+1/2} g(x) \right|$$

= $\sup_{k} \left| x^{m\lambda} (x^{1-2\lambda}D)^{k} \psi(x) \right|$ where $\psi(x) = x^{-\lambda\mu-\lambda+1/2} g(x)$.

Since $\emptyset(x)$ is smooth function.

 $\begin{array}{cccc} & & & & (x) & \text{is smooth function.} \\ & & & & (x^{1-2\lambda}D)^{k} \ \psi \ (x) & \text{is continuous} \\ & & & & x^{m\lambda} \ (x^{1-2\lambda}D)^{k} \ \psi \ (x) & \text{is continuous and continuous} \\ & & & & \text{function over some compact set K is always bounded.} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$

Hence $\emptyset \leftarrow H_{\mu,\lambda,\alpha}$.

Hence D(I) is subspace of $H_{\mu,\lambda,\alpha}$.

By the same method, we can show that D(I) is subspace of the space $H^\beta_{\mu,\,\lambda}$ and the space $H^\beta_{\mu,\,\lambda,\,\alpha}$.

00