CHAPTER - THREE

3.1)

3.1.1 Definition -

The conventional Hankel transformation $h_{\mu,\,\lambda,\,\alpha}$ for $\mu\,>\,-\,\frac{1}{2}$ is defined as

$$\emptyset (\mathbf{y}) = (h_{\mu, \lambda, \emptyset})(\mathbf{x}) = \lambda \int_{0}^{\infty} (\mathbf{x}\mathbf{y})^{\lambda-1/2} J_{\mu}(\mathbf{x}^{\lambda}\mathbf{y}^{\lambda}) \vartheta(\mathbf{x}) d\mathbf{x}.$$

3.1.2. Now we define two linear differential operators $N_{\mu,\lambda,\alpha}$ and $M_{\mu,\lambda,\alpha}$ and one linear integral operator $N_{\mu,\lambda,\alpha}^{-1}$ as follows

1]
$$N_{\mu,\lambda,\alpha} \phi(x) = x^{\lambda \mu + 1/2} D_x x^{-\lambda \mu - \lambda + 1/2} \phi(x)$$

2]
$$M_{\mu,\lambda,\alpha} \mathscr{O}(\mathbf{x}) = \mathbf{x}^{-\lambda\mu-\lambda+1/2} D_{\mathbf{x}} \mathbf{x}^{\lambda\mu+1/2} \mathscr{O}(\mathbf{x})$$

3]
$$N_{\mu,\lambda,\alpha}^{\dagger} \emptyset(\mathbf{x}) = \mathbf{x}^{\lambda\mu+\lambda-1/2} \int_{\infty}^{\mathbf{x}} \mathbf{x}^{-\lambda\mu-1/2} \vartheta(\mathbf{t}) d\mathbf{t}$$
 ['3]

3.3.2 Theorem 3.2.1 -

For $\mu > -1/2$, the conventional Hankel transformation $h_{\mu,\lambda,\alpha}$ is a continuous linear mapping from the space

$$(H_{\mu,\lambda,\alpha,A})$$
 to $(H_{\mu,\lambda}^{2\alpha,(2e)})^{2\alpha_{B}^{2}})$

41

9587 A Proof -

Let P be a bounded set in $H_{\rm F,\,\lambda,\,\alpha,\,A^*}$ Let Ø (P . Then Ø satisfies the inequality

$$| x^{m\lambda} (x^{1-2\lambda}D)^k x^{-\lambda\mu-+1/2} \phi(x)$$

<
$$A_{k\delta} (B + \delta)^{m\lambda} (m\lambda)^{m\lambda\alpha}$$
.

for m, k = 0, 1, 2

where constant $A_{k\delta}$ is independent of \emptyset ,

Let
$$\mathscr{O}(\mathbf{y}) = (h_{\mu}, \lambda_{\mathcal{A}}^{\mathscr{O}})(\mathbf{x})$$

Then for any pair of non-negative integers m and k and using the result

$$N_{\mu+k+m-1,\lambda,\alpha} = N_{\mu,\lambda,\alpha} x^{\lambda k} \mathscr{O}(x) =$$

$$x^{\lambda \kappa}$$
 $N_{\mu+m-1}, \lambda, \alpha \longrightarrow N_{\mu}, \lambda, \alpha^{\sigma}(x)$.

We have,

$$(-\mathbf{y})^{m\lambda} N_{\mu+k-1,\lambda,\alpha} = N_{\mu,\lambda,\alpha} \mathscr{G}(\mathbf{y}) =$$

$$= h_{\mu+m+k,\lambda,\alpha} \int (-\mathbf{x})^{\lambda k} N_{\mu+m-1,\lambda,\alpha} = N_{\mu,\lambda,\alpha} \mathscr{G}(\mathbf{x}) \int$$

$$= \int_{0}^{\infty} (-\mathbf{x})^{\lambda k} N_{\mu+m-1,\lambda,\alpha} = N_{\mu,\lambda,\alpha} \mathscr{G}(\mathbf{x}) (\mathbf{x}\mathbf{y})^{\lambda-\frac{1}{2}} J_{\mu+m+k} (\mathbf{x}^{\lambda}\mathbf{y}^{\lambda})$$

$$d\mathbf{x}. \dots f\mathbf{1}$$

Now we have two results which are true by an induction on k and m. They are as follows :

$$N_{\mu+k-1,\lambda,\alpha} \xrightarrow{-- N_{\mu,\lambda,\alpha}} (y) =$$

$$= y^{\lambda\mu+\lambda(k+1)-1/2} (y^{1-2\lambda}D)^k y^{-\lambda\mu-\lambda+1/2} (y) \dots (2.)$$

and

$${}^{N}\mu+m-1, \lambda, \alpha^{---} {}^{N}\mu, \lambda, \alpha {}^{\emptyset(x)}$$

= $x^{\lambda\mu+\lambda(m+1)-1/2} (x^{1-2\lambda}D)^{k}x^{-\lambda\mu-\lambda+1/2} {}^{\emptyset(x)} \dots (3)$

Therefore from (1) we have

$$(-y)^{m\lambda} y^{\lambda\mu+\lambda(k+1)-1/2} (y^{1-2\lambda}D)^{k} y^{-\lambda\mu-\lambda+1/2} \widetilde{\mathcal{J}}(y)$$

$$= \int_{0}^{\infty} (-x)^{\lambda k} x^{\lambda\mu+\lambda(m+1)-1/2} (x^{1-2\lambda}D)^{k} x^{-\lambda\mu-\lambda+1/2} \mathscr{J}(x)$$

$$= (xy)^{\lambda-1/2} J_{\mu+m+k} (x^{\lambda}y^{\lambda}) dx.$$

$$\int y^{m\lambda} (y^{1-2\lambda}D)^{k} y^{-\lambda\mu-\lambda+1/2} \widetilde{\mathcal{J}}(y) |$$

$$= \int_{0}^{\infty} \frac{x^{\lambda k+\lambda\mu+\lambda(m+1)-1/2+\lambda-1/2}}{y^{\lambda\mu+\lambda k+\lambda-1/2-\lambda+1/2}} (x^{1-2\lambda}D)^{k} x^{-\lambda\mu-\lambda+1/2} \mathscr{J}(x)$$

$$= \int_{0}^{\infty} \frac{x^{\lambda k+\lambda\mu+\lambda(m+1)-1/2+\lambda-1/2}}{y^{\lambda\mu+\lambda k+\lambda-1/2-\lambda+1/2}} (x^{1-2\lambda}D)^{k} x^{-\lambda\mu-\lambda+1/2} \mathscr{J}(x)$$

٠

•

. .

$$< \int_{0}^{\infty} x^{2\lambda+2\lambda k-1+\lambda(m+2)} (x^{1-2\lambda} D)^{k} x^{-\lambda\mu-\lambda+1/2} g(x) x$$

$$x \frac{J_{\mu+m+k}(x^{\Lambda}y^{\Lambda})}{(xy)^{\lambda\mu} + \lambda k} dx.$$

Taking a positive integer \Im greater than $2\lambda\mu$ -1 we write. $\begin{vmatrix} y^{m\lambda}(y^{1-2\lambda}D)^{k} & y^{-\lambda\mu-\lambda+1/2} & (y) \end{vmatrix}$ $< \int_{0}^{\infty} x^{\gamma+2\lambda k+\lambda(m+2)} & (x^{1-2\lambda}D)^{k} & x^{-\lambda\mu-\lambda+1/2} & (x) \\ & x \frac{J_{\mu+m+k}(x^{\lambda}y^{\lambda})}{(x,y)^{\lambda\mu+\lambda k}}$

Since the quotient

 $\frac{J_{\underline{u}+\underline{m}+\underline{k}}(x^{\lambda}y^{\lambda})}{(x\underline{y})^{\lambda\underline{u}+\lambda\underline{k}}} \quad \text{is bounded by}$

say A'ko.

. By definition of space $H_{\mu, \lambda, \alpha, A}$ since

 $\emptyset \in H_{\mu,\lambda,\alpha,A}$. We have

$$\left(\begin{array}{c} y^{m\lambda}(y^{1-2\lambda}D)^{k} y^{-\lambda\mu-\lambda+1/2} \not\downarrow (y) \right) \\ < A_{k\delta} \left[1 \not f + (B+\delta)^{\psi+1+\lambda(m+2)} (y^{\lambda}f_{k} + \lambda(m+2))^{(\psi+1+\lambda(m+2))\alpha} \right] \\ \end{array}\right)$$

Here the constants $A_{k\delta}$ in independent of \emptyset in P. Also $\oint (y) = (h_{\mu}, \lambda_{j}^{\emptyset})(x)$ lies in the space $H_{\mu,\lambda}^{2\alpha} (2e)^{2\alpha}B^2$ From (4) $\emptyset \longrightarrow h_{\mu,\lambda_{j}^{\emptyset}}$ maps a bounded set in $H_{\mu,\lambda}, \alpha, \lambda$ into a bounded set in $H_{\mu,\lambda}^{2\alpha}$.

Hence the mapping $h_{\mu,\lambda,\alpha}$ is continuous.

3.3 The generalised Hankel Transformation -

In this section μ lies in the interval $-\frac{1}{2} < \mu < \infty$. 3.3.1 The generalised Hankel transformation $h_{\mu,\lambda,\alpha}^{*}$ is defined on the dual spaces $H_{\mu,\lambda,\alpha,A}^{*}$ and $(H_{\mu,\lambda,\alpha,B}^{B,C})'$ For arbitrary f $\in H_{\mu,\lambda,\alpha,A}^{*}$ We define F = $h_{\mu,\lambda,\alpha}^{*}$ f, by $< F, \not D > = < f, \not D >$ where F = $h_{\mu,\lambda,\alpha}^{*}$ f. $\not D = h_{\mu,\lambda,\alpha} \not D$

$$\emptyset \leftarrow H_{\mu}, \lambda, \alpha, A$$

f $\leftarrow H_{\mu}, \lambda, \alpha, A$

OR we can also define it as

 $< h_{\mu,\lambda,\alpha} f, \not f > = < f, h_{\mu,\lambda,\alpha} \not f > .$

We shall prove the following theorem.

Theorem 3.3.1 -

For $\mu > -1/2$, the generalised Hankel transformation $h^{*}_{\mu,\lambda,\alpha}$ is a continuous linear mapping from the dual space

$$(H_{\mu,\lambda}^{2\alpha,(2e)})$$
 to $(H_{\mu,\lambda,\alpha,A})$

Proof -

Let $h_{\mu,\lambda,\alpha}$ be a continuous linear mapping from $(H_{\mu,\lambda,\alpha,A})$ to $(H_{\mu,\lambda}^{2\alpha,(2e)^{2\alpha}B^2})$

[This is proved previously]

Now F is a member of $H_{\mu,\lambda,\alpha,A}^{*}$.

For

Let \mathfrak{F} , \mathfrak{P} , $\mathfrak{H}_{\mu,\lambda,\alpha,\mathbf{A}}$ and α , β be any complex numbers. Then $\langle \mathbf{F}, \alpha \mathbf{D} + \beta \mathbf{\Psi} \rangle = \langle \mathbf{f}, \alpha \mathbf{O} + \beta \mathbf{\Psi} \rangle$

 $= \langle f, \alpha \emptyset \rangle + \langle f, \beta \psi \rangle$ $= \alpha \langle f, \emptyset \rangle + \beta \langle f, \psi \rangle$ $= \alpha \langle F, \underline{\emptyset} \rangle + \beta \langle F, \underline{\psi} \rangle$

Thus F is a linear functional on $H_{\mu,\lambda,\alpha,A}$. For continuity – Let $\langle \overline{\mathcal{I}}_{\mathcal{Y}} \rangle$ converges to zero in $H_{\mu,\lambda,\alpha,A}$. Then as $\gamma^2 \longrightarrow \infty$. $h_{\mu,\lambda,\alpha} \xrightarrow{\mathfrak{I}}_{\mathcal{Y}} \longrightarrow 0$ [Since $h_{\mu,\lambda,\alpha}$ is continuous] $\therefore \langle F, \overline{\mathcal{I}}_{\mathcal{Y}} \rangle = \langle h_{\mu,\lambda,\alpha}^{*} f, \overline{\mathcal{I}}_{\mathcal{Y}} \rangle$ $= \langle f, h_{\mu,\lambda,\alpha} \overline{\mathcal{I}}_{\mathcal{Y}} \rangle$ $\longrightarrow 0$ as $\gamma^2 \longrightarrow \infty$

[since f is continuous]

. F is a continuous functional on $H_{\mu,\lambda,\alpha,A}$.

Thus F is a continuous linear functional on the space ${}^{H}\mu,\lambda,\alpha,A^{*}$

• By definition F is a member of the dual space $H_{\mu,\lambda,\alpha,A}^{\dagger}$

Now we shall prove the linearity and continuity of the

mapping $h_{\mu,\lambda,\alpha}^{*} \longrightarrow F$ For Linearity -Let f and g $\left(\left(H_{\mu,\lambda}^{2\alpha} \right)^{(2e)^{2\alpha}} B^{2} \right)^{*}$ and α, β be any two complex numbers. Then $\left\langle h_{\mu,\lambda,\alpha}^{*} \right\rangle, \not D \rangle = \left\langle \alpha f + \beta g, h_{\mu,\lambda,\alpha} \not D \right\rangle$

$$= < \alpha h_{\mu,\lambda,\alpha} f + \beta h_{\mu,\lambda,\alpha} g , \not f >$$

Thus $h_{\mu,\lambda,\alpha}^{\dagger}$ is linear.

For continuity -

Let $f_{\mathcal{P}}$ converges to zero in $(H_{\mu,\lambda}^{2\alpha,(2e)})^{2\alpha_B^2}$.

Then

$$\langle h_{\mu,\lambda,\alpha} f_{\gamma} g \rangle = \langle f_{\gamma}, h_{\mu,\lambda,\alpha} g \rangle.$$

----> 0 as $\gamma -> \infty$.

• $h_{\mu,\lambda,\alpha}$ is continuous.

Thus $h_{\mu,\lambda,\alpha}^{i}$ is a continuous linear mapping from $(H_{\mu,\lambda}^{2\alpha}, (2e)^{2\alpha}B^{2})^{i}$ to $(H_{\mu,\lambda,\alpha,\lambda})^{i}$. 3.4 Non-Trivility -3.4.1 The non-triviality of the space $H_{\mu,\lambda,\alpha}^{-}$ For any real number α , the space $H_{\mu,\lambda,\alpha}$ is non-trivial. Case (1) - Let $\alpha > 0$ Let \emptyset be a smooth function with compact support on (0, ∞). The Taylor's expansion of \emptyset near origin is

$$\emptyset(x) = x^{-\lambda \mu - \lambda + 1/2} (a_0 + a_2 x^2 \dots a_{2k} x^{2k} + R_{2k}(x)) \dots (1)$$

where k = 0, 1, 2...

and

$$a_{2} = \lim_{x \to 0^{\pm}} \frac{(x^{1-2\lambda}D)^{k} x^{-\lambda\mu-\lambda+1/2} \phi(x)}{2^{k} k!}$$

and $R_{2k}(x) = O(x^{2k+2})$

that i.e. $R_{2k}(x)$ is a function of slow growth.

Let L = Sup $\int x / x$ + support of \emptyset . Then from (1) we can write

$$\int x^{m\lambda} (x^{1-2\lambda}D)^k x^{-\lambda\mu-\lambda+1/2} \mathscr{O} (x) /$$

$$\begin{cases} \sup_{0 < x < L} \left| x^{m\lambda} (x^{1-2\lambda} D)^k x^{-\lambda\mu-\lambda+1/2} g(x) \right| \\ \text{Let } \sup_{0 < x < L} \left| (x^{1-2\lambda} D)^k x^{-\lambda\mu-\lambda+1/2} g(x) \right| = C_{qK} \end{cases}$$
Then
$$\left| x^{m\lambda} (x^{1-2\lambda} D)^k x^{-\lambda\mu-\lambda+1/2} g(x) \right| \\ < C_{qK} \cdot \frac{L^{m\lambda}}{A^{m\lambda} m^{m\lambda\alpha}} - x A^{m\lambda} m^{m\lambda\alpha} \qquad \dots (2)$$
Let $C = \max \left\{ \frac{L}{A} \right\} (\frac{L}{A2^{\alpha}})^2 \dots (\frac{L}{Ak_0^{\alpha}} m^{\alpha})^k \right\}$
where $K_0 = \left[\frac{L}{A} \right]^{1/\alpha} + 1$
where $\left[\frac{L}{A} \right]$ denotes the greatest integer not exceeding $\frac{L}{A}$
 $Clearly \left(\frac{L}{AK^{\alpha}} \right) < 1 \text{ iff } k > (\frac{L}{A})^{1/\alpha}$
 $\therefore | x^{m\lambda} (x^{1-2\lambda} D)^k x^{-\lambda\mu-\lambda+1/2} g(x) |$
 $< C_{qK} \cdot C \cdot A^{m\lambda} m^{m\lambda\alpha}$

This implies by definition that $\emptyset \in H_{\mu,\lambda,\alpha}$ Thus $H_{\mu,\lambda,\alpha}$ is non-trivial.

50

•

Case (2) -

If $\alpha = 0$. Then we know that, for $\alpha = 0$

 $H_{\mu,\lambda,0,A} \subseteq B_{\mu,A}$ and since $B_{\mu,A}$ is non-trivial.

• $H_{\mu,\lambda,0}$ is non trivial. Thus the space $H_{\mu,\lambda,\alpha}$ is non-trivial for any real number α . 3.4.2 For any $\beta > 0$, the space $H_{\mu,\lambda}^{\beta}$ is non-trivial. Case (1) $\mu > -1/2$

The conventational Hankel transformation $h_{\mu,\lambda,\alpha}$ maps the space $H_{\mu,\lambda,\alpha,A}$ to the space $H^{2\alpha(2e)}_{\mu,\lambda}^{2\alpha}$.

 $h_{\mu,\lambda,\alpha}$ is defined as

$$\widehat{\mathscr{Q}}(\mathbf{y}) = (h_{\mu,\lambda,\alpha}\emptyset) \quad (\mathbf{x}) = \lambda \int_{0}^{\infty} (\mathbf{x}\mathbf{y})^{\lambda-1/2} J_{\mu}(\mathbf{x}^{\lambda}\mathbf{y}^{\lambda}) \quad \emptyset(\mathbf{x}) \quad \mathrm{d}\mathbf{x}$$

Its inverse is defined as

$$h_{\mu,\lambda,\alpha}^{-1} \underbrace{\partial}_{\mu} = \lambda \int_{0}^{\infty} (xy)^{\lambda-1/2} J_{\mu}(x^{\lambda}y^{\lambda}) \underbrace{\partial}_{\mu}(y) dy$$

Note that

for $\mu > -1/2$, $h_{\mu,\lambda,\alpha} = h_{\mu,\lambda,\alpha}^{-1}$

Hence the mapping $h_{\mu \lambda, \alpha}$ is one-to-one for $\mu > -1/2$.

Since ${\tt H}_{\mu,\,\lambda,\,\alpha}$ is non-trivial. Therefore the space ${\tt H}^{\theta}_{\mu,\,\lambda}$ is non-trivial.

Case (2) - $\mu < -\frac{1}{2}$

We define

$$h_{\mu, m_{\rho}\lambda_{\rho}\alpha} \mathscr{O}(\mathbf{x}) = (-1)^{m} \mathbf{y}^{-m\lambda} h_{\mu+m_{\rho}\lambda_{\rho}\alpha} \int \mathbf{w}_{\mu+m-1, \lambda_{\rho}\alpha} d\mathbf{x}$$

$$N_{\mu,\lambda,L}$$
 $\emptyset(x)$

and

$$h_{\mu, m, \lambda, \alpha}^{-1} \widetilde{\mathscr{J}}(y) = (-1)^{m} N_{\mu, \lambda, \alpha}^{-1} - \cdots N_{\mu+m-1, \lambda, \alpha}^{-1} \cdot y^{m} \widetilde{\mathscr{J}}(y)$$

where m is any positive integer greater than $-\mu - \frac{1}{2}$ Then by applying $h_{\mu,m,\lambda,\alpha}$ instead of $h_{\mu,\lambda,\alpha}$, we can say that $H^{\beta}_{\mu,\lambda}$ is non-trivial for $\mu < -\frac{1}{2}$ Thus $H^{\beta}_{\mu,\lambda}$ is non-trivial.

