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lv. SOME FEATURES OF WEYL TENSOR :

1. eyl Conformal Curvature Tensor :

We know that the Riemann curvature tensor which is in-
variant characterisation of the gravitetional field due to
cinstein, plays a vital role in the general theory of relati-
vity. The famous Einstein's equations are based on Ricci
tensor which is the trace off Riemann curvature tensor and
the Ricci scalar which is the trace of Ricci tensor. The
properties of the Riemann curvature tensor have reduced to
the total 256 components considerably. Many other tensors
of rank four constructed with the help of Riemann curvature
tensor and its dual are availabls in literature. Une of the
important tensors constructed with Riemann curvature tensor
and itstrace is known as ¥eyl conformal tensor., The defining
expressidn for this Weyl conformal tensor (Carmelli 1982 )

is of the form

c = /R

1
abcd abcd 3(Racgbc - R

ad%c * Rpy9ac’

(9,cRba = 9249 (4.1)

ONZD

The significance of this Weyl tensor is that it satisfies
all the properties of the Riemann curvature tensor and in

addition is tracefree. That is
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— -
Cabcd - C‘abdc - vbacd ’ (402)
Cabcd = Ccdab » (4.3)
Cabcd + Cacdb + Cadbc =0, (404)
ca = Oo (4.5)

hca

These properties imply that the Weyl conformal tensor has
only ten independent components., Note that the fcrm of the
Wieyl tensor is left invariant under conformal mapping and
hence the name Weyl conformal tensor, It is clear from the
definition that the Riemann curvature tensor consists of two

parts, ona zero trace part and the other nonzero trace part.

Note 1

We have the necessary and sufficient condition: for
spacetime to be flat V8 zero Riemann curvature tensor. Hence
if all the components of the Riemann curvature tensor vanisn
then the spacetime becomes flat. Qne can prova frcocm Einstein's
field equations that the fiat spacetime implies empty spacezime
(Tab=0) but not the converse. The Weyl tensor gives the non
Ricci part of the curvature that no longer vanishes identically.
The vanishing of the Wey!l conformal tensor is characterised
as the conformally flat spacetime . Hence the spacetime is

said to be conformally filat if

0 . (4.6)

vabcd =

This concept is analogous to the criterion for flatness

(Lord 1976).
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Claimgs:
If the spacetime is flat then it is conformally flat
but the converse is not true,

[ Proof is evident from the defining expressior (4.1)].

Remark1s

We can rewrite (4.1) as

R

el

= C - ...i: __?
abcd = “abcd LR 904 = Rag%be * Rog%ac = foclad’

- R - .
%‘gac g ~ Jag%bc

(4.7)
We observe from this that the total gravitational field
characterised by Rabcd is the sum of gravitational field from
matter part ( a gravitational field from second term on right
hand side) and the gravitational field from matter free part
(given by first term on right hand side). Therefore the Weyl
tensor Copegq 15 said to signify the free gravitational field,

The spacetime of constant curvature is characterised by

specific value of Riemann curvature tensor.

Rabed = Pl9409,, = 9 9,47 - (4.8)

This result immediately produces the value of Ricci tensor.

R = , .
b 3%9ab . . (4.9)

thal
This impliee)}he value of W to be

W=1 R . (4.10)
12
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Hence the spacetime of constant curvature is now characterised

by the expression

Rabcd =R_(g g - g g (4e11)

15 db~ac ol e} ad)'

Remark 2:
The spacetime of constant curvature is essentially unique

and maximally symmetric,

Claim 2
The spacetime of magnetofluid with constant curvature
satisfying the equation of state (€=3p) is conformally

invariant,

Proof
3y making use of (4.11) and the expression of #eyl con=-

formal tensor (4.1) we obtain

Cabed = %(gdbgac - gcbgad) . (4.12)

This under the equation of state 2)=3p gives the result,

a
C%cdza = O (4.13)

This implies that the spacetime is conformally invariant.,

Claim 3 :
If the spacetime of magnetofluid is of constant curvature

then

=3+12‘/) -
Q=3+ 12¥
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Proof @

By using the expression (3.12) of R, for magnetofluid,

in equation (4.9) we get
12 ¢ = k(R-3p) >
ioeo, %-—'—' 3p + 12(__%_) .
K
Hence the result,

2. Decomposition Of eyl Tensor

In electromagnetic field theory the Maxwell field tersor
consists of two parts (1) electric and (2) magnetic. These
two parts are obtainable from suitable contraction of Maxwell
field tensor., The analogous process s to decompose the free
gravitational field in electric type part and magnetic type
part is suggested by (Glass 1975). In this method these two
parts are described through suitable contractionsof Weyl
tensor, We have defined the expression for electric type tesnsor

©,p and magnetic type tensor H  —as follows (Glass 1974).

1 b

- b, d
Eab = Capcd’ Y (4.14)

72ac9h cghbducud . (4.15)

where qz is the Levi-Civita permutation tensor.

Hab =

roje

These tensors satisfy the following properties.

i) These tensors are U-normal

i.e., HabUa = 0 = EabUa s
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ii) These parts are tracefree

feey, E_ =0=H |, (4.16)

iii) These patrs are symmetric in both the indices

faea, Eab = Epy o (4.17)

Hap = Hba . (4.18)

The interiinking between electfic type tensor Ea and magnetic

b
type tensor H__ can be obtained with the help of (4.13) and

(4.14) in the form

_ _ q s:rt
Catea = (gabqrgcdst qabqr72cdst)u v

yudusyt | (4419)

( +
gabqrq?cdst 7.Zabql'stSt

where  gupecd = 9ac9pg = 944%pc (4.20)
We have the Ricci identities for timelike vector fielg U as
[+ 9
2 Ub;[cd] = Y Rabcd . (4.21)

These identities with the Wey! tensor expression (4.1) and

kinematical parameters ( ) yield the results (Glass, 1975)

ab T 2

2 2 ’c
+ %pab(25 "2@ -U ;C). (4022)

~cd e . |
Hab —7(apb) [wec;d + O/ec;dJ - 2U(afdb) . (4,23)

i
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where
—abc abcd

1

ih
C
.

3. Shearfree Magnetofluid And Electrictype Tensor Egp ¢

For shearfree fluid ( 6;b=0) we have from (4.22) the

exgressions

_ 1( c d 4 cd - c d
Ep = 2R 4P Py 3P P )+ U(C;d)p 2P b
* c 1 2 °C |
- U u — - -U - 4,24
AUy F W Wy, # 3 pab( 2W ;g) ( )
H, = -5 o \° - 20 (4.25)
ab = 72 (a”b) Wesey (aUJb) ’ ’

If we use the expression (3.12) of Ricci tensor for shearfree
magnetofluid in the equation (4.24) then we obtain the value

of electrictype tensor Eab as
Eap = 3 1-k[(Q+p+un®)U Uy = H( @ -pritn®)g_ -4l h Jx
ab 2 c d 2 @ cd cd

*(g® -USU )( d )+ X(g —u Uy [ AR YU U
9 4 a’‘9 b b+39abab[%+p+ c d

2
- 3(Q-pruun)g o - g h J(g%0-UTu?)t e

»

c c d d v c
'HJ(c;d)(g a~V Ua)(g p~Y Ub) - Y t W w 5*

+ (g =U U ) (=2w?2-F ) . (4,26)
ab a b H

53 c

This after simplification provides tha following result

1 2
= AL
Eab k{ hahb+ f;xih pa )+

c
b U(c;d)(

Cue® )
9 477 Yalle - p'"
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YN c a1 _ s, 2."C
Uaub * wacw b + B(Qab Uaub)( 2w J;C) x (4.27)

Claim 1 :
For geodesic flow of shearfree magnetofluid with

magnetic field normal to plane of rotation,

Eabhahb =0 <_—_——___.> W = -(thg).

Proof 3
The transvection of the equation (4.27) with han and

using the given conditions

u, = o (geodesic flow), (4.28)
and Wyoh° = 0, (4.29)
we obtain

= a.b _ 2 2 | 2 2

Zphh =5 (ke N+ 7) (4.30)

From this we can immediately conc lude
- a, b 2 2
E.abhh ::Oé:___—?w =—(th)-
This completes the proof,

Remark 1:
For varishing of electric type tensor we have,

D

W = -(kah?), [vide{4.30)]

Remark 23
The necessary and sufficient condition for a stationary

vaccum spacetime to be static is that the Weyl tensor be of
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electrictype (Glass 1974).

Coroltiary 1

If E = 0 and Uu =0 then,
ab a

Proof
For geodesic flow of shearfree magnetofluid if the electric

tensor vanishes then,

wabhb = 0 @ wg = -(k/U.hz).

It follows from (4.27) after inner multiplication with h3hP

and using the given conditions Eab = 0 and Qa = 0
we get
b aC . p 2 2 .2,
Wyp W N7 + £ h"(kah™+ W) = 0, (4.31)
If we write QJabhb = Sa then above equation yields,
SaSa - % hg(k4¢h2+u32) =0, (4.32)
iee., 3% - - 2 ha(kx4h2+c02) . (4.33)
3
whers we have chosen SaSa = -89 . (4.34)

Now 8%' vanishes when (kx&h2+u32) is zero. But 32 is zero

implies bJabhb is zero., Hence we have the result.

b 2 2
wabh = O @w - —th »

Here the proof is complete.
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4. Shearfree Magnetofluid And Maxwelllike Equations

The divergence of Weyl tensor is independent of itself

and is designated as the matter current J*abc(Szekeres 1064),

. a *

30 that the divergence equation

*a be

J o = o, (4.36)

is the conservation equation for the source of tke free

gravitational field., The well known Bianchi identities imply

(Kundt and Trumper 1962)

J*abc - relasby_ 1 gccaﬂ;bj (4.37)
— 6 . L]
This after the use of Zinstein field equations. Jvel

* - ] T ] 4,38
J abe Tc[a;b_‘] T3 9Yeralg (4.38)

For shearfree magnetofluid ,this equaiton then gives

- 2 1 2
J ab”::t%( §+p.th ) + (%*ﬂfJLh U t

;aub c;[aub]

2 ,
+ +p+Ln” YU U - AN h -4 h h
(% : ) c [bsa) ¢; [a D] Cs(a b]

2 g =
~ Ah_h + +5Uh . 4,
Mosa) * (FE+ );ngajc (4.39)
The result (4.37) in combination with (4.39) and the expression
for Weyl conformal tensor given by (4.19) yields the following

Maxwelllike equations under typical inner multiplication

(Asgekar, 1979)

7471
A
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. b b b b
i H E cd _ . +inh  h
) IMapw + By gp P %’ Qv a ™ #Masp
b
- lan  pfuU (4.40)
bge a
i) H_ pC9p2P _zga (P | (@ 4prwh?)es?
be 3 d p W =~ (] W
1 abcd € .
+24u-7l Upu hche;d' (4.47)
‘s ma_tc _ (m_ _t)rsd,, =2 - (t_.m)opa
iti) Hacp p pa 32 Uru s;d * 2 = vz Ubup-P
1 aomt o (Mmoo t)s att _m)ebc
+ —=BH =H W o= - “nh p U h, -
3 S 2 ajc K e b
-Alh h(tQHHEbCU . (4.,42)
2 Psc e
. ab_t _m a (m__t)rsd L (t_m)bpa, *°
H uu +
iv) E%7p ap b+ i s;durpa 72 e a 72 bp
1 t (m (t)s 1 2 b tm 1 2. tm
— = - - ] e
+ 8 E ES %) 5 h ;bJp -G-A(h p
b
— A hmpat
> ash
— 4 h WChtpb™ | (4o43)
lb;cl

The conformal flatness is the sufficiant condition to ensure
that the velocity vector U to be shearfree and hypersurface
orthogonal. Hence the conformally flat solutions of Stephani,
1982 are the most general conformally flat fluid solutions.
Therefoere, under the restriction of conformal flatness

Ep = Hab = 0 which then with the help of equations (4.40)

and (4°+41) yield



43

b
EQ bp a _BAha

*

h +3un  nUPU = O. (4.44)
e b;c a

2(Q +prathw® = wum 209 %hn, = 0. (4.45)
Claim 1
If the spacetime of the shearfree magnetofluid is confor-
mally flat then the matter density conserves along the magnetic
fines if and only if the magnitude of the magnetic field

also conserves along these lines,

Proof :

We consider the term

b a (a b ~J a
ha;bh ue = —ua;bn h™ ( % u,h'=0)
: b,.a — - 1 y ; a b
i bud = L en® .
iece, ha;bh u® = 5 eh° . (4.46)

This value when inserted in the equation (4.44) gives

b

2 % bp a

]

- 3un bhb + thua = 0. (4.47)

.
b

This after contraction with h? gives

b 3 (ne b X%
2 h* + =(h = .
S = (h" )h 0, (4,48
] a _ _ 1,2
since ha;bh = 5N +b .
We write from this
b

b 2 = »
g p1 =0 &= n ’b,,k,.o



b

This is the requiresd result.

Claim 2:
For shearfree magnetofluid with conformally flat space-
time the verticity vector is orthonormal to vectors U, h

= 5 b
and 8 (ba = hjabh )

Proof
On introducing the kinematical parameters, from the

equation (4.45) we write

abcd e

2(Q +pakh?) P ) L egYpn " = 0
fee,  (R4pran®)® + %—M"zabc‘juthSd =0, (4.49)
where we have taken
S — he - ‘4‘. O
Dd wed ( 5 )
This then further simplified into
(R +pr AP ) = —ud? (4.51)
by defining D% as
bcd a
2 W YN (4.52)

Here by the definition of D% it is orhtogonal to U, h

and S, Hence the claim follows from the result (4.51).

Remark

Under the condition of uniform magnetofluid (ha,b=0)
y
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the results (4.44) and (4.45) tally exactly with the results
derived by Barnes (1684). Hence we claim that for shearfree
magnetofluid with uniform magnetic field if,<5;b=Hab=O,
then either the vorticity vector is zero or it is an

ai y § i igenva 1 2 i !
eigenvector of Eab with its eigenvalue 1§(€;+p+x4h }, (vide 4.41).

5. Divergence Expressions For The Electric Type And The

Magnetic Type Tensors :

We have the divergence equations of E4,, and H

(Glass, 1975)

ab

~a _ d, c 1 ¢ . [ C c
E bsa = Rd[b;c]U U’ o+ 75 P b”;c U Ebc + 3w Hbc
ad
- U g R - (4.53)
a 1 mad  C el C~ ad R
" sa = FM, Y Rca;d - U Hbc - 30 t:.bc - Ug g Hyyt (4.54)

These relations under the condition <5;b=0 becomes

- _ d,c 1 c *C - c

i = it Uy -+ ~ - U'E + + . Z‘l'o

o b;a f dLb;CJ m p h ,C be 3G bc ( 55)
a _ — ad UCR *C _ C -~ |
H bja 12b 'ca; v Hbc S0 “be (4.56)

We have the following simplification of the result (4,55) for

the shearfree magnetofluide.

e =
bya ~

ofx

i [(%ﬂ”'“h U Ub -3 gdb(g'p*‘-‘-&hg)"'

- Moy L Q +p+auh®)U Uy =H( §-p+uun?)g, -
dc kK (.C c

- nghed YRS - B G S ) [(§-30), T -

SARR. BALKSAHER 75 OERAR LIBBARY

LR AT L NS B AL 7?;4
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1
C =

[

, + BQfH .
oC be

This after simplification yields the following result

d

2 LCgepraen®)l, - an u®h 7+

& = -
bja

[= o=

-+

(§-30) % - Ue +30% . (4.57)

| b be bc

AV

Also in the similar way we can find the simplification of

the result (4.56) for shearfree magnetofluid as

a | 1 - ad C{ , 24 1 2y -
H = 5 U - h" ) U - 5 -p+Uh
o8 = 270, k{;(%-rp-ivbl JU U - 3(R-p )gca
e .
- -U H - £ .
Akhcha];d} be 3w bc
This after simplification supplies
a 2 k c ade,
= - - Uy -
H bsa ku%(%+md¢h) 5 hhaa%avb o
- UCHbC - X% ., (4.58)

be

Theorem 1

For shearfree magnetofluid if the electrictype tensor
is divergencefree and the magnetic field vector is the
eigenvector of boitn electrictype tensor and magretic type
tensor with zero eigenvalue then the density is preserved
along the magnetic lines if and only if the pressure is

preserved along these lines,

Proof

On trarsvecting the eguation (4.57) with h° we get
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2

k 2, .b * b k b
-~ ..é..[ (§+p+,uh JUgh™ +—Uh"h U 1+ 1-—2-(§--3p);bh_,

'c b c o)

. k ‘oD k. _ b _ fce b
ie€e, 2( %+p)b§1 + 12(% Bp);bh U nbch.+
b
+ 3W°H, n° = 0. (4.59)
bc
since U h? = =h va ,
a a
By using (3.19) we reduce this equztion as
.S > K - b (Cc b ¢ b _
5 p;bh + 55 (Q jp);bh UTE hT + 3WTH  hT = 0,
K h *C - b c b z
, 12( Q;b 9 p;b) e W .
Now as h is the eigenvector of Eab and Hab with eigenvalue
zero we have
- b b ,
ab ab ( /

This result when substituted in (4.60),We make the assertion

1

Q0 = 0 =D, n’ =0 (4.62)

b

This is the required result.

Remark
The theorem is also valid if the spacetime of shearfree

magnetofluid is conformally flat.

Claim 3

For the divergencefree electric type tensor of shearfree
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magnetofluid the density is invariant along ths flowlines
if and only if the pressure remains invariant along these

lines,

Proof :

The inner multiplication of (4.57) with flowvector U

and recalling the results

- a
uu =0, Un =0 and
a a

EabUb =0 = Habu ’ we deduce

a
- U el hd
(g 39);a 0
This implies that

a

%sat

Here the proof is complete.

a
=O<:_~__—-:>p;aU = 0

Claim 4

For shearfree magnetofiuid with the geodesic flow ani
zero electirctype tensor)theﬁ the divergencefree magnestic tyf%
tensor implies that the vorticity vector is normal to magnetic

field lines.

Proof

For divergencefree magnetictype tensor we write from

(4.59)

ade

. 2 K c
ki %+p+JAh ) + -2-Mh hawcd72b
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+ 3W°E = 0> (4.60)
bc

»
Whenthe given conditiong UazO and Easz are used in

abovs equation then

ade
deb(§+p+«U~h2) + —'g-uhchacucd M Ye =0 - (4.61)

This after contraction with hb

yields
KW, (€ +p+uh)n® = 0 -«
6! § =
This equation gives
W,h” =0 as (§>+p+4Lh2) £ 0

This completes the proof,

Note

Again the equation (4.61) after inner multiplication

with ¢J b provides

2 2 k c ade b
- — AL N¥h U =
k W (§+uu¢h) + > aa%dv& o W0 o,
2 A
. b a .2
where we have written Sa = u)abh so that SaS = -3,

We write from this
Su = mCO E) (4.63)

where, m = 2(R +p+MhZ),
AL

This shows that the magnitude of the vector S is a multiple
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of 0)2 .

Remark s

Note that this conclusion is made under the condition

that U,=0, and E_ =0.

Theorem 3

The necessary and sufficient condition for a shearfree
magnetofluid &with magnetic field normal to the olane of
rotation be rotationfree is that the Weyl tensor be of purely

electrictype.

Proof :
Under the stated condition Cg%bhbzo, the equaticn (4.58)

gives rise to

a

H bsa

_ 2y _ _ c
= ko]b(QﬁﬂHﬁlh ) U Hbc 300 Ebc . (4.64)

The Necessary Part :

If we use the conditions that vorticity as well as shear
vanish in the expression of Hab (4.19) then we get Hab=0.

This shows that Wey!l tensor is purely electrictype.

The sufficient Part @

As the Wey!l tensor is of purely electrictype we have

Hab=0 in equation (4.59). So that we get

u)c[k(g>+p+xkh2)pbc + 3Ebcj =0,

: : K 2 '
i.e., LEbc +—-34 Q+p+un™)p ] =0 (4.65)
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Now when the Weyl tensor is purely welectric then it must be
of Petrovtype I, D, or O (Jordan et,al, 1960)., It immediately
follows that rozo for type ©. Further in case of tvpe 1

and D we know that
det [E, + = (Q+pruth®)p_ ] £ 0
e b -3- %+p pr- .

[ Since if the determinant were zero then E, . would have
three equal eigenvalues, which is not possible]. Thus «%=0.
Hence we have proved the sufficient part of the theorem

that the rotation is zero for purely electric type Weyl

tensor,



