Chapter - 0

PRELIMINARIES

In this chapter we give some basic definitions and results which we have used in the dissertation.

§ 0.1 DEFINITIONS

Def.0.1.1 : Partially ordered set or poset [5] : Let P be a nonvoid set. Define a relation \leq on P which has following properties for all $a, b, c, \in p$

```
        i) a<a
        (reflexivity)
        ii) a }\\textrm{b}\mathrm{ and b}\textrm{b}a=>a=b\quad (antisymmetry)
        iii) a\leqb and b\leqc cas c (transitivity)
        The relation satisfying above three conditions{
with such relation^ partially ordered set or poset.
                            \leqslant \mp@code { i s ~ c a l l e d }
            A poset P is called a chain (or totally ordered
set or linearly ordered set) if it satisfies the following
condition for all a,b, }\in
    iv) a\leqbor b\leqa (linearity).
Def.0.1.2 : Zero element and Unit element of a Poset [5]:
A zers element of a poset }P\mathrm{ is an element 0 with 0
for all x\inP. A unit elementiof a poset is an element
with }x<l\mathrm{ for all x@ P.
```


i) $a \wedge a=a, a v a=a$		(idempotency)
ii) $a \Delta b=b \Delta a, a v b=b v a$		(commutativity)

 iii) \((a \wedge b) \wedge c=a \wedge(b \wedge c)\).
 \((a v b) v c=a v(b v c) \quad(a s s o c i a t i v i t y)\)
 iv) \(a \wedge(a v b)=a\),
 \(a v(a \Delta b)=a \quad\) (absorption identities)

then the following identity hold
$\begin{array}{ll} & a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c) \\ \text { or } \quad a \vee(b \wedge c) & =(a \vee b) \wedge(a \vee c) .| |\end{array}$

Def.0.1.6 : $\underline{\text { O-distributive lattice [17] : A latticed with }}$ \because is said to be O-distributive if it satisfies the condition $: a \Delta b=0$ and $a \Delta c=0$ imply $a \Delta(b v c)=0$. for caul $u, b, c \in p$.

Def.0.1.7 : Modular lattice [5] : A lattice L is called modular if, $x, y \in L$ and $z \leq x$ imply that
$(x \wedge y) \vee z=x_{\wedge}(y \vee z)$ for all $z \in L$.

Def.O.1.10 : Complement in a lattice [5] : Let L be a bounded lattice, a, b, \in L. Then a is a complement of b if $a a b=0$ and $a v b=1$.

Def.0.1.11 : Complemented lattice [5] : A complemented lattice is a bounded. lattice in which every element has a complement.

Def.0.1.12 : Pseudocomplement in a lattice [5] : Let L be a lattice with 0 . An element $a *{ }_{a}{ }^{\prime}$ is pseudocomplement of $a \in L$ if $a \wedge a^{*}=0$ and $a \wedge x=0$ implies that $x \leq a *$.

Def.0.1.13: Pseudocomplemented lattice [5]: A lattice with 0 is said to be pseudocomplemented (if each element of L has a pseudocomplement.

Def.0.1.14 : Ideal [4] : Let L be lattice and let ICL.I is called an ideal, if $a, b \in I$ implies that $a v b \in I$ and
$a \in I, x \in L, x \leq a$ imply that $x \in I$.

Def．0．1．15 ：Maximal ideal［5］：Let L be a lattice，A proper ideal I of L is called maximal if it is not contained （はキレ） in any other proper ideal of L ．

Def．0．1．16 ：Prime ideal［5］：A proper ideal I of L is prime，if $a, b \in L$ and $a \wedge b \in I$ imply that $a \in I$ or $b \in I$ ．

Def．0．1．17 ：Principal ideal［5］：Let L be a lattice and aft．Then the intersection of ideals in L containing a is called principal ideal generated by a．It is denoted by（a］．Equivalently principal ideal as $(a]=\{x \in L: x \leq a\}$.

The ideal generated by $\operatorname{HA}_{\wedge}^{\operatorname{in} L(H C L)}$ is the intersection of all ideals ${ }^{\text {in }}$ containing H ．It is denoted by（H］．

The concepts of filter，maximal filter，prime filter，principal filter are \because defined dually［5］．

Def．0．1．18 ：Boolean lattice［5］：A lattice L is called Boolean if it is complemented and distributive．

Def．0．1．19 ：Boolean algebra［5］：A Boolean algebra is a Boolean lattice in which 0,1 and＇are also considered as operations．

Thus a Boolean algebra is a system (B, A, V, O.1) where Λ and v are binary, ' is unary operation and 0,1 are nullary operations.

Def.0.1.20 : Maximal element [5] : Let P be a poset. An element $a \in P$ is called maximal if $a \leq b$ (bES) implies that $a=b$.

The minimal element of a poset can be defined dually.

Def.0.1.21. : Semilattice [5] : A poset is a joinsemilattice (dually: meet-semilattice) if $\sup \{a, b\}$ or apb (dually inf $\{a, b\}$ or $a n$) exists for any two as algehon? elements a, b of a poset.

Def.0.1.22 : Distributive Semilattice [6]: A join(meet)Semilattice s is distributive if for any x, y, z as, correct the $z \leq x v y \quad(x \Lambda y \leq z)$ implies $z=a v b \quad(z=a \Lambda b)$ with $a \leq x, b \leq y \quad(x \leq a, ~ d e f i m b l$ $y \leq b$).

Def.0.1.23: 0-distributive Semilattice [18]: A semilattice Idealin S with 0 is 0 -distributive if and only if (a)* $=\{x \in S$: a sermilath $x \wedge a=0\}$ is an ideal in S for every asS.

Def.0.1.24 : Modular Semilattice [14] : A join-semilattice
(meet-semilattice) is modular if for any $x, y, z, \mathbb{E}, y \leq z \leq x v y$ ($x \wedge y \leq z \leq y$) implies there exists asS such that $z=x v a$ and $a \leq y \quad(z=x \wedge a$ and $y \leq a)$.

Def.0.1.25: 0-modular semilattice [7] : A semilattice S with 0 is called 0 -modular if $a \leq c$ and $b \Lambda_{c=0}(a, b, c, \varepsilon, S)$ imply that there exists d in S such that $b \leq d$ and $a=c \Lambda d$.

Def.0.1.26: Congruence relation on Semilattice [5] : An equivalence relation θ on join-semilattice (meetsemilattice) is a congruence relation if, $a=b(\theta)$ and $c=d(\theta)$ implies that $\operatorname{avc} \equiv \operatorname{bvd}(\theta)(a \Lambda c=b \Lambda d(\theta)$. .

Def.0.1.27 : Retract of Semilattice [15] : A semilattice T is called a retract of a semilattice S if and only if there are homomorphisms $f: S \rightarrow T$ and $g: T \rightarrow S$ such that fog is identify on T fog

Def.0.1.28: Cover [5] : In the poset (p, s) a covers b in notation $a>b$ if $>b$ and for no x, $b<x<a$.

Def.0.1.29: Atom of a poset [5] : An element a of a poset is an atom if $a \succ 0$.

Def.0.1.30 : Dual-atom of a poset [5] : An element a of a poset is dual-atom if $l>a$.

Def.0.1.31 : Principal ideal in a poset [20] : The set of all elements of a poset P such that $x \leq a$ for some fixed aعP is called principal ideal generated by a. It is denoted by (a].

Def.0.1.32 : Prime ideal in a poset [19] : A proper ideal I of a poset P is prime, if $a, b \in P$ such that ($a] n(b] C$ I then (a]c I or (blc I (acI or beI).

Def.0.1.33 : Pseudocomplements in poset [20] : An element a of a poset P with 0 is said to have pseudocomplement $a^{*} \varepsilon P$ if there exists p an element $a^{*}{ }_{n}{ }^{\text {in } p} \begin{aligned} & \text { such that }\end{aligned}$
i) (a] $\cap\left(a^{*}\right]=(0]$.
ii) for $b \in P,(a) n(b)=(0] \Rightarrow(b] . \underline{c}(a *]$.

Def.0.1.34 : Pseudocomplemented poset [20] : A poset P with 0 is said to be pseudocomplemented if every one of its elements has a pseudocom

Def:0.1.35 : Ascending chain condition [5] : A poset P is said to satisfy A scending chain condition (ACC) if any increasing chain terminates. That is if $x_{i} \in P \quad i=0$, $1,2 \ldots$ and $x_{\sigma} \leq x_{1} \leq x_{2} \leq \cdots$ then for some m we have $x_{m}=x_{m+1}=-\cdots$

Def.0.1.36 : 0-distributive poset [12] : A poset P is called asa 0-distributive poset if for $a, x_{1}, \ldots x_{n} \in P$ (n finite) , (a]n($\left.x_{i}\right]=(0] \forall i, \quad l \leq i \leq n$ imply (a]n($x_{1} v$ $\left.--V x_{n}\right]=(0]$ whenever $x_{1} V--V_{n}$ exists in P.

§ 0.2 RESULTS

Result.0.2.1 [20] : The set $I(P)$ of all ideals of a poset P with 0 is a complete lattice under set inclusion as ordering relation.
$\underline{\text { Result.0.2.2 [5] }: ~ E v e r y ~ d i s t r i b u t i v e ~ l a t t i c e ~ i s ~ m o d u l a r . ~}$

Result. 0.2.3 [15] : Every distributive semilattice is modular.

Result.0.2.4 [18] : Every distributive semilattice with 0 is 0 -distributive.

Result.0.2.5 [7] : Every modular semilattice with 0 is O-modular.

Result.0.2.6 [17] : Every pseudocomplemented lattice is O-distributive.

Result.0.2.7 [5] : In a poset satisfying ascending chain condition (ACC) every ideal is principal.

Result.0.2.8 [17] : A lattice L with 0 is O-distributive if and only if the lattice of all ideals is pseudocomplemented.

Result.0.2.9 [11] : A O-distributive semilattice S is pseudocomplemented if and only if (a)* is principal ideal
for every a ε.

Result.0.2.10 [11] : A semilattice S with 0 is O-distributive if and only if $I(P)$ is pseudocomplemented.' Result.0.2.11 [11] : In a semilattice P with 0 and ascending chain condition (ACC) O-distributively is equivalent to pseudocomplementedness.

