Chapter - 0

PRELIMINARIES

In this chapter we give some basic definitions and results which we have used in the dissertation.

§ 0.1 DEFINITIONS

<u>Def.0.1.1</u> : <u>Partially ordered set or poset [5]</u> : Let P be a nonvoid set. Define a relation \leq on P which has following properties for all a,b,c, \in P

i)	a < -	a	(reflexivity)
ii)	a <u>≺</u>	b and b≤ a ⇒ a = b	(antisymmetry)
iii)	a <u><</u>	b and b≤ c ⇒ a ≤ c	(transitivity)

The relation satisfying above three conditions is called partial ordering relation. And the set equipped with such relation, partially ordered set or poset. \leq is called

A poset P is called a chain (or totally ordered set or linearly ordered set) if it satisfies the following condition for all a,b, G P

iv) a < b or b < a (linearity).

<u>Def.0.1.2</u> : <u>Zero element and Unit element of a Poset [5]</u> : A zero element of a poset P is an element 0 with $0 \le x$ for all x \in P. A unit element **1** of a poset is an element with x \le 1 for all x \in P. <u>Def.0.1.3</u> : <u>Lattice as Poset [5]</u> : A poset (L, \leq) is a lattice if sup {a,b} or avb and inf {a,b} or aAb exist for all a,b, \in L.

Relationit

<u>Def.0.1.4</u> : <u>Lattice as an algebra [5]</u> : An algebra (L,Λ,V) is called a lattice if L is nonvoid set, Λ and V are binary operations on L satisfying following properties for all a,b,c \in L

i) $a \wedge a = a$, $a \vee a = a$ (idempotency) ii) $a \wedge b = b \wedge a$, $a \vee b = b \vee a$ (commutativity) iii) $(a \wedge b) \wedge c = a \wedge (b \wedge c)$. ($a \vee b$) $\vee c = a \vee (b \vee c)$ (associativity) iv) $a \wedge (a \vee b) = a$, $a \vee (a \wedge b) = a$ (absorption identities)

Def.0.1.5 : Distributive lattice [1] : A lattice L is said to be distributive (if for all a,b,c & L, then the following identity hold

 $a \wedge (bvc) = (a \wedge b) v (a \wedge c)$ or $av(b \wedge c) = (avb) \wedge (avc).$

<u>Def.0.1.6</u> : <u>O-distributive lattice [17]</u> : A lattice with 0 is said to be O-distributive if it satisfies the condition : aAb=0 and aAc=0 imply aA(bvc)=0. For $cA|A_b, ceP$

<u>Def.0.1.7</u> : <u>Modular lattice [5]</u> : A lattice L is called modular if, x,yeL and $z \le x$ imply that $(x \wedge y) \vee z = x \wedge (y \vee z)$ for all $z \in L$.

<u>Def.0.1.8</u> : <u>O-modular lattice [17]</u> : A lattice with least element 0 is said to be O-modular if it satisfies the condition : a c and bAc=0 imply (avb)Ac=a. $a_1b_1 \in CL$

<u>Def.0.1.9</u> : <u>Bounded lattice [5]</u> : A lattice L is said to be a Bounded lattice if it has both 0 and 1.

<u>Def.0.1.10</u> : <u>Complement in a lattice [5]</u> : Let L be a bounded lattice, a,b, \in L. Then a is a complement of b if aAb = 0 and avb = 1.

<u>Def.O.1.11</u> : <u>Complemented lattice [5]</u> : A complemented lattice is a bounded lattice in which every element has a complement.

<u>Def.0.1.12</u> : <u>Pseudocomplement in a lattice [5]</u> : Let L be a lattice with 0. An element a^* is pseudocomplement of a \in L if $a \wedge a^*=0$ and $a \wedge x=0$ implies that $x \leq a^*$.

<u>Def.0.1.13</u> : <u>Pseudocomplemented lattice [5]</u> : A lattice with 0 is said to be pseudocomplemented (if each element of L has a pseudocomplement.

<u>Def.0.1.14</u> : <u>Ideal [4]</u> : Let L be lattice and let I<u>C</u>L.I is called an ideal, if $a,b \in I$ implies that $avb \in I$ and $a \in I$, $x \in L$, $x \leq a$ imply that $x \in I$.

Def.0.1.15 : Maximal ideal [5] : Let L be a lattice, A proper ideal I of L is called maximal if it is not contained $(T \neq L)$ in any other proper ideal of L.

Proper ideal

eliffcrence

<u>Def.0.1.16</u> : <u>Prime ideal [5]</u> : A proper ideal I of L is prime, if a, b G L and $a \land b \in I$ imply that agI or bGI.

Def.0.1.17 : Principal ideal [5] : Let L be a lattice and aGL. Then the intersection of ideals in L containing a is called principal ideal generated by a. It is denoted by (a]. Equivalently

 $(a] = \{x \in L : x \le a\}.$

The ideal generated by H_{Λ} (HCL) is the intersection of all ideals monotaining H. It is denoted by (H].

The concepts of filter, maximal filter, prime filter, principal filter **are** defined dually [5].

<u>Def.0.1.18</u> : <u>Boolean lattice [5]</u> : A lattice L is called Boolean if it is complemented and distributive.

<u>Def.0.1.19</u> : <u>Boolean algebra [5]</u> : A Boolean algebra is a Boolean lattice in which 0,1 and 'are also considered as operations.

- 4 -

Thus a Boolean algebra is a system (B, Λ ,V,'O.1) where Λ and v are binary, ' is unary operation and O,1 are nullary operations.

<u>Def.0.1.20</u> : <u>Maximal element [5]</u> : Let P be a poset. An element $a \in P$ is called maximal if $a \leq b$ (b $\in P$) implies that a=b.

The minimal element of a poset can be defined dually.

Def.0.1.21. : Semilattice [5] : A poset is a joinsemilattice (dually; meet-semilattice) if sup {a, b} Semilattice or avb (dually inf {a, b} or aAb) exists for any two algebral elements a,b, of a poset.

<u>Def.0.1.22</u> : <u>Distributive</u> <u>Semilattice</u> [6]: A join-(meet)Semilattice S is distributive if for any x,y,z ES, (onc) the $z \le xvy$ (xAy \le z) implies z=avb ($\overline{z}=aAb$) with $a \le x$, $b \le y$ ($x \le a$, def(m) into $y \le b$).

<u>Def.0.1.23</u> : <u>O-distributive Semilattice [18]</u> : A Semilattice $\mathcal{I}_{d}eddin$ S with 0 is O-distributive if and only if (a)* = {xES: a Semilattice xAa=0} is an ideal in S for every ass. <u>Def.0.1.24</u> : <u>Modular Semilattice [14]</u> : A join-semilattice (meet-semilattice) is modular if for any x,y,z,eS, $y \le z \le xvy$ (xAy \le z \le y) implies there exists ass such that z = xva and $a \le y$ (z = xAa and $y \le a$). <u>Def.0.1.25</u> : <u>O-modular semilattice</u> [7] : A semilattice S with 0 is called O-modular if $a \le c$ and bAc=0 (a,b,c ϵ ,S) imply that there exists d in S such that $b \le d$ and a = cAd.

<u>Def.0.1.26</u> : <u>Congruence relation on Semilattice [5]</u> : An equivalence relation Θ on join-semilattice (meetsemilattice) is a congruence relation if, a=b(θ) and c=d(θ) implies that avc=bvd(θ) (aAc=bAd(θ)).

<u>Def.0.1.27</u> : <u>Retract of Semilattice [15]</u> : A semilattice T is called a retract of a semilattice S if and only if there are homomorphisms f:S +T and g : T + S such that **fo** is identify on T. fog

<u>Def.0.1.28</u> : <u>Cover [5]</u> : In the poset (p, \leq) a covers b in notation a \succ b if $b\leq a$ and for no x, $b\leq x\leq a$.

<u>Def.0.1.29</u> : Atom of a poset [5] : An element a of a poset is an atom if a > 0.

<u>Def.0.1.30</u> : <u>Dual-atom of a poset [5]</u> : An element a of a poset is dual-atom if $1 \succ a$.

<u>Def.0.1.31</u> : <u>Principal ideal in a poset [20]</u> : The set of all elements of a poset P such that $x \le a$ for some fixed a ε P is called principal ideal generated by a. It is denoted by(a]. <u>Def.0.1.32</u> : <u>Prime ideal in a poset [19]</u> : A proper ideal I of a poset P is prime, if a, $b \in P$ such that $(a] \cap (b] \subseteq$ I then $(a] \subseteq I$ or $(b] \subseteq I$ (as I or be I).

<u>Def.0.1.33</u> : <u>Pseudocomplements in poset [20]</u> : An element a of a poset P with 0 is said to have pseudocomplement $i^{N}P$ a* ϵ P if there exists P an element a*, such that

i) (a] $\Omega(a^*) = (0]$.

ii) for $b \in P$, $(a \mid \Omega(b) = (0) \implies (b) \subset (a^*]$.

Def.0.1.34 : Pseudocomplemented poset [20] : A poset P with 0 is said to be pseudocomplemented if every one of its elements has a pseudocomcplement.

<u>Def.0.1.35</u> : <u>Ascending chain condition [5]</u> : A poset P is said to satisfy A scending chain condition (ACC) if any increasing chain terminates. That is if $x_1 \in P$ i=0, 1,2 ... and $x_0 \leq x_1 \leq x_2 \leq ...$ then for some m we have $x_m = x_{m+1} = --.$

<u>Def.0.1.36</u> : <u>O-distributive poset [12]</u> : A poset P is called as a O-distributive poset if for a, \mathbf{x}_1 , --- $\mathbf{x}_n \in \mathbf{P}$ (n finite), (a] $\Omega(\mathbf{x}_1) = (0] \forall$ i, $1 \le i \le n$ imply (a] $\Omega(\mathbf{x}_1 \vee \mathbf{x}_1) = - -\nabla \mathbf{x}_n$ exists in P. § 0.2 RESULTS

Result.0.2.1 [20] : The set I(P) of all ideals of a poset P with 0 is a complete lattice under set inclusion as ordering relation.

def.

Result.0.2.2 [5] : Every distributive lattice is modular.

Result. 0.2.3 [15] : Every distributive semilattice is modular.

<u>Result.0.2.4 [18]</u> : Every distributive semilattice with 0 is 0-distributive.

Result.0.2.5 [7] : Every modular semilattice with 0 is 0-modular.

Result.0.2.6 [17] : Every pseudocomplemented lattice is 0-distributive.

<u>Result.0.2.7 [5]</u> : In a poset satisfying ascending chain condition (ACC) every ideal is principal.

<u>Result.0.2.8 [17]</u> : A lattice L with 0 is 0-distributive if and only if the lattice of all ideals is pseudocomplemented.

Result.0.2.9 [11] : A O-distributive semilattice S is pseudocomplemented if and only if (a)* is principal ideal

for every a ϵ P.

Result.0.2.10 [11] : A semilattice S with 0 is O-distributive if and only if I(P) is pseudocomplemented.

Result.0.2.11 [11] : In a semilattice P with 0 and ascending chain condition (ACC) 0-distributively is equivalent to pseudocomplementedness.