CHAPTER - I

Definitions & Results

CHAPTER-I

Definitions and Results

In this chapter we give some basic definitions and results which we use in Chapter-II and Chapter-III.

§ 1.1. Definitions

Def. 1.1.1 Partially ordered set or poset [6]: Let P be a nonvoid set Define a relation \leq on P which has following properties for all a, b, c \in P

1)	a <u><</u> a	(reflexivity)
ii)	a≤band b≤a=⇒a=b	(antisymmetry)
iii)	a≤bandb≤c =⇒a≤c	(transitivity)

The relation satisfying above three conditions is called partial ordering relation. And the set equipped with such relation is called partially ordered set or poset.

A poset P is called a chain (or totally ordered set or linearly ordered set) if it satisfy the following condition for all a, b \in P

iv) $a \leq b \text{ or } b \leq a$ (linearity)

Let $H \subseteq P$, a $\in P$, then a is an upper bound of H if $h \leq a$ for all $h \in H$. An upper bound a of H is the least upper bound of H or supremum of H (join) if for any upper bound b of H we have $a \leq b$. We shall write $a = \sup H$ or a = V H. The concept of lower bound or infimum are similarly defined. The latter is denoted by inf H or \wedge H.

Def: 1.1.2 : Zero element and unit element of a poset [6]:

A zero of poset P is an element 0 with $0 \le x$ for all $x \in P$. A unit element of a poset P is an element with $x \le 1$ for all $x \in P$.

<u>Def. 1.1.3</u>: Lattice as Poset [6]: A poset $\langle L; \leq \rangle$ is a lattice if sup {a, b} or a v b and inf {a,b} or a \wedge b exist for all a,b \in L.

Def. 1.1.4 : Lattice as an algebra [6]: An algebra
(L: ^, V) is called a lattice if L is nonvoid set,
and V are binary operations on L satisfying following
properties for all a, b, c & L

i)	a∧a≖a, a¥a≖a	(idempotency)
ii)	$a \wedge b = b \wedge a$, $a \vee b = b \vee a$	(commutativity)
iii)	(a ∧ b) ∧ c ≖ a ∧ (b ∧ c)	
	(aVb) Vc = aV (bVc)	(associativity)
iv)	a∧ (aVb) = a	
	aV (a \wedge b) = a	(absorption
		identities)

<u>Def. 1.1.5</u>: <u>Complete lattice</u> $\begin{bmatrix} 6 \end{bmatrix}$: A lattice L is called complete if \land H and VH exist for any subset $H \subseteq L$

<u>Def. 1.1.6</u>: <u>Semilattice</u> $\begin{bmatrix} 6 \end{bmatrix}$: A poset is a join semilattice (dually, meet semilattice) if sup {a, b} or aVb (dually infimum {a, b} or $a \land b$) exists for any two elements of a poset.

Def. 1.1.7 : Distributive lattice [2]: A lattice L is said to be distributive if and only if for all a, b, c (L the following identity will hold.

 $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$

or

 $a V(b \land c) = (a \lor b) \land (a \lor c)$

Def. 1.1.8 : <u>O-distributive lattice</u> [10]. Let L be a lattice with O. L is said to be O-distributive if $\{a\}^* = \{x \in L / x \land a = 0\}$ is an ideal in L for every $a \in L$. i.e. $a \land b = 0$, $a \land c = 0$ (a, b, $c \in L$) $\Longrightarrow a \land (bVc) = 0$ <u>Def. 1.1.9</u> : <u>Modular lattice</u> [6]: A lattice L is called modular if x, y, z \in L and $x \ge z$ implies that

 $(\mathbf{x} \wedge \mathbf{y}) \vee \mathbf{z} = \mathbf{x} \wedge (\mathbf{y} \vee \mathbf{z})$

Def. 1.1.10 : <u>Semimodular lattice</u> [2] : A lattice L is said to be semimodular if it satisfy one of the

3 .

following conditions.

- i) If a ≠ b and both a and b cover c (a, b, c € L) then aVb covers a as well as b
- ii) Dually if $a \neq b$ and c covers both a and b, then a and b both cover $a \wedge b$.

<u>Def: 1.1. 11</u> : <u>Bounded lattice</u> $\begin{bmatrix} 6 \end{bmatrix}$: A lattice L is said to be bounded if it has both 0 and 1.

Def. 1.1.12 : Complement in lattice [6]: Let L be a bounded lattice a, b \in L. Then a is called complement of b if $a \land b = 0$ and $a \lor b = 1$.

Def. 1.1.13 : Complemented lattice [6] : A complemented lattice is a bounded lattice in which every element has a complement.

Def. 1.1.14 : Pseudocomplement in a lattice [6]: Let L be a lattice with 0. An element a* is a pseudocomplement of a ((L) if $a \wedge a^* = 0$ and $a \wedge x = 0$ implies that $x \leq a^*$

Def. 1.1.15 : <u>Pseudocomplemented lattice</u> [6] : A lattice L with 0 is said to be pseudocomplemented if and only if each element of L has a pseudocomplement.

Def. 1.1.16 : Ideal [6] : Let L be a lattice and let

 $I \subseteq L$. I is an ideal, aVb $\in I$ and a $\in I$, $x \in L$, $x \leq a$ imply that $x \in I$

Def. 1.1.17 : 2-ideal [7]. Let L be a finite lattice A nonvoid subset I of L is called 2-ideal if

- i) $x \in L, x \leq y \in I \implies x \in I$
- ii) x, y ∈ I, x ≠ y and t ∈ L such that t >- x, y
 =⇒ t ∈ I.

Def. 1.1.18 : Maximal ideal [6]: Let L be a lattice a proper ideal I of L is called maximal if it is not contained in any other proper ideal of L.

<u>Def. 1.1.19</u> : <u>Prime ideal</u> [6] : A proper ideal I of L is prime if a, b \in L and a \wedge b \in I imply that a \in I or b \in I

Def. 1.1.20 : Principal ideal [6]: Let L be a lattice, a E L then the intersection of all ideals in L containing a is called principal ideal generated by a. It is denoted by(a] . Equivalently we can define principal ideal as

 $(a] = \{x \in L / x \leq a\}.$

The ideal generated by H (H \subseteq L) is the intersection of all ideals containing H. It is denoted by (H].

The concepts of filter, 2-filter, maximal filter, prime filter, principal filter can be defined dually [6]

Let I be the ideal of L, denote

 $I^* = \{x \in L / x \land i = 0, \forall i \in I\}.$

Def. 1.1.21 : Annihilator ideal [3] : A ideal J of a lattice L with 0 is called an annihilator ideal if $J = J^{*}$

Def. 1.1.22 : Boolean lattice [6] : A lattice L is called Boolean if it is complemented and distributive.

Def. 1.1.23 : Boolean algebra [6]: A Boolean algebra is a Boolean lattice in which 0, 1 and ' are also considered as operations.

Thus a Boolean algebra is a system $\langle B; \land, \lor, \lor, \circ, 1 \rangle$ where \land and \lor are binary, ' is unary operation and $\circ, 1$ are nullary operations.

Def. 1.1.24 : Semi-ideal in a poset [11] : A non-null subset A of a poset P is called semi-ideal if x $\in A$, y $\in P$ such that y $\leq x$ implies y $\in A$.

Def. 1.1.25 : Ideal in a poset [11] : A non-null subset A of poset P is called an ideal if

i) A is semi-ideal

ii) The supremum or join of any finite number of elements of A whenver it exists belongs to A.

Def. 1.1.26 : Maximal element [6] : Let P be a poset an

element a of P is maximal if $a \leq b$ (b $\in P$) implies that a = b.

The minimal element of a poset can be defined dually.

Def. 1.1.27 : Maximal ideal in a poset [11] : A maximal ideal of a poset P with O is a maximal element of Iµ. where Iµ is the set of all ideals of poset P with O.

<u>Def. 1.1.28</u> : <u>Principal ideal in a poset [11]</u>: The set of all elements x of a poset P such that $x \leq a$, for some fixed a $\{P_{j}\}$ is called principal ideal generated by a. It is denoted by (a].

Def. 1.1.29 : Prime ideal in a poset [11] : A proper ideal A of poset P is prime if a, b \notin P such that (a] \cap (b] \subseteq A then a \notin A or b \notin A.

The concepts of filter, maximal filter, principal filter, prime filter in a poset can be defined dually.

Def. 1.1.30 : Pseudocomplements in a Poset [11] : An element a of a poset P with O, is said to have pseudocomplement a^{*} \in P if there exists in P an element a^{*} such that

> i) (a] \cap (a*] = (0] ii) for b $\in P$, (a] \cap (b] = (0] = \Rightarrow (b] \subseteq (a*]

<u>Def. 1.1.31</u> : <u>Pseudocomplemented poset</u> [11]: A poset P with 0 is said to be pseudocomplemented if every one of its elements has a pseudocomplement.

<u>Def.1.1.32</u> : <u>Ascending chain condition</u> [6]: A poset P is said to satisfy Ascending chain condition if any increasing chain terminates. That is if $x_1 \in P$, $i = 0, 1, 2 \dots$ and $x_0 \leq x_1 \leq \dots \leq x_n \leq \dots$ then for some m we have $x_m = x_{m+1} = \dots$

The concept of Descending chain condition can be defined dually.

Def. 1.1.33 : Disjunction poset [1^2] : A poset P with 0 is called disjunction poset if a, b \in P and a \neq b imply that there exist c \in P such that exactly one of ideals (a] \cap (c], (b] \cap (c] is zero.

Def. 1.1.34 : Dense element in poset [11] : An element 'a' in a poset P with 0 is said to be dense if a* = 0 where a* is pseudocomplement of a (P.

Def. 1.1.35 : a >- b [6]: Let P be a poset a, b (P = a) we say that a covers be (a >- b) if a > b and for no x, a > x > b.

<u>Result 1.2.1 [11]</u>: The set I_{μ} of all ideals of a poset P with 0 is a complete lattice under set inclusion as ordering relation.

<u>Result 1.2.2</u> [11]: In a poset P a finite join $a_1 \vee a_2 \vee \ldots \vee a_n$ exists if and only if $(a_1] \vee (a_2] \vee$ $\ldots \vee (a_n]$ is a principal ideal (here $(a_1] \vee (a_2] \vee$ $\ldots \vee (a_n]$ is ideal generated by $(a_1] \vee (a_2] \vee$ $\vee (a_n]$). Also whenever $a_1 \vee a_2 \vee \ldots \vee a_n$ exists we have

 $(a_1 \vee a_2 \vee \ldots \vee a_n] = (a_1] \vee (a_2] \vee \ldots \vee (a_n]$

<u>Result 1.2.3 [11]</u>: In a poset P with 0 the pseudocomplement a^{*} of an element a exists if and only if $(a^*]$ is a principal ideal. Further whenever a^{*} exists $(a]^* = (a^*]$

<u>Result 1.2.4</u> [9]: Every pseudocomplemented lattice is O-distributive.

<u>Result 1.2.5 [9]</u>: Every distributive lattice is O-distributive.

<u>Result 1.2.6</u> [8]: Every distributive semilattice is O-distributive. Result 1.2.7 [6]: In a poset satisfying ascending chain condition every ideal is principal ideal.

Result 1.2.8 [9]: A lattice L with O is O-distributive if and only if the lattice of all ideals is pseudocomplemented.

. .