CHAPTER - II

O-distributive Posets

CHAPTER-II

Introduction

Pseudocomplemented lattices form an important class of lattices and have been studied by many authors. Frink [4] has obtained the generalization of the theory for semilattices. Venkatnarasimhan [11]successfully extended some of the results of Frink [4] and Balchandran [1] to partially ordered sets by defining pseudocomplements in a poset. A poset P bounded below is pseudocomplemented if and only if for any a $\notin P$, the subset of elements disjoint from a is a principal ideal. On one hand it is quite reasonable to replace 'principal ideal' by 'ideal'. This weakened condition motivated us to define O-distributivity in a poset.

On the other hand, O-distributivity in a poset is also an extension of O-distributivity in semilattice. Varlet [10]was the first to investigate O-distributive lattices. O-distributive semilattices were introduced by Varlet[10] and also by Pawar[8]in different ways. We have succeeded in pushing the considerations of Pawar[8]for posets.

Cornish [3] studied in detail annihilator ideals in a distributive lattice. He proved that the set of annihilator ideals in a distributive lattice is a Boolean algebra. Similar result was expected for poset and we have proved that this is true. In this chapter we have obtained several characterizations of O-distributive poset rite is a

CANE BALASAHEB RHARDEKAR LIBRAR

shown that the class of O-distributive posets contains distributive poset with O. Disjunction poset was defined by Venkatnarasimhan [12]. We have also studied disjunctivity in a O-distributive poset and we have shown that these two concepts are completely independent. Properties of dense elements are also studied in O-distributive posets.

O-DISTRIBUTIVE POSETS

\S 2.1 Definition and Examples

Throughout this Chapter we shall concern with partially ordered sets or posets. We shall denote the ordering relation in a poset by \leq . Let $A = \{a_1, a_2, \ldots, a_n\}$ be a finite subset of poset P, then the least upper bound (join) and the greatest lower bound (meet) of a_i $(1 \leq i \leq n)$ are denoted by a_1Va_2V Va_n and $a_1 \wedge a_2 \wedge \ldots \wedge a_n$ respectively. The least and the greatest elements of a poset, whenever they exist are denoted by '0' and '1' respectively. The set inclusion, set union and set intersection are denoted by \subseteq , U and \cap respectively. Hereafter by a symbol P we mean a poset P with '0'. We define a 0-distributive poset as follows :

<u>Def. 2.1.1</u>: O-distributive poset : - The poset P is called O-distributive if for some finite n, x_1 , x_2 , ..., x_n and $a \in P$ such that

And if $x_1^{\vee} x_2^{\vee} \cdots ^{\vee} x_n$ exists, then

$$(x_1 v x_2 v \dots v x_n] \cap (a] = (o]$$

Dually, we can define 1 - distributive poset.

Example 2.1.2 : An example of O-distributive poset.

The poset represented by Fig.l above is O-distributive.

Example 2.1.3 : We furnish here one more example of a O-distributive poset (This poset contains infinite number of elements)

Fig-2

The poset shown in Fig.2 above is O-distributive. Note that every poset need not be O-distributive.

.

Example 2.1.4 : An example of a poset which is not O-distributive is given in figure 3.

Explanation : In the poset shown in figure 3 above
we have

(b]	\cap	(d]	-	(o]
(c]	\cap	(a]	*	(0]
(f]	\cap	(a]	-	(o]

but (bvcvf] \cap (d] = (d] \neq (o], where bvcvf = h.

<u>Remark : 2.1.5</u> : A subset of O-distributive poset, containing 'O', need not be O-distributive (See Fig.1.)

....

 δ 2.2 <u>O-distributivity and pseudocomplementedness</u>

In this article we establish a connection between a O-distributive poset and pseudocomplemented poset.

Let P be a poset a, b \in P. We denote the set of all lower bounds of a, b by $\{a, b\}$.

i.e. $\{a,b\}^{l} = \{x \in P / x \leq a \text{ and } x \leq b\}$

For any poset P the set $\{a\}^* = \{x \in P / \{x,a\}^1 = \{0\}\}$ is a semiideal of P, for a $\{P \models 11\}$. But $\{a\}^*$ is an ideal for all a $\{e\}$ P if and only if P is O-distributive. Note that Venkatnarasimhan's definition of a poset ideal [11] is different from that given by Frink [5]. Now we have following

<u>Result</u>: 2.2.1: A poset P is O-distributive if and only if $\{a\}^* = \{x \in P / \{x,a\}^{L} = \{0\}\}\$ is an ideal in P for any $a \in P$.

<u>Proof</u>: Let P be O-distributive poset we have to prove that $\{a\}^*$ is an ideal.

i) Let $y \in \{a\}^*$ and $x \in P$ such that $x \leq y$. If $\{x, a\}^{l} \neq \{0\}$ then there exists $z \in P$ such that $z \in \{x, a\}^{l}$ and $z \neq 0$. Since $z \leq x$ and $x \leq y$ by transitivity we get $z \le y$. Hence $z \in \{y,a\}^{\ell} = \{0\}$ This is a contradiction and hence $\{x,a\}^{\ell} = \{0\}$. This proves that $x \in \{a\}^{*}$

ii) Let x_1, x_2, \ldots, x_n be in $\{a\}^*$ and suppose that $x_1 v x_2 v \ldots v x_n$ exists in P. As $x_i \in \{a\}^*$ $(1 \le i \le n)$ implies $\{x_i, a\}^{\ell} = \{0\}$. But then

 $(x_i] \cap (a] = (0]$ As this is true for each i, $1 \le i \le n$ we have

 $(x_1] \cap (a] = (0],$ $(x_2] \cap (a] = (0],$ $(x_n] \cap (a] = (0].$

Since P is O-distributive we must have

 $(x_1 v x_2 v \dots v x_n] \cap (a] = (0]$

Hence $x_1 v x_2 v x_3 v \dots v x_n \in \{a\}^*$.

From i) and ii) it follows that $\{a\}^*$ is an ideal in P for any $a \in P$.

Conversely suppose that $\{a\}^*$ is an ideal for any a $\{P, Let x_1, x_2, \dots, x_n \in P$ such that,

. . . .

 $(x_1] \cap (a] = (o],$ $(x_2] \cap (a] = (o],$ $(x_n] \cap (a] = (o].$

And assume that $x_1 v x_2 v \cdots v x_n$ exists in P. Now by assumption {a} being an ideal $x_1 v x_2 v \cdots v x_n \in \{a\}$. This inturn implies $\{x_1 v x_2 v \cdots v x_n, a\}$ = {0}. That is $(x_1 v x_2 v \cdots v x_n]$ (a] = (0] proving that P is 0-distributive.

More generally we have the following

<u>Result 2.2.2</u>: P is O-distributive if and only if $A^* = \{x/x \in P, \{x,a\}^{\ell} = \{0\} \forall a \in A\}$ is an ideal for $A \subseteq P$.

<u>Proof</u> : - Let A^* be an ideal for any $A \subseteq P$. Then particularly {a} * is an ideal for any a $\{P, Hence by$ Result (2.2.1) P is O-distributive.

Conversely, let P be O-distributive we have to prove that A^* is an ideal for any $A \subseteq P$. We claim that $A^* = \bigcap \{\{a\}^* / a \in A\}$. If $x \in A^*$ then for all $a \in A$ we have $\{x, a\}^{\frac{1}{2}} = \{0\}$. This will imply $x \in \{a\}^*$ for all

a $\in A$. Hence $x \in \bigcap \{\{a\}^* / a \in A\}$. Thus $a^* \subseteq \bigcap \{\{a\}^* / a \in A\}$.

For the reverse inclusion let $x \in \bigcap \{\{a\}^*/a \notin A\}$ then $\{x, a\}^{\ell} = \{0\}$ for all $a \notin A$. But this inturn implies $x \notin A^*$. Hence $\bigcap \{\{a\}^*/a \notin A\} \subseteq A^*$. Combining both results we get

 $\bigcap \{\{a\}^* / a \in A\} = A^*$

Thus A^{*}, being an arbitrary intersection of ideals, is an ideal in P.

Already there exists a theory of pseudocomplements in lattices [6]. Frink [4] has obtained a generalization of the theory for semilattices. Venkatnarasimhan [11] extended some of the results of Frink [4] and Balchandran [1] the most general systems, posets nicely. Here we prove that 0-distributive poset is a generalization of pseudocomplemented poset defined by Venkatnarasimhan [11].

* * * -7 *

<u>Result 2.2.3</u> : Every pseudocomplemented poset is O-distributive.

<u>Proof</u>: Let P be pseudocomplemented poset and let x_1, x_2, \ldots, x_n , a $\in P$ such that,

 $(x_1] \cap (a] = (0],$ $(x_2] \cap (a] = (0],$ $(x_n] \cap (a] = (0],$

Further suppose $x_1 \vee x_2 \vee \cdots \vee x_n$ exists in P. Now since P is pseudocomplemented, a^{*} exists in P for any a $\{P \}$ and further (a] ^{*} = (a^{*}] (see Result12.3). But then we have $(x_1] \subseteq (a^*]$, $(x_2] \subseteq (a^*]$, $\cdots (x_n] \subseteq (a^*]$. As $x_1 \vee x_2 \vee \cdots \vee x_n$ exists

$$(x_1] \underline{v} (x_2] \underline{v} \dots \underline{v} (x_n] = (x_1 v x_2 v \dots v x_n]$$

.....

(See Result1.2.2). Therefore,

$$(x_1 \vee x_2 \vee \ldots \vee x_n] \subseteq (a^*]$$

which inturn implies that

$$(x_1 v x_2 v \dots v x_n] \cap (a] = (0]$$
.

And hence P is O-distributive.

Remark 2.2.4 : The converse of the above result need not be true. Consider the following poset represented by Figure 4.

The poset shown in fig.4 is O-distributive as,

(b] (a] = (o] (c] (a] = (o]

implies (bVc] \cap (a] = (0] where bVc = e. However it is not pseudocomplemented as a^{*} does not exists in P.

<u>Remark 2.2.5</u> : O-distributivity generalizes pseudocomplementedness. As pseudocomplemented poset has greatest element it is always bounded, while a O-distributive poset need not be bounded above.

Venkatnarasimhan [11] proved that a poset P is pseudocomplemented if and only if $\{a\}^*$ is a principal ideal for every a $\{P \ (Resulti 2.3) \}$. Using this together with the Result(1.2.2) we have following

Corollary 2.2.6 : 0-distributive poset is pseudocomplemented if and only if $\{a\}^*$ is a principal ideal for all $a \in P$.

<u>Remark 2.2.7</u> : If a poset satisfies ascending chain condition all ideals are principal [6]and hence in poset satisfying the ascending chain condition O-distributivity is equivalent to pseudocomplementedness.

- ----

§ 2.3. <u>O-distributivity and Disjunctivity</u>

Balchandran [1]defined and characterized disjunction lattices. While generalizing the concept of disjunctivity to posets Venkatnarasimhan [12] defined disjunctive posets (Def. 1.1.33). Here we show that disjunctivity and O-distributivity in a poset P are completely independent. For this consider the following examples :

Example 2.3.1 : Example of a poset which is 0-distributive but not disjunctive.

Fig-5

Clearly, poset shown in figure -5 is O-distributive but it is not disjunctive, since for $c \neq d$ in P there exists no element in P satisfying the disjunctive property.

Example 2.3.2 : Example of a poset which is disjunctive but not O-distributive.

Clearly, the poset shown in Fig.6 is disjunctive But it is not O-distributive since

.

a 11 12 18

$$(a] \cap (e] = (0]$$

$$(c] \cap (e] = (0]$$

and avc exists but

(aVc] ∩ (e] ≠ (0] ·

Example 2.3.3 : Example of a poset which is neither O-distributive nor disjunctive.

Fig-7

The poset shown in above figure is not O-distributive since

(a]	\cap	(a]	2	(o]
(b]	\cap	(a]	-	(0]
(c]	\cap	(a]	a	(0]

but (aVbVc] (d] = (d] \neq (0] where aVbVc = gAlso the poset is not disjunctive since for $e \neq f$ in P there exists no element in P satisfying the disjunctive property.

\S 2.4 Characterization of I_{μ}

For any poset P we denote the set of all ideals of P by ${\rm I}_{\mu}$. Here in this section we deal with some important characterization of ${\rm I}_{\mu}.$

Venkatnarasimhan [11] proved that I_{μ} is complete lattice (Result 1.2.1). But under some additional condition on P, I_{μ} will be pseudocomplemented. This is proved in the following :

<u>Result 2.4.1</u> : P is O-distributive if and only if I_{μ} is pseudocomplemented.

<u>Proof</u>: Let P be 0-distributive poset. Let A $\in I_{\mu}$. As A \subseteq P by Result (2.2.2) we have A^{*} is an ideal in P. We claim that A^{*} is the pseudocomplement of A in I_{μ} .

Clearly $A \cap A^* = \{0\}$. If there exist $B \in I_{\mu}$ such that $A \cap B = \{0\}$ then $B \subseteq A^*$, since if $b \notin B$ then for any $a \notin A$ we have $\{a, b\}^{1} = \{0\}$. For if $0 \neq z \notin \{a, b\}^{1}$ then $z \leq b \notin B$ implies $z \notin B$ and $z \leq a \notin A$ implies $z \notin A$ thus $z \notin A \cap B = \{0\}$ which is a contradiction. Hence $\{a, b\}^{1} = \{0\}$ for all $a \notin A$. This inturn implies that $b \notin A^*$ for all $b \notin B$. Hence $B \subseteq A^*$. Thus A^* is the largest ideal in I_{μ} satisfying $A \cap A^* = \{0\}$. Hence A^* is the

Pseudocomplemented.

Conversely, let I_{μ} be pseudocomplemented. We have to prove that P is 0-distributive.

and suppose that $x_1 v x_2 v \dots v x_n$ exists in P. Now $(x_1] \cap (a] = (0] \implies (x_1] \subseteq (a] \stackrel{*}{since} (a] \notin I_{\mu}$ $(a]^{*}$ exists and is in I_{μ} , by assumption.

Similarly we have

 $(x_{2}] \subseteq (a];$ $(x_{3}] \subseteq (a];$ $(x_{n}] \subseteq (a];$

Therefore $(x_1] \underline{\vee} (x_2] \underline{\vee} \dots \underline{\vee} (x_n] \underline{\subset} (a]^*$. But $(x_1] \underline{\vee} (x_2] \underline{\vee} \dots \underline{\vee} (x_n] = (x_1 \nabla x_2 \nabla \dots \nabla x_n]$

.....

(Result 1.2.2.). Hence $(x_1 \forall x_2 \forall \dots \forall x_n \in (a]^*$. But this implies that $(x_1 \forall x_2 \forall \dots \forall x_n] \cap (a] = (0]$. Therefore P is 0-distributive.

As we know that every pseudocomplemented lattice is O-distributive (Result1.2.4) we get one more generalization of O-distributivity as

<u>Result 2.4.2</u> : P is O-distributive if and only if I_{μ} is O-distributive.

<u>Proof</u>: Let I_{μ} be 0-distributive. Let $x_1, x_2, \ldots x_n, a \notin P$ such that

And suppose $x_1 v x_2 v \dots v x_n$ exists in P. Now we know that

 $(\mathbf{x}_1] \underline{\mathbf{v}} (\mathbf{x}_2] \underline{\mathbf{v}} \dots \underline{\mathbf{v}} (\mathbf{x}_n] = (\mathbf{x}_1 \mathbf{v} \mathbf{x}_2 \mathbf{v} \dots \mathbf{v} \mathbf{x}_n]$

(result 1.2.2). Since I_{μ} is 0-distributive lattice we have $(x_1] \ \underline{v} \ (x_2] \ \underline{v} \ \dots \ \underline{v} \ x_n] \ \cap \ (a] = (x_1 v x_2 v \ \dots \ v x_n] \ \cap \ (a] = (o]$, proving that P is 0-distributive. Conversely let P be O-distributive. By the Result (2.4.1.), I_{μ} is pseudocomplemented and since every pseudocomplemented lattice is O-distributive (Result 1.2.4) I_{μ} is O-distributive.

Remark 2.4.3 : From the above result Varlet's result (Result 1.2.8) follows as corollary when a poset P becomes lattice. § 2.5 <u>O-distributivity and distributivity</u>

Every distributive lattice with '0' (semilattice with '0') is 0-distributive lattice (semilattice) [8] Hence to keep up such a linking for posets intitutionally we forced to define,

<u>Def. 2.5.1</u>: Distributive poset : A poset P is called distributive if (a] \cap (b] \subseteq (c] (a,b,c \notin P) implies the existance of x, y \notin P, x \geq a, y \geq b such that

 $(x] \cap (y] = (c]$.

<u>Remark 2.5.2</u>: It is clear that our definition coincides with the definition of Gratzer [6] in a meet semilattice when a poset becomes meet semilattice.

Example 2.5.3 : Example of a distributive poset

Fig 8

The poset shown in above figure is distributive.

With the definition of distributive poset (Def.2.5.1) we have the following

<u>Result 2.5.4</u>: Every distributive poset with 0 is O-distributive.

<u>Proof</u>: Let P be distributive poset. Let x_1, x_2, \ldots, x_n , a $\in P$ such that

 $(x_1] \cap (a] = (0],$ $(x_2] \cap (a] = (0],$ $(x_n] \cap (a] = (0]$

and suppose $x_1 V x_2 V \dots V x_n$ exists in P

Now $(x_1] \supseteq (x_2] \cap (a]$. Hence by distributivity there exist $y_2 \ge x_2$ and $y_1 \ge a$ such that

 $(\mathbf{x}_1] = (\mathbf{y}_1] \cap (\mathbf{y}_2]$

As $(y_1] \supseteq (y_1] \cap (y_2]$ we get $(y_1] \supseteq (x_1]$ that is $y_1 \ge x_1$. Further we have

 $(x_1] \supseteq (x_r] \cap (a]; 3 \leq r \leq n$

Hence by distributivity there exist $y_r \ge x_r$ and $z_r \ge a$

such that $(x_1] = (y_r] \cap (z_r]$; $3 \le r \le n$. Thus as $y_1 \ge x_1$, $y_2 \ge x_2$,, $y_n \ge x_n$ we get

Since the set of all ideals I_{μ} is a lattice (Result 1.2.1) we have

$$(y_1] \cap (y_2] \cap \dots \cap (y_n] \supseteq (x_1] \underline{\vee} (x_2] \underline{\vee} \dots \underline{\vee} (x_n]$$
$$= (x_1 \underline{\vee} x_2 \underline{\vee} \dots \underline{\vee} x_n] \text{ (Result 1.2.2)}$$

Thus we get

`

$$(a] \cap \{ (y_1] \cap (y_2] \cap \dots \cap (y_n] \supseteq$$
$$(a] \cap (x_1 v x_2 v \dots v x_n]$$
Now $y_1 \ge a \Longrightarrow (y_1] \supseteq (a] \implies (y_1] \supseteq (a] \cap (y_2].$ This implies $(a] \cap (y_2] = \{ (a] \cap (y_2] \} \cap (y_1]$
$$= (a] \cap \{ (y_1] \cap (y_2] \}$$

= (a]
$$\cap$$
 (x₁]

Thus (a] $(y_i] = (0]$ for any i; $1 \le i \le n$ Hence (a] $(y_1] \cap (y_2] \cap \dots \cap (y_n]$ =(0]

$$\Rightarrow$$
 (a] \cap (x₁Vx₂V Vx_n] = (o]

Hence p Is O-distributive.

<u>Remark 2.5.5</u>: Note that every O-distributive poset need not be distributive for this consider the following

Example 2.5.6 : Example of a poset which is O-distributive but not distributive.

Fiq.9

Clearly, the poset shown in figure-9 is **Q**-distributive but it is not distributive since

(b] \cap (c] \leq (a]

but there does not exist $x \ge b$ and $y \ge c$ such that

$$(x] \cap (y] = (a].$$

§ 2.6 Annihilator ideals

In this section we deal with annihilator ideals (Def. 1.1.21) in O-distributive poset P.

Let P be O-distributive poset. First we find some properties of A*, A \subseteq P. In that direction we have following,

Result 2.6.1 : Let P be O-distributive poset then

i) For any nonempty subset A of P the disjoint complement A* is an ideal satisfying A* = A***

ii) An ideal I (P satisfying I = A* for some nonempty subset A of P if and only if I = I**

<u>Proof</u>: i) By Result (2.2.2) we get that A^* is an ideal. Therefore it only remains to show that $A^* = A^{***}$

Now if B is any nonempty subset of P then we have B \subseteq B**. This implies A* \subseteq A***. Now A \subseteq A** implies A* \supseteq A***. Thus we get A* = A***.

ii) If I = A* for some nonempty subset A of P. Then I** = A*** = A* = I.

Conversely if $I = I^*$ then $I = A^*$ for $A = I^*$. Hence the proof.

Let P be a O-distributive poset. We denote the set of all annihilator ideals of P by A(P). Here we have the following,

<u>Result 2.6.2</u>: For a O-distributive poset P, the set of all annihilator ideals A(P) forms a Boolean algebra.

<u>Proof</u>. Let I, J $\in A(P)$. We define the greatest lower bound of I, J by I \cap J.

i.e. $I \wedge J = I \cap J$

and least upper bound of I, J by $(I* \cap J*)*$

i.e. I $\underline{V} J = (I^* \cap J^*)^*$

We claim that $\langle A(P), \wedge, \underline{V}, \star, (O], P \rangle$ is a Boolean algebra.

We first prove that if I, $J \in A(P)$ then $I \wedge J \in A(P)$

Let I, J (A(P)), \Rightarrow I = I**, J = J**

Now I \supseteq I \cap J ==> I** \supseteq (I \cap J)**. Since I (A(P) this imply I** = I \supseteq (I \cap J)**. Similarly J \supseteq (I \cap J)** from this we have I \cap J \supseteq (I \cap J)**. Thus I \cap J = (I \cap J)** Hence I \cap J (A(P).

Let K $\in A(P)$ such that K \subseteq I, K \subseteq J. Thus K \subseteq I \cap J => I \cap J is the greatest lower bound of I and J

in A(P). Hence
$$I \land J \in A(P)$$
 for all I, $J \in A(P)$...(1)

Let I, J, K $\in A(P)$. Now $I^* \supseteq I^* \cap J^*$, this imply $I^{**} \subseteq (I^* \cap J^*)^*$. But since I $\in A(P)$ we have I = I^{**}. Hence I $\subseteq (I^* \cap J^*)^*$. Similarly J $\subseteq (I^* \cap J^*)^*$. Let I \subseteq K and J \subseteq K, imply I* \supseteq K* and J* \supseteq K* = \Rightarrow (I* \cap J*) \supseteq K* = \Rightarrow (I* \cap J*)* \subseteq K** = K. Therefore (I* \cap J*)* is least upper bound of I, J $\in A(P)$. Thus if I, J $\in A(P)$ then I \bigvee J $\in A(P)$ - ... (2)

From (1) and (2) we get that A(P) is a lattice.

Since (0] = P* and P = (0] *, (0] and P are the elements of A(P). Further (0] and P are the least and the greatest elements of A(P).

Now we show that A(P) is complemented. Let I (A(P)); Then I V I* = $(I* \cap I^{**})^* = (I* \cap I)^* = (O]^* = P$ and I \cap I* = (O] shows that I has complement I* in A(P)Thus A(P) is complemented. ... (3)

It only remains to show that A(P) is distributive for I, J, K $\in A(P)$ we have to show that

 $I \underline{V} (J \wedge K) = (I \underline{V}J) \wedge (I \underline{V}K) \text{ that is}$ $[I^* \cap (J \cap K)^*] * = [(I^* \cap J^*)^* \cap (I^* \cap K^*)^*]$

We first claim that

Now $J \cap K \subseteq J \Longrightarrow (J \cap K)^* \supseteq J^*$

=⇒ I* ∩ (J ∩ K)* ⊇ I*∩ J*

=⇒ [I*∩(J∩K)* J* ⊆ (I*∩ J*)*

Similarly we can prove that

 $[I* \cap (J\cap K)*]* \subseteq (I*\cap K*)*$

Thus we have

 $[I* \cap (J\cap K)*]* \subseteq (I*\cap J*)* \cap (I*\cap K*)* \dots (4)$

Next we claim that

(I*∩ J*)*∩ (I*∩K*)* **⊆** [I*∩ (J∩K)*] *

To prove this we need to prove the following set inclusion

(I*∩J*)*∩K⊆ [I*∩(J∩K)*]*

Let I, J, K $\in A(P)$. Now INK $\subseteq I \subseteq [I* \cap (J \cap K)*]*$. Similarly, JOK $\subseteq [I* \cap (J \cap K)*]*$ Now INK $\subseteq [I* \cap (J \cap K)*]* \Longrightarrow$ INK $\cap [I* \cap (J \cap K)*]** = (0]$ That is INKO[I* $\cap (J \cap K)*] = (0]$ Similarly, JOKO [I* $\cap (J \cap K)*] = (0]$. Thus $J \cap [K \cap I^* \cap (J \cap K)^*] = (0]$.

•

 \Rightarrow [K \cap I* \cap (J \cap K)*] \subseteq J*, similarly

[K ∩ I* ∩ (J ∩ K)*] <u>c</u> I*

=⇒ [K∩I*∩ (J∩K)*] <u>⊂</u> I*∩J*

=⇒ $[K \cap I^* \cap (J \cap K)^*] \cap [(I^* \cap J^*)^*] = (0]$

That is $I* \cap (J \cap K) * \cap [K \cap (I* \cap J*)*] = (0]$

=⇒[K∩(I*∩J*)*] ⊆ [I*∩(J∩K)*] *

That is $(I* \cap J*) \cap K \subseteq [I* \cap (J \cap K)*] *$

Thus $(I \underline{V} J) \wedge K \underline{C} I \underline{V} (J \wedge K)$... (5)

Let I = N and J = Q and K = N \underline{V} R then from (5) we have $(N \underline{V} Q) \land (N \underline{V} R) \leq N \underline{V} [Q \land (N \underline{V} R)]$

= $N \underline{V} [(N \underline{V} R) \land Q]$

Now $(N \underline{V} R) \land Q \leq N \underline{V} (R \land Q)$

Therefore we have ,

 $(N \underline{V} Q) \land (N \underline{V} R) \leq N \underline{V} (Q \land R)$ Replacing N, Q, R by I, J, K we have

$$(I \underline{V} J) \land (I \underline{V} K) \leq I \underline{V} (J \land K)$$

That is $(I* \cap J^*)^* \cap (I^* \cap K^*)^* \subseteq [I^* \cap (J \cap K)^*]^* \dots (6)$ From (4) and (6) we have

This implies that A(P) is distributive.

From (3) and (7) we get that A(P) is distributive complemented lattice.

That is A(P) is a Boolean algebra.

§ 2.7 Properties of I**

In this section we study some properties of I**. Here a nice property of I**, where I is an ideal in a O-distributive poset P is furnished.

<u>Result 2.7.1</u>: Let P be a O-distributive poset then for any ideal I \notin P the set I** is the largest among all the ideals A \notin P with the property that for every $0 \neq x \notin$ A There exist $0 \neq y \notin$ I such that $y \leq x \cdot$

<u>Proof</u>: We first prove that I** has the stated property Given $0 \neq x \in I^{**}$ assume that no nonzero $y \in P$ satisfies $y \in I$ and $y \leq x$. Then $\{x, z\}^{l} = \{0\}$ for every $z \in I$ for if $\{x, z\}^{l} \neq \{0\}$, let $0 \neq \rho \in \{x, z\}^{l}$ then $p \leq x$ and $p \leq z$. Now $z \in I$ and I is an ideal together imply that $p \in I$ and $p \leq x$ contradicting our assumption. Thus it follows from $\{x, z\}^{l} = \{0\}$, for every $z \in I$, that $x \in I^{*}$. But x is also the element of I**, hence we get $x \in I^{*} \cap I^{**} = \{0\}$; contradiction to the fact that x is nonzero. Thus there exists some nonzero $y \in I$ for every $x \in I^{**}$ such that $y \leq x$.

Now assume that A is an ideal with the stated property and suppose A \underline{c} I** does not hold. Then there A 5959

must exists an element x $\in A$ such that x does not belong I**. So $\{x, y\}^{\frac{1}{2}} \neq \{0\}$ for some y $\in I$ *. Let q $\in \{x, y\}^{\frac{1}{2}} \neq \{0\}$. Then q $\in A$ and q, $\in I$ * imply that q $\in I$ * $\cap A$. Now by hypothesis there exist $0 \neq s \in I$ such that $s \leq q$. But then $o \neq s \in I \cap I$ *; which is impossible. Hence $A \subset I$ **.

Further we have the following,

<u>Result 2.7.2</u>: Let P be 0-distributive poset. If I_1 , I_2 ... I_n are ideals in P then

 $(\bigcap_{i=1}^{n} I_{i})^{**} = \bigcap_{i=1}^{n} I_{i}^{**}$

<u>Proof</u>: Obviously, as $I_1 \subseteq I_1^{**}$ for every $i(1 \le i \le n)$ it is sufficient to establish that $I = I_1 \cap I_2$ satisfies $I_1^{**} \cap I_2^{**} = I^{**}$. Suppose $0 \ne x$ is in $I_1^{**} \cap I_2^{**}$ then there exists by previous result on element $0 \ne y \in I_1$ such that $y \le x$. Since $0 \ne y$ is in $I_1 \cap I_2^{**}$ there exists on element $z \in I_2$ such that $z \le y$. Hence $0 \ne z$ is in $I_1 \cap I_2 = I$ and $z \le x$. Thus the ideal $I_1^{**} \cap I_2^{**}$ possesses the property in the Result(2.7.1.) . Hence $I_1^{**} \cap I_2^{**} \le I^{**}$. which proves that $I_1^{**} \cap I_2^{**} = (I_1 \cap I_2)^{**}$.

§ 2.8 Some more results.

A sufficient condition for (a] $* = (b)^*$ in a o-distributive poset for a \neq b is stated in the following,

<u>Result 2.8.1</u>: If a and P are the elements of O-distributive poset such that (a] \cap (d] = (b] \cap (d] for some dense element d \in P. Then (a] * = (b]*

Hence we get

$$(a]^{*} = (a]^{***}$$
$$= \{(a]^{**}\}^{*}$$
$$= \{(b]^{**}\}^{*}$$
$$= (b]^{***}$$
$$= (b]^{*}.$$

A property of the set of dense elements in a O-distributive poset is investigated in the following

<u>Result 2.8.2</u> : In a O-distributive poset P is $\{0\} \neq A$ is the intersection of all nonzero ideals of P then $A^* = P - D$ where D is set of all dense elements of P.

<u>Proof</u> : Now $A \neq \{0\}$, so we get for any x $\in A^*$.

 $\{x\}^* \neq \{0\}$. That x is nondense element of P. Therefore x $\{A^* \implies x \in P-D \text{ that is } A^* \subseteq P-D.$

On the other hand as P is O-distributive $\{d\}^*$ is nonzero ideal of P for every $d \notin D$. Now since A is the intersection of all nonzero ideals of P we have $A \subseteq \{d\}^*$. Therefore $A^* \supseteq \{d\}^{**}$. Now $d \notin \{d\}^{**}$ and $\{d\}^{**} \subseteq A^*$. Thus $d \notin A^*$. Hence P - D $\subseteq A^*$. Therefore we get $A^* = P - D$.

Next we have

Result 2.8.3 : If intersection of all prime ideals is (0] then P is O-distributive.

<u>Proof</u>: Let P be a poset. Let the intersection of all prime ideals of P is (0].

Let $\mathcal{P} = \{M / M \subseteq P \text{ and } M \text{ is prime}\}$. Now we have to prove that P is O-distributive Let $x_1, x_2 \dots x_n$, a $\notin P$ such that and suppose $x_1 V x_2 V \dots V x_n$ exists in P

Now $(x_i] \cap (a] = (0], 1 \le i \le n$

imply either $x_i \in M$ or a $\in M$ since M is prime. we claim that

 $(x_1 v x_2 v \dots v x_n] \cap (a] \subseteq M, \forall M \in \mathcal{C}.$

Suppose the contradictory; that is $\exists M \in \mathbb{P}$ such that $(x_1 v x_2 v \dots v x_n] \cap (a] \notin M$

Then $x_1 v x_2 v \dots v x_n \notin M$ and a $\notin M$ because M is prime.

Now if $(x_i] \cap (a] = (0] \quad 1 \le i \le n$ then $x_i \in M$ for each i; and this would imply $x_1 \forall x_2 \forall \dots \forall x_n \in M$, which is a contradiction. Therefore $(x_1 \forall x_2 \forall \dots \forall x_n)$ $\dots \forall x_n] \cap (a] \subseteq M \forall M \in \mathcal{O}$ But $\bigcap M(M \in \mathcal{O}) = (0] \Longrightarrow$

 $(x_1 V x_2 V \dots V x_n] \cap (a] = (0]$.

Hence P is O-distributive.

۰.