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CHAPTE R-II

Introduction

Pseudocomplemented lattices form an important class
of lattices and have been studied by many authors. Frink C4 ]
has obtained the generalization of the theory for semi-
lattices. Venkatnarasimhan [ 11 Jlsuccessfully extended some
of the results of Frink[ 4 Jand Balchandranl[ 1 Ito partially
ordered sets by defining pseudocomplements in a poset. A
poset P bounded below is pseudocomplemented if and only if
for any a €P, the subset of elements disjoint from a is a
principal ideal. On one hand it is quite reasonable to
replace ‘principal ideal' by ‘'ideal'. This weakened condition

motivated us to define O-distributivity in a poset.

On the other hand, O-distributivity in a poset is
also an extension of O-distributivity in semilattice. Varlet
{10 Jwas the first to investigate O-distributive lattices.
O-distributive semilattices were introduced by Varlet[ 10 1
and also by Pawar[ 8 Jin different ways. We have succeeded

irn pushing the considerations of Pawar[ 8 Jfor posets.

Cornish [ & Jlstudied in detail annihilator ideals
in a distributive lattice. He proved that the set of
annihilator ideals in a distributive lattice is a Boolean

algebra. Similar result was expected for poset and we have
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shown that the class of 0O-distributive posets contains
distributive poset with 0. Disjunction poset was defined
by Venkatnarasimhan [ 121 . we have élso studied dis-
junctivity in a O-distributive poset and we have shown
that these two concepts are completely independent.
Properties of dense elements are also studied in

O-distributive posets.

L 3 N 4
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O0-DISTRIBUTIVE POSETS

§ 2.1 Definition and Examples

Throughout this Chapter we shall concern with partially
ordered sets or posets. We shall denote the ordering relation
in a poset by { . Let A = {al, @y, «eee » 3,7 be a finite
subset of poset P, then the least upper bound (join) and the
greatest lower bound (meet) of ay (1 £ 1 £ n) are denoted
by a1Va2V esve Va, and a3 A 85 A s N, respectively. The
least and the greatest elements of a poset, whenever they
exist are denoted by '0*' and 'l’ respectively. The set
inclusion, set union and set intersection are denoted by
€, U and N respectively. Hereafter by a symbol P we mean

a poset P with '0'., We define a O-distributive poset as

follows

Def. 2.1.1 3 O-distributive poset : - The poset P is called

O-distributive if for some finite n, Xye X320 e & Xp and

a € P such that

(X13 n (al] = (o],

(XZJ n (al] = (ol .
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And if xIszv ees VX, exists, then

(x1Vx2v cosne Vxh] M (al = (0] .

Dually we can define 1 - distributive poset.

Example 2.1.2 : An example of 0O-distributive poset ,

90 Oh
€O O.F
ao// bO cO | O d
N4
\OO |
Fig-1

The poset represented by Fig.l above is O-dlistributive.



Example 2.1.3 ¢ We furnish here one more example of a

O-distributive poset (This poset contains infinite number

of elements)
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The poset shown in Fig.2 above is O-distributive,

Note that every poset need not be O-distributive.



16

Example 2,1.4 : An example of a poset which is not

O~distributive is given in figure 3.

90 Qh
QCI) OF
a \\\\ifiiil5 //;y Od
O/
0
Fig-3

Explanation : In the poset shown in figure 3 above

we have

(bl M (al] = (o1
(cl] N (a1 = (01
(£] N (a1 = (ol

but (bveve]l M (a1 = (a1 # (ol y where bvcvf = h.

Remark : 2.1.5 : A subset of O-distributive poset,

containing '0°, need not be O-distributive (See Fig.l.)
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§2.2 O-distributivity and pseudocomplementedness

In this article we establish a connection between

a O-distributive poset and pseudocomplemented poset.

Let P be a poset a, b € P. We denote the set of all
lower bounds of a,b by {a, b} L.

i.e. {a,b}‘ﬂ‘={x €P/ x £aand x £DbJ

For any poset P the set {aj = = {x €p/ {x,a}1 = {03}
is a semiideal of P, for a €P [ 11 J. But {a} ¥ is an ideal
for all a € P if and only if P is O-distributive. Note that
Venkatnarasimhan's definition of a poset ideal[ 117 is

different from that given by Frink [ 5 ]. Now we have

following

Result 3 2.2.1 : A poset P is O-distributive if and only

if {ay " = {x €EP/ (x,a} La {03y is an ideal in P
for any a € P.

Proof s Let P be O-distributive poset we have to prove

that {a] * is an ideal,

*
i) Let y € {fa}] and x € P such that x < vy.
If {x, aj} # {0} then there exists z € P such that

z € {x,ajland z ¥ 0. Since z < x and x < y by
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transitivity we get z & y. Hence 2z € ({y,a} L. {03

This is a contradiction and hence {x,a} L. {o0}.

*
This proves that x € {a}

ii) Let X1+

Xos eees X Dbe in {a} * and suppose

that x, VX,V .... Vx, exists in P. As xj € {a3 *

(1 £ 41 £n) implies {x,, a} . {03. But then

(xiJ N (al = (olas this is true for each

i, 1 £1 £ n we have

(xll N (al
(xz:] M (al
(xn] N (al

= (0],

= (01,

- . o " -

Since P is O0-distributive we must have

(lexZV ceve Vxn] N (al =(0]

Hence XIVXZVX

3V

From i) and ii)

P for any a € P.

Conversely -

a 6 P. Let xl, Xz.

ceees VX, € (a} ',

it follows that {aj} * is an igeal in

*
suppose that {a} is an ideal for any

€ P such that,

eeeey X

n



And assume that X)VXoV eeee VX, exists in P. Now by
assumption {a} * being an ideal X)VXoV .ee VX, € {a} *.
This inturn implies {lexzv ceee Vxn' a}‘t = (0} . That

is (x3vx,v ... vx, 1 M (al = (0] proving that P is
O-distributive. |

More generally we have the following

Result 2.2.2 ¢+ P is O-=distributive if and only if

a* = {x/x € P, {%Xa} L. {o}wva €A} is an ideal for

AcpP.

Proof : ~ Let A* be an ideal for any A € P. Then
particularly {aj} ¥ is an ideal for any a € P. Hence by

Result (2.2.1) P is O-distributive.

Converse%y ?let P be O-distributive we have to
prove that A" is an ideal for any A € P. We claim that
*
A = MN{a; "/ a €Al . 1f x € A" then for all a € A we

have{x, a} L {0} « This will imply x € {a} * for all
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a €A, Hence x € [ {{a} */a €al. Thus a" ﬂ{{a}*/a €Al.

For the reverse inclusion let x € N {{a}*/a €aj
then {x, a} o {0} for all a € A . But this inturn
implies x € A" . Hence N{{aj */ a € A} € A", combining

both results we get
ﬂ{{a}*/-a €a} =a"

Thus A*, being an arbitrary intersection of ideals, is an

ideal in pP. 1

Already there exists a theory of pseudocomplements
in lattices [ 6 1. Frink [ 4 1] has obtained a generalization
of the theory for semilattices. Venkatnarasimhan[i1 ]
extended some of the results of Frink[ 4 land Balchandran{ 13
the most general systems, posets nicely. Here we prove that
Oo-distributive poset is a generalization of pseudocomple-

mented poset defined by Venkatnarasimhan(413 1.

Result 2,2.3 : Every pseudocomplemented poset is

O-dlistributive.

Proof : Let P be pseudocomplemented poset and let

xll le o0 e vy Xn, a e P SUCh that'

.....
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(le M (al] = (ol ,
(xn] N (al = (o1 ,

Further suppose x;V XV eeee VX, exists in P. Now since

P is pseudocomplemented, a® exists in P for any a € P and

*
further (al ¥ oa (a ] (see ResultlL2.3). But then we have

(x,1 € (@7, (x;] € ("1, eover (%] € (277 . As
XVXV oo VX, exists
(X7 ¥ (%] ¥ eeene ¥ Ax T = (xVXV o0 Vxp ]

(See Resulti.2.2). Therefore,

(x]_Vx2 Vieeeo Vxp1 S (a*1 .

which inturn implies that

(X VoV oo VX1 M (al =(0]

And hence P is 0-distributive. |
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Remark 2.2.4 : The converse of the above result need not

be true. Consider the following poset represented by

Figure 4.

¢ 9 e g

NPAYS%

Fig- 4
The poset shown in fig.4 is O-distributive as,

(1 N (a] = (0]
(el N (al = (o]

implies (bvc] M (al] = (0] where bVc = e, However it is

not pseudocomplemented as a® does not exists in P,

AR LI
iy
guw ,
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Remark 2,2,5 : O-=distributivity generalizes pseudocomple-
mentedness. As pseudocomplemented poset has greatest

element it is always bounded, while a 0O-distributive poset

need not be bounded above.

Venkatnarasimhan [ 11 Jproved that a poset P is
pseudocomplemented if and only if f{aj} ¥ is a principal
ideal for every a £ P (Resultt2.3 ). Using this together

with the Result(i{-2:2) we have following

Corollary 2.2.6 : O-distributive poset is pseudocomplemented

if and only if {aj} * is a principal ideal for all a €P,

Remark 2.2.7 ¢ If a poset satisfies ascending chain

condition all ideals are principal [ 6 Jand hence in poset
satisfying the ascending chain condition O-distributivity

is equivalent to pseudocomplementedness.,



24

§ 2.3. O-distributivity and Disjunctivity

Balchandran [ 1 Jdefined and characterized dis-
junction lattices. While generalizing the concept of
disjunctivity to posets Venkatnarasimhan[ 12 ] defined
disjunctive posets (Def. 1-1-3% ). Here we show that dis-
junctivity and O-distributivity in a poset P are completely

independent. For this consider the following examples :

Example 2.3.1 : Example of a poset which is 0-distributive
h i

but not disjunctive.

0
f39-5

Clearly, poset shown in figure -5 is O-distributive
but it is not disjunctive, since for ¢ ¥ 4 in P there
exists no element in P satisfying the disjuhctive

property.
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Example 2.,3.2 : Example of a poset which is disjunctive
but not O-distributive,

f
O\
b O Od
e
5
a O Oc
O
0
Fig-G
Clearly, the poset shown in Fig.6 is disjunctive

But it is not O-distributive since
(a1l N (el = (o]
(cl] N (el = (o]
and avc exists but

(avel N (el # (o] -

L3154
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Example 2,3.3 : Example of a poset which is neither
O-distributive nor disjunctive .

9

O
O< Oe

a O 1@
CO/ Od

O

0]

Fﬁg-?

The poset shown in above figure is not O-distributive

since

(aJ M (al = (o1
(b] M (a4l = (01l
(cl N (4] = (0]

but ( avbve]l N (41 = (4] »¥ (0] where avbvec = g

Also the poset is not disjunctive since for e # £ in P

there exists no element in P satisfying the disjunctive

property.
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§ 2.4 Characterization of I

i

For any poset P we denote the set of all ideals

of P by Ip . . . Here in this section we deal

with some important characterization of Ip.

Venkatnarasimhan [ 11 1 proved that I]_L ‘is complete

lattice (Result 1.2,1 ). But under some additional condition

on P, Ip will be pseudocomplemented. This is proved in the
following :

Result 2.,4.1 : P is oO-distributive if and only if Ip is

pseudocomplemented.

Proof : Let P be O-distributive poset. Let A € Ip‘
As A €& P Dby Result ( 2:2-2 ) we have A" is an ideal

in P, We claim that A* is the pseudocomplement of A in Ip.'

Clearly AﬂA* = {03} . If there exist B € Ip' such
that AMB = {0} then B € A", since if b€B then for any
a €A we have f{a, b} =f{0} .Forifo#z € {a,bj"
then z4¢b €B implies 2z €B and 2z £ a € A implies z € A
thus 2 € AMB = {0} which is a contradiction. Hence

{a, b} 1. {0} for all a € A. This inturn implies that

b € A* for all b € B. Hence B € A*., Thus a* is the largest
ideal in Ip satisfying ANa* = {0} . Hence A* is the

pseudocomplement of A in I, . This proves that I

" is

B
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P seudocomplemented,

Conversely,let Ip be pseudocomplemented. We have to

prove that P is O-distributive.
Let X3, X9 evee X, @ € P such that
(xl] M (al = (01 .,

(x2] M (al = (ol ,

and suppose that lexzv sess VX, exists in P. Now
(x,1 M (a1 = (o] == (x,7 ¢ (al * since (al € 1

(a]* exists and is in Ip, by assumption.

Similarly we have

(x,] ¢ (al :
(x3] ¢ (a1’
(x.1 ¢ (al™.

Therefore (x1] ! (xZ] 2 sees z (xn] _c_ (a]* .

But (] V (%, ¥ eeeee ¥ (X7 = (x3VXV oo VX ]
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(Result 1-2-2- ). Hence (X3Vx3V «... VX, € (aJ* . But
this implies that (x)3VxaV .... vx,J M (al = (0].

Therefore P is O-distributive. |}

As we know that every pseudocomplemented lattice
is 0-distributive (Resulti.2.4) we get one more generalization

of O=-distributivity as

Result 2,4.2 ¢+ P is O-distributive if and only if Ip is

O-distributive.

Proof : Let I, be O-distributive. Let Xj, X2, ... Xp,2 €p

such that

(17 N (al = (01,

(x,J M (al = (0],

(xa7 M (a1l = (0] .

and suppose X VXV e0ee x,, exists in P.
Now we know that

(result 1:2+-2). Since Ip is O0-distributive lattice we
have  (x;1 V (x,] ¥V ... V€ x,7 M (2l = (x3Vx,V ...,

.o Vx,1 M (al = (0], proving that P is O-distributive.
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Conversely let P be O-distributive. By the
Result ( 2:4-1), I, is pseudocomplemented and since every
pseudocomplemented lattice is 0O-distributive (Result 1.2.4)

Ip is O0-distributive. 1§

Remark 2.4.3 : From the above result Varlet's result

(Result 1.2.8 ) follows as corollary when a poset P becomes
lattice.



§ 2.5 o-distributivity and distributivity

Every distributive lattice with *'0' (semilattice

with '0') is O-distributive lattice (semilattice) [ 8 ]

Hence to keep up such a linking for posets intitutionally

we forced to define,

Def, 2.5.1 : Distributive poset : A poset P is called

distributive if (a1l N (] € (c1 (a,b,c €P) implies

the existance of x, v € P, x 2 a, vy 2 b such that

(xJ N (vl = (c31.

Remark 2.5.2 : It is clear that our definition coincides

with the definition of Gratzer [ 6 Jin a meet semilattice

when a poset becomes meet semilattice,

Example 2,5.3 : Example of a distributive poset

N

N,
LN
N

ﬁg-B

The poset shown in above figure is distributive.
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with the definition of distributive poset (Def.2.5.1)

we have the following

Result 2.5.4 : ZEvery distributive poset with 0 is

O-distributive,

Proof : Let P be distributive poset. Let Xyr X0 eeees

X., a £€P such that

nl

(x,] N (al = (01,
(X2] ﬂ (aj = (0] ’
(xn] M (a] = (01

and suppose X;VX,V eee... VX exists in P

Now (xl] 2 (x,1 N (al . Hence by distributivity

there exist Yo > X5 and Y1 > a such that

(x,1 = (y;3 N (y,]
as  (yy] 2 (1 N0 (v,1 we get (ylj 2 (x1
that is yl,5_>_ Xy . Further we have

(x;] 2 (x 3 MN (2l ;3 £ r<n,

Hence by distributivity there exist vy, 2 X, @nd z,.> a
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such that (xl] = (yr] N (z,] ;‘ 3 £&r<n .
Thus as Yy > Xy, Yo > Xps eeeeeee ¢ Y 2 X, we get
(Ylj =2 (Xl] ’
(Yz] ?_. (XZ] ’
(yn] 2 (x,]

Since the set of all ideals Ip

we have

00000

(vq1 N v, N .

Thus we get

(a1 N{ (x1 N (v, N
(a]

o)

——

Now Yy > a =3 (Y1] (a]

This implies (a ] () (Y2]

N

is a lattice (Result 1.2.1 )

Nyl 2 (1 ¥ (x,1 ¥ ..oov(x ]

(lexzv... Vxn] (Result 1.2.2)

ooooo

(XIVXZV se e Vxn]

(v;1 2 (@1 N (y,1 .

{1 N (1] N (v
(@l N{ly;] N (y,1]
(al N (x,1

(01
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Thus (a] M) (Yil = (0] forany i; 1 £ i % n
Hence (al r)i’(yll N (v, 1 N eeeee N (yn3} =(0]
=2 (a] N (XIVXZV cerees VX ] = (o]

Hence p Is o-distributive. 1

Remark 2.5.5 : Note that every O-distributive poset need

not be distributive for this consider the following

Example 2.5,6 : Example of a poset which is O-distributive

but not distributive.

90 Oh
/QO I
O
0
Fig-8

Clearly,the poset shown in figure-9 is @-distributive
but it is not distributive since

(b M (¢ € (a1

but there does not exist x 2 b and y > c such that

(x1 N (Y]'

(al .
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§ 2.6 annihilator ideals

In this section we deal with annihilator ideals

(Def. 1.1.21) in o-distributive poset P.

Let P be O-distributive poset. First we find some

properties of A*, A C P. In that direction we have

following,

Result 2.6.1 : Let P be O-distributive poset then

i) For any nonempty subset A of P the disjoint

complement A* is an ideal satisfying A% = Awwxx

ii) An ideal I € P satisfying I = A* for some

nonempty subset A of P if and only 1if I = I**

Proof : i) By Result (2:-2-2) we get that A* is an ideal.

Therefore it only remains to show that A% = Ak*¥

Now if B is any nonempty subget of P then we have
B € B**, This implies A* C A***, Now A C A** inplies

A* 2 aAxk*, Thug we get A* = Akxk¥,

ii) If I = A* for some nonempty subset A of P.

Then I** = A*x*% = A% = T,

Conversely if I = I** then I = A* for A = I¥,

Hence the proof. |
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Let P be a O-distributive poset. We denote the set of all
annihilator ideals of P by A(P). Here we have the

following,

Result 2.6.2 : For a O-distributive poset P, the set of

all annihilator ideals A(P) forms a Boolean algebra.

Proof. Let I, J € A(P). We define the greatest lower bound
of I, J by INJ.

i,e. INT=INJT
and least upper bound of I, J by (I* M J* )*
i.e. T VI = (I*NJ* )*

We claim that <A(P), A, V, *, (01 , P> is a

Boolean algebra.

We first prove that if I, J € A(P) then IAJ EA(P)
Let I, J €EA(P), = I = I*%x, J = Jk*

Now I 2 INJ = I** 2 (I NJ)**, Since I € A(P)
this imply I** = I 2 (INJ)**, Similarly J 2 (INJ)**
from this we have I1J 2 (INJ)**, Thus INJ = (INJ)**

Hence INJ € a(p).

Let K € A(P) such that K € I, K € J. Thus

KCINJ = INJ is the greatest lower bound of I and J
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in A(P). Hence INJ €A(P) for all I, J € A(p) ees(l)

Let I, J, K €A(P). Now I* 2 I*(\ J*, this imply
I** ¢ (I*NJ*)*, But since I € A(P) we have I = I**, Hence
I ¢ (I*NJ*)*, similarly J € (I*NJ*)*, Let I € K and

J € K,imply I* 2 K* and J* 2 K* =3 (I*1J*%) 2 K* ==
(I* N J*)* € K** = K. Therefore (I*MNJ*)* is least upper
bound of I, J € A(P). Thus if I, J € A(P) then

I y_J eA(P) - LI 2 (2)
From (1) and (2) we get that A(P) is a lattice.

Since (0] = P* and P = (01 *, (o] and P are the elements
of A(P). Further (0] and P are the least and the

greatest elements of A(P).

Now we show that A(P) is complemented. Let
I € A(P); Then I V I* = (I*NI**)* = (I*NI)* = (0l* =P
and I N I* = (0] shows that I has complement I* in A(P)

Thus A(P) is complemented. ees (3)

It only remains to show that A(P) is distributive

for I, J, ¥ € A(P) we have to show that

IV (JAK) = (I ¥J) A (IVK) that is
[1*N@NK)*] * = [(I*NI*)* N (I*NK*)*]

We first claim that
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[1* N (Jnx)*]’é,[(x*nJ*)* N (I*NK*)¥]
Now JNK E T == (JNK)* 2 J*

=2 I* N (JNK)* 2 I*NJ*

=23 [I*N(INK)* T*x S (I* () J*)*
Similarly we can prove that

[I* N (INK)*] * ¢ (I*¥NK*)*
Thus we have

[1* N @NK*T * ¢ (I*NJI*)* N (I*NK*)* eee (4)

Next we claim that
(I* N Jx)* N (I*OK*)* € [I* N (TNK)*] *

To prove this we need to prove the following set inclusion
(I* N JIM)*N KE [I*N (INK)*] *

Let I, J, K €A(P). Now INKEIC [I*N (INK)*] »,

similarly JNK ¢ [I* N (JNK)*]*
Now INK ¢ [I*N (TN K)*] * = INK N[I*N(TNK)* J** = (0]
That is INKNL I*N(ITNK)*] = (0]

Similarly) JNKN [I* N (INK)*] = (o] .
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Thus J N [kNI* N (INK)*] = (0] .

== [KNI* N (INK)*] € J*, similarly

(kNi* N (INK)¥ ¢ 1I*
=3 [KNI* N (INK)¥] ¢ I*NJ*
= [KNI* N @NK)*] N [(1*xN J*)*] = (o]
That is I*N (JNK)* N [ KN (I*N J*)*] = (0]
am [K N (I*NJ*)*] ¢ [I* N (JNK)*] *
That is (I*NJI*) N K e [I* N (INK)*] *
Thus (I VJI)AKE IV (JAK)

LI (5)

Let I =N andJ =Q and K = N V R then from (5) we

have ( NVQ) A(NVR) £ NV I[QA(N VR)

= NV [ (NVRYA Q]
Now (NVRYAQ £ NV (RAQ)
Therefore we have ,

(NVQ) A(NYR < NV (QAR)
Replacing N, G, R by I, J, K we have

(I VI)AN((@XVK) £ IV (IJAK)
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That is (I*NJI*x)* N (I*N kx)* € [I* N (JﬂK)*]; eee(6)
From (4) and (6) we have

(I*NJ*)* N (I*NK*)* ¢ [I*N(INK)*] * ees (T)
This implies that A(P) 1is distributive.

From {(3) and (7) we get that A(P) is distributive

complemented lattice.

That is A(P) is a Boolean algebra. #§
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é 2.7 Properties of I**

In this section we study some properties of I**,
Here a nice property of I**, where I is an ideal in a

O-distributive poset P is furnighed.

Result 2.,7.1 : Let P be a O-distributive poset then for

any ideal I € P the set I** is the largest among all the
ideals A € P with the property that for every 0 # x € A

There exist 0 # y € I such that y < x -

Proof : We first prove that I** has the stated property
Given 0 # x € I** assume that no nonzero y € P satisfies

y €I andy < x. Then {x, z} L. {0} for every z €I

. L (1
for if {x,z 3} # {0}, let O#p € {x;2} then p < x
and p £ z. Now z €I and I is an ideal together imply that

p €I and p £ X contradicting our assumption. Thus it

follows from {x,z} L = {0} » for every z € I, that

x € I*, But x is also the element of I**, hence we get

x €I*N I** = {0} ; contradiction to the fact that x is
nonzero. Thus there exists some nonzero y €1 for every

x € I** gsuch that y < x .

Now assume that A is an ideal with the stated

property and suppose A C I** does not hold. Then there

A
0959
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must exists an element x € A such that x does not belong

I**, So {x, y}" # {0} for some y € I*. Let

g € {x, v} 1’#{9} Then g € A and q, € I* imply that

g € I*MNA. Now by hypothesis there exist 0 # s € I

such that S & g But then 0 ¥ S € INI¥*; which is

impossible. Hence A ¢ I**, 1§
Further we have the following,

Result 2.7.2 + Let P be O-distributive poset. If I, I,..

«-s I, are ideals in P then

n n
(N 1) = N
i=1 i=] -

Proof : Obviously, as I; ¢ Ij for every i(l £ 1 %n) it

is sufficient to establish that I = I;MN1I, satisfies

**
I, N I;* = I**_, Suppose O ¥ x is in :;*rw I;* then there

exists by previous result on element 0 # y € I, such that
y £ x. Since 0 # y is in IlFWIE* there exists on element

z €I, such that z<y. Hence 0 # z is in I;N I, =1

and z £ x. Thus the ideal Ii* M I;* possesses the

pProperty in the Result(2.7.1.) . Hence I;*r\ I;* < I**

which proves that IJ M I3 = (I;N1,)*+. |
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§ 2.8 ‘Some more results,

A sufficient condition for (al* = (b]" in a

o-distributive poset for a #¥ b is stated in the following,

Regult 2.8,1 3+ If a and P are the elements of O-distri-

butive poset such that (a] N (al] = (b1 M (a] for

some dense element 4 € P. Then (a] ¥ s (b1"

* Kk

Proof : (a] (al*™ N p

L ok

= (a] M (4]

[' * 4 is dense element

in P ]

= [tal N (a7] ™ [by Result (2.7.2) ]

[y N o@al*t [by assumption ]

= ®1* N (@1™ [T ° by Result (2.7.2)]

- (b] **ﬂ p [’. * 4da is dense in P]

- (b_]**
Hence we get
(a* = (a1 ™™

= {(a"™} "

= {(bj**} w*

(bj e vk

(v7" .
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A property of the set of dense elements in a

O-distributive poset is investigated in the following

Result 2.6.2 ; In a O-distributive poset P is {0} # A

is the intersection of all nonzero ideals of P then

A* = P - D where D is set of all dense elements of P.

Proof : Now A # {0] , so we get for any x € A*.
*
{x} # {0} . That x is nondense element of P. Therefore

x € A* =2 x €P-D that is A* ¢ P-D.

On the other hand as P is O~distributive {4} * s
nonzero ideal of P for every 4 § D. Now since A is the
intersection of all nonzerc ideals of P we have A E {43 *.
Therefore A* 2 {d} " . Now 4 € {a} ** and {a3}** C Aw,

Thus 4 € A*. Hence P - D € A*. Therefore we get A* = P -~ D,

Next we have

Result 2.8.3 : If intersection of all prime ideals is (ol

then P is O-~distributive,

Proof : Let P be a poset. Let the intersection of all

prime ideals of P is (0] .

Let (P ={M/M¢cP and M is prime} .
Now we have to prove that P is O-distributive
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(x;1 N (al = (o]

(x,] M (a1 = (o]

and suppose x1Vx2V eos VX, exists in P

Now (x31 M (al = (031 , 1 ¢1

T
o}

imply either X, €EMor a €EM since M is prime.

we claim that

(xVxov L. vx 1 M (al ¢ M¥M € P,

Suppose the contradictory; that is 3 M € ® such that

(x1Vx2V e Vx 1 M (al S M

Then X3VX,V ... VX Q M and a R M because M is

prime.

Now if (x;1 M (al = (o1 1 £1i <n then
Xy € M for each i; and this would imply x;Vx,V... Vxj €M,

which is a contradiction. Therefore (x;Vx,V.....

ceee V7 M (a1 ¢M VWM E @ But NMM EEP) = (0] =

(X3 VX,V oeee ¥x, 17 M (a1 = (01 .

Hence P 1s 0-distributive. |

o0o



