CHAPTER _ I.

PRELIMINARIES

1.1 FUZZY SETS.

Definition (1.1.1) :

Let X be any set and L be a lattice with 0 and 1. An element A $\in L^X$ is called a fuzzy set.

<u>Remarks</u> (1.1.2) :

For $L = \{0, 1,\}$ A becomes characteristic function from X to $\{0, 1\}$. In this sense fuzzy set is a generalization of a classical subset of a set.

Definition (1:1.3) :

Let A and B be two fuzzy sets. Then the function AUB defined by (AUB) $(x) = A(x) \vee B(x)$ is called the union of two fuzzy sets A and B.

Definition (1.1.4) :

Let A and B be two fuzzy sets. Then the function AAB defined by AAB $(x) = A(x) \land B(x)$ is called the intersection of two fuzzy sets A and B.

Definition (1.1.5) :

Let A and B be any two fuzzy sets. We say that A is a fuzzy subset of B and denote A C B if $A(x) \leq B(x)$ for all x $\in X$

(.....2.

<u>Remark</u> (1.1.6) : '<u>C</u>' is an order relation in L^{X} . Definition (1.1.7) : Two fuzzy sets A and B are said to be equal if A(x) = B(x) for all $x \in X$. Definition (1.1.8) : Let A be a fuzzy set and tEL. The crisp set, $A_{t} = \left\{ x \in x / A(x) \ge t \right\}$ is called t - cut of A or t - level subset of A. Definition (1.1.9) : If A is a fuzzy set in X and f is a function from X to Y, then fuzzy Set B in Y defined by B(y) = V A(x) $x \in f^{-1}(y)$ FOR all $y \in Y$. = 0 if $f^{-1}(y) = \emptyset'$ B is called image of A under f and it is denoted by f(A). Definition (1.1.10) : Let f be a function from a set X to a set Y and B be a fuzzy set in Y. Then the fuzzy set A in X defined by, $A(x) = B \left\{ f(x) \right\} = (Bof) (x), \text{ for all } x \in X, \text{ is}$ called preimage of B under f. It is denoted by $f^{-1}(B)$.

1.2 FUZZY SUBGROUPS

Definition (1.2.1) :

Let . be a binary operation in X. A fuzzy set A is closed under . if,

 $A(x,y) \ge A(x) \land A(y)$ for all $x, y \in X$.

Definition (1.2.2) :

Let (X, .) be a group. A fuzzy set A is called a fuzzy subgroup of X if,

(G1) $A(x,y) \ge A(x) \land A(y)$ for all $x, y \in X$ (G2) $A(X^{-1}) \ge A(x)$ for all $x \in X$ where $x, x^{-1} = x^{-1}, x = e$, identify of X.

Proposition (1.2.3) :

If A is a fuzzy subgroup of X then $A(x^{-1}) = A(x)$ and $A(e) \ge A(x)$ for all $x \in X$, where e is the identify of X.

```
Proposition (1.2.4) :
```

A fuzzy set A is a fuzzy subgroup of X if and only if, A $(x,y^{-1}) \ge A(x) \land A(y)$.

```
<u>Remark</u> (1.2.5) :
```

If A is a subgroup of X then characteristic function of A i.e. $X_A : X \longrightarrow L$ defined by $X_A(x) = 1$ if $x \in A$ and $X_A(x) = 0$ if $x \notin A$, is a fuzzy subgroup of X. Conversely any characteristic function which satisfies (G1) and (G2) gives a subgroup of X.

(....4.

Proposition (1.2.6) :

Intersection of any family of fuzzy subgroups of X is a fuzzy subgroup of A.

Proposition (1.2.7) :

Let A be a fuzzy subgroup of X. Then level subsets, A_t ; teL and t $\leq A(e)$ is a crisp subgroup of \times where e is the identify of X.

Corollary (1.2.8):

Let A be a fuzzy subgroup of X. A crisp subset $\{x \in X / A(x) = A(e)\}$ is a subgroup of X.

Proposition (1.2.9) :

Let A be a fuzzy subset of a group X. Such that A_t is a subgroup of X for each t \in L, t \leq A(e), then A is a fuzzy subgroup of X.

Definition (1.2.10):

Let X be a group and A be a fuzzy subgroup of X. Then subgroups A_t , t $\in L$, t $\leq A(e)$ are called level subgroups of A.

Proposition (1.2.11):

If A is a fuzzy subgroup of X, then $A(x,y^{-1}) = A(e)$ for $x, y \in X \implies A(x) = A(y)$. Here e is the identify of X. <u>Proof</u>:

 $A(x) = A(x,y^{-1},y) \ge A(x,y^{-1}) \wedge A(y) = A(e) \wedge A(y)$

(....5.

=
$$A(y) = A(y, x^{-1}, x)$$

= $A(y, x^{-1}) \land A(x)$ = $A(e) \land A(x)$ = $A(x)$.
Hence $A(x) = A(y)$.

Corollary (1.2.12) :

If A is a fuzzy subgroup of X, then A is constant on each obsets of A $_{A(e)}$

where,
$$A_{A(e)} = \left\{ x \in X / A(x) = A(e) \right\}$$

Proposition (1.2.13) :

Let X be a group and A be a fuzzy subgroup of X Two level subgroups, A_{t_1} , A_{t_2} (with $t_1 < t_2$) of A are equal if and only if there is no $x \in X$ such that

 $t_1 \leq A(x) < t_2$

Proposition (1.2.14) :

Any subgroup H of a group X can be realized as a level subgroup of some fuzzy subgroup of X .

Proposition (1.2.15) :

A homomorphic image or preimage of a fuzzy subgroup is a fuzzy subgroup.

Proof :

Let $f:X \rightarrow Y$ be a homomorphism of a group X into a group Y, and let $A:X \rightarrow I$ be a fuzzy subgroup of X, where I is a closed unit interval [0,1]

(....6

Define, B : Y \longrightarrow I by, B(y) = V A(x) $x \in f^{-1}(v)$ $= 0 \quad \text{if } f^{-1}(y) = \emptyset$ Let $y_1 \in Y$ and $y_2 \in Y$. If $f^{-1}(y_1, y_2^{-1}) = \emptyset$, then $f^{-1}(y_1) = \emptyset$ or $f^{-1}(y_2) \neq \emptyset$ Hence, B $(y_1 \cdot y_2^{-1}) \ge B(y_1) \wedge B(y_2)$. If $f^{-1}(y_1, \overline{y}_2) \neq \emptyset$, then either $f^{-1}(y_1) \neq \emptyset$ and $f^{-1}(y_2) \neq \emptyset$ or $f^{-1}(y_1) = \emptyset$ and $f^{-1}(y_2) = \emptyset$. <u>Case I</u>: $f^{-1}(y_1) \neq \emptyset$ and $f^{-1}(y_2) \neq \emptyset$. Then, $B(y_1 \cdot y_2^{-1}) = V A(x)$ $x \in f^{-1}(y_1 \cdot y_2^{-1})$ $\geq V \qquad A(\mathbf{x}_1 \cdot \mathbf{x}_2^{-1})$ $x_{1} \in f^{-1}(y_{1})$ $x_2 \in f^{-1}(y_2)$ $\geq V$ (A(x₁) \wedge A(x₂)) $x_1 \in f^{-1}(y_1)$ $x_2 \in f^{-1}(y_2)$ = (V A(x_1)) A (V A(x_2)) (Since, I being finite $x_1 \in f^{-1}(y_1)$ $x_2 \in f^{-1}(y_2)$ distributive & $= B(y_1) \wedge B(y_2)$ upper continuous, is infinite Thus B $(y_1, y_2^{-1}) \ge B(y_1) \land B(y_2)$ distributive) [23] Case II : $f^{-1}(y_1) = \emptyset$, $f^{-1}(y_2) \neq \emptyset$ Then. $B(y_1) = 0$ and $B(y_2) = 0$ $B(y_1 \cdot y_2^{\downarrow 1}) \geq B(y_1) \wedge B(y_2)$ Hence Thus, homomorphic image of a fuzzy subgroup is fuzzy subgroup.

Next, if B is a fuzzy subgroup of Y then define,

A: $X \longrightarrow I$ by A(x) = B(f(x)) Let $x_1 \in X$, $x_2 \in X$. Consider, A $(x_1 \cdot x_2^{-1})$ = B(f($x_1 \cdot \overline{x}_2^1$)) = B(f(x_1) $\cdot (f(x_2))^{-1}$) \geqslant B(f(x_1) \land B(f(x_2)) = A(x_1) \land A(x_2)

Thus $A(x_1 \cdot \overline{x}_2^1) \ge A(x_1) \wedge A(x_2)$. Hence A is fuzzy subgroup of X. <u>Remark (1.2.16)</u>:

In order to prove that homomorphic image of a fuzzy subgroup is a fuzzy subgroup, A. Rosenfeld has assumed that the fuzzy subgroup satisfies sup property $\begin{bmatrix} 17 \end{bmatrix}$. But as shown above we do not need this property to prove the result.