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CHAPTER I

1.1 : Preliminary Remarks :

The theory of Integral Transforms is a classical subject 

in mathematics whose literature can be traced back through at- 

least one and half century. On the other hand, the theory of 
generalized functions is of recent origin. The concept of 

generalized integral transformations is confluence of these 
two mathematical streams. In this chapter we give a brief 

account of the elementary concepts that are required for the 

development of the work of dissertation.

1.2 : Integral Transforms :

Both pure and applied mathematics widely consist of use 

of Integral Transformations. They are used in solving some 

boundary value problems and integral equations. A function 

F(s), where s is real or complex, expressed in the form of 

integrals

k( s,x)f(x)dx (1.2.1)
o or -oo

is called integral transform of function f(x). Function k(s,x) 

in the integrand is called kernel of the transformation. It is 
assumed that integral on RHS of (1.2.1) is convergent. Different
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forms of kernel k(s,x) and the range of integration, give rise 
to different integral transformations; such as Fourier, Laplace, 
Mellin, Hankel transformations.

The problems involving several variables can be solved 
by applying integral transformations successively with regard 
to several variables.

1.3 : Mellin Transform :

The transform theory provides a powerful technique to 
solve an ordinary and partial differential equation in a direct 
and systematic manner. A suitable integral transform is 
required according to the conditions of the problem. When the 
kernel k(s,x) in (1.2.1) is x and the range of integration 
is o to oo we get Mellin transform. The Mellin transform and 
its inverse are defined by the relations,

ao
F(s) = / xs‘*1f(x)dx ...(1.3.1)

x”s F(s)ds ...(1.3.2)

s = <r+ it

The idea of such a reciprocity occures in Riemann’s [17] famous 
memoir on prime numbers. It was formulated explicitely by 
Cahen [3], and the first accurate discussion was given by 
Mellin [12,13],

c+ioo

f(x) = 2ni /
C-100
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The integral (1.3.1) can be derived from two-sided 

Laplace transformation by the change of variable x = e k'. 

Therefore many theorems bearing on Mellin transform can be 

deduced from the corresponding theorems for Laplace transform. 

The basic results of the theory of the Mellin transform are 

given by Titchmarsh [21], Doetsch [6] has proved an 

interesting theorem on the analytic continuation of the 

Mellin transform for the product of two functions satisfying 

particular asymptotic relations at zero and infinity.

Mikolas [14] has applied the Mellin transform to the 

generalized Riemann 'C -function

°o 1

?(S,U) = J0 lu+n>S

to obtain a relation extending the functional equation for 

the Riemann ^-function. Integral transforms of the Mellin- 

type, suitable for the solution of boundary value problems 

for the Laplace equation in polar coordinates on the plane 

and in spherical coordinates in space, have been analyzed 

by Naylor [15]. Barrucand [1] has used the formula for the 

inverse Mellin transform to solve integral equations. Lemon 

[11] has applied the Mellin transform to the solution of 

boundary value problems in mathematical physics. The Mellin 

transform and the formula for its inverse have been used by 

Tranter [22] to find the stress distribution in an infinite 

wedge, C.Fox [7,8] used them to analyze iterative integral
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transforms and to solve integral equations. Several problems 

in the theory of elasticity have been solved by means of the 

Mellin transform in the book of Uflyand [23]. Two dimensional 

Mellin transforms have been considered by Reed [16],

Following section gives inversion theorem and convolution 

theorems as discussed by Delavault [4],

1.4 Me 11 in Transform of two variables

Let f(x,y) be a function of real variables x and y, 

where o < x < oo , o<y<oo. If for a domain in the plane 

of complex numbers s, t the double integral

oo oo
F(s,t) = / / xs“1yt~1f(x,y) dxdy ... (1.4.1)

o o

exists then F(s,t) is called Mellin transform of f(xty) and 

we write in symbol

"> [f(*.Y)J = F(s,t)

We shall state the following inversion theorem due to Reed [16], 

Theorem : 1.4-1

(i) If F(s,t) is a holomorphic function of s and t in the 

domain

ctjL Res = a <; a2; ^ Y < Y2
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(ii) if F(s,t) o when s/32 + 6' oo

where $ = Jg, 6 =

oo OD

(iii) if J f 
-oo -oo

F(a + ifi, T + is) d£ds converges

absolutely, then F(s,t) is the Mellin transform (in the 

direction of the principal value of the integral)of the 

function
^ a+i® Y+ioo

f(x,y) = (2ni)2 f f x"sy_tF(s,t)dsdt . ..(1.4.2>

a-ioo Y-iao

One of the important aspects of integral transformation is 

the transform of convolution of two functions f and g. If 

m [f(x,y] = F(s,t) m [g(x,y)J = G(s,t) and the domains of 

absolute convergence have common part then we have 

oo oo
/ / Xs"1 yU1 f(x,y)g(x,y)dx dy
o o

a+ioo Y+ioo

(2ni)2 / /
a-ioo Y-ioo

F(si,ti)G(s-Si,t-ti)dsidti

... (1.4.3)
For s = t = 1, this result becomes

oo ao
/ / f(x,y)g(x,y)dxdy =
o o

a+ioo Y+ioo
F(s,t)G(l-s,l-t)ds dt ...(1.4.4)

a-ioo Y-ioo



Using inversion formula for Mellin transform following theorem 

is obtained.

Theorem 1.4-.2

If m [f(x,y)J * F(s,t), m [g(x,y)] = G(s,t) ,

as before then m“^ [F(s»t) G(s,t)] 

oo oo

00 00
That is, F(s,t) G(s,t) = m [ / / gC^,^) f( I ) ^ ^

o o ^

00 00

= m [ j f 9( ^ ^ ] ...(1.4.5)
o o

Since F(l-s,t) = m [ I f ( A , y) ] 

we get another result

oo oo
F(s,t) G(l-s, 1-t) » « [ / f g(£,ii)f(x£ , yn)d£ dT) ]

o o

... (1. 4. 6)

1.5 : Generalized Functions and Distributions :

P. Dirac [5] introduced delta function in 1947. The 

idea of specifying a function not by its value but by its 

behaviour as a functional on some space of testing functions 

was a new concept. This new mode of thinking gave rise to the
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theory of generalized functions. As an effect the wheels of 

research in several branches of mathematics were put in rapid 

motion.

The impact of generalized functions on the integral 

transforms has recently revolutionised the theory of integral 

transformations. The foundations of the theory of generalized 

functions were laid by Bochner [2] and Sobolev [19], But the 

work of Laurent Schwartz [18] was a systematic construction 

of theory of generalized functions on firm foundation (1950-51).

Generalized Functions :

Let I be an open subset of Rn or Cn; where Cn is the 

complex n-dimensional euclidean space. A set V(I) is said to 

be a testing-function space on I if the following conditions 

are satisfied.

1) V(I) consists entirely of smooth complex-valued 

functions defined on I.
V

2) V(I) is either a complete countably multinormed space 

or a complete countable-union space.

3) If sequence converges in V(I) to zero then

for every non-negative

converges to the zero function uniformly on every 

compact subset of I.
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A generalized function on I is any continuous linear 

functional on any testing function space on I. Thus f is 

called a generalized function, if it is a member of the dual- 

space V’(I) of some testing-function space V(I).

Distributions :

Let I be a nonempty openset in Rn and K be a 

compact subset of I, D^Cl) is the set of all complex-valued 

smooth functions defined on I which vanish at those points 

of I, that are not in K, °K(I) is a linearspace under the 

usual definitions of addition of functions and their multi­

plication by complex numbers. The zero element in D^(l) is 

the identically, zero function on I. For each non-negative 

integer k in Rn define by

Vk (0) = sup
t 6 I

Dk 0 (t) ; 0 6Dk(I) ... (1.5.1)

Then -[V^ j is a countable multinorm on D^(I). We assign to

D^(I) the topology generated by } and thus D^(I) is a

countably multinormed space. Moreover 0^(1) is complete

and hence a Frechet space. Let J k1 ]• 00 be a sequence
m 1 m=l

of compact subsets of I with properties.

1) ^ c ie2 C k3 C ...

2) each compact subset of I is contained in one of the i^.
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00
Then I = U K and D„ (I) C (I) and

m=l m m m+1

topology of (I) is stronger than the topology induced 
m

on it by D„. (I). Now countable-union space D(I) is
Km+1

defined by

D(I) = U D, (I) ...(1.5.2)
m=l Km

Its dualspace is denoted by D‘(I). Members of D* (I) are 

called distributions on I. Thus a distribution is a 

continuous linear functional on space D(I).

Main advantage of generalized functions and distributions 

is that by widening the class of functions, many theorems and 

operations are freed from tedious restrictions. Generalized 

functions in mathematical physics are discussed by Vladimirov 

[24], A treatise by Gelfand and Shilov [10] is also available.

1.6 : Me 11 in transform of Distributions :

The first and important achievement to the theory of 

generalized functions is the extension of Fourier transforma­

tion to the generalized functions. Schwartz [18] extended 

Laplace-transform to generalized functions in 1952, Fung 

Kang [9] is supposed to be the first one to discuss the 

generalized Mellin transformation,

A classical integral transform can be extended to 

generalized functions, in mainly three ways. In each case, a
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complete topological vectorspace of infinitely differentiable 
testing functions is constructed. In our discussion, the 
method of extension requires a testing function space V(I) 
containing the kernel k(s,x) and its dualspace V*(I). Then 
we define an integral transform F(s) of generalized functions 
as the application of a generalized function to the kernel 
function. Thus if f 6 V'(I) and k(s,x) 6 V(I) then

F(s) = f(x), k(s,x) ]> ...(1.6.1)

•

According to this approach Mellin transformation of a certain 
type of generalized function f(x) on o < x < oo can be 
defined by

mf £ F(s) a < f(x), Xs’1 > ...(1.6.2)

Mellin transformation generates operational calculus for 
differential equations of the form P(xDx) <U(x) = g(x) ; 
where P is a polynomial,

Srivastav and Parihar [20] have applied the generalized
Mellin transformation to the theory of dual integral equations.
Generalized Mellin transformation can be extended to the
n-dimensional case where x 6 Rn and x y o. This is discussed
by Zemanian [26]. Mellin transform of distribution f(x,y)

2on R + is defined by
(mf (x,y) ) (u,v) £ F(u,v) a <[f(x,y), xu~1yV~1 ... (1.6.3)

for suitably restricted (u,v).



11

1.7 : Notations and Terminology :

Notations and Terminology in the present work follow 

from that of [25],

Rn and Cn denote the real and complex n-dimensional 

euclidean spaces respectively. By a compact set in Rn we 

mean a closed and bounded set in Rn. A conventional function 

is a function whose domain is contained in Rn or Cn and whose 

range is in either R1 or C1, A conventional function is said 

to be smooth if all its derivatives of all orders are 

continuous at all points of its domain.

The support of a continuous function f(t) defined on 

open set in Rn, is the closure with respect to -H- of the 

set of points t where f(t) $ O. Whenever a certain equation 

is a definition, the symbol a is used for equality. When f 

is a generalized function in R and {x,y) S R , the notation 

f(x,y) is used merely to indicate that the testing functions 

on which f is defined have (x,y) as their independent variable. 

It doesn't mean f is a function of (x,y). The symbol < f, 0 > 

denotes a unique complex number, assigned by the functional f 

in dual space to some element 9 of a testing function space.

An operator £ from a linearspace ®U into linearspace V is 

called linear if domain of £ is a linearspace and for every 

©!» ©2 G dom £ we have for a, M C'
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£ ( cc0j^ + £©2 ) - a £ (9jJ + 0 £ (©2)

Consequently a linear operator £ from*u into \T maps the 

origin of <\x into the origin of V.

* * •
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