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CHAPTER 111

SUBSTITUTION THEOREMS FOR
DISTRIBUTIONAL MELLIN TRANSFORMATION
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CHAPTER III

3.1 Introduction

In this chapter we shall prove substitution theorems for
distributional Mellin Transformation with two variables., These
theorems are similar to those given by Buschman [1]., For this,
first we shall define space La,b and establish isomorphism

between spaces M, , and L_ . Then using the isomorphism
y 9

between spaces M and L ; we derive the results,
a,b a,b

3.2 Testing function space La p and its Dual
k4

Suppose a = (aj,a,), b= (by,b,), (s,t) € R; a<b.

we define a function

Ka,b(s’t) = Kal’az; b, +b, (s,t)
as a?t
e~ .e ” o s L m , o0 £t <o
— a;s b2t
- e - .e 0€Ls <m , -0t <o
bls aZt
e ‘e -0<s <o , 0 £t <m
\ Bys bt
e . e ” ~—ws Lo , -o Lt n
Let Lal,az; bl,b2 denote the linear space of all

complex-valued smooth functions @(s,t) on R2; such that
for non-negative integer k = (kl’ k2) the functionals A

satisfy

- 6848 sk saLsARER e cuany
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A (B) & A . ()
k = "aps ayi by, by kg k,
A Sup a kl+k2
= -o<s <o | Ko (s,t) —T__Trg(sm) {o ees (2.2,1)
00Kt <o ’ ds 1 at 2

The collection '{Ak}l<3c3 is a collection of seminorms, and

further a multinorm on La 3, ;bl, b,. If we assign to
l . 7
L ) the topology generated by this multinorm then it
311853 bl’b2
becomes a multinormed space. e °V e'tv is a member of
N if and only if al‘é Reu £ bi:  a, < Rev b, .
1'°2 12
®
A sequence ‘{¢v} y=1 1s a Cauchy-sequence in L_ La.:b, b
1'°2°71°72
if and only if each p” is in L b .p. 3nd for each

| 31037 0109
fixed non-negative integer K = (kl'kz) the “unctions

3 1+
a,b os L 32

converge uniformly on R2 as v — ®, This type of convergence

we shall refer as convergence in L . Hereafterwards

A1182% Pyaby

the space L will be denoted simply by La h unless
’ 13

al,az;bl,b2

it is specifically mentioned, It is clear that La b is
b

sequentially complete and hence a Frechet space,

1
Dual space of La,b is denoted by L a,bo’ Thus L b
consists of continuous linear functionals on L_ ,. Since L
3,b A U
$ﬁwﬁhx&
.,2~
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!
is a testing-function space, L a.b is space of generalized
9

functions., We assign to L'a b its customary. (weak) topoloagy.
]

. .
It follows that L 2.b is also complete,
y

3.3 Laplace Transformation £ :

Now we shall define Laplace transformation £ of a®distri-
bution f, We shall say that a distribution f is £-transformable

if there exists at least one pair of points a = (31’82)’ b = (bl’b’

S , '
in R with al<~bl’ a, < b2 such that f € L a,b* For each

such f there exists a unique set -ﬂ—f in 02 which is defined

as follows,

A point (u,v) € ¢ is in - if and only if there exist
two points a = (al, ar), b= (bl’b?) in R° with ay < by;
a, < b, such that

a; < Reu < by ; a2'< Rev < b2 and fe L a,b -ﬂ—f is a

tube, since if o7y + iw; € f-. for some fixed o, and Wy,

then o, + iw € -ﬂ-f for all w, Moreover Jﬂ-f is an open set.

1

Note that if x = (xl,xz), y = (Yl’y2) € R?

such that the tube xl.g Reu < Yy X0 € Rev £ Y5 is contained

then £ € L _ .

in -
X,y

f’
Let f(s,t) be a &-transformable distribution, Tts
Laplace transform £f is the function F(u,v) from - into

cl defined by

(££)(u,v) & Flu,w) & {f(s,t), e e Vi ee (3.3.1)
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The RHS of (3.3.,1) has a sense as the application of
! -us ~vt _
fe L a,b to e e € La,b so long as (s,t) € e
Note that this definition is independent of the choices of a and b,

Lemma 3, 3¢l :

Let &£ [f(s,t)] = F(u,v), for a { Reu ( bl and
a5 { Rev < b2 and ¥ (u,v;s,t) € La,b such that

o0 00
Y (u,v;s,t) = f (‘}’(U.V: E,N) o= ES oMt dE dn

- O -00

o0
then ( f {f(s,t), e Es -nt > V¥(s,t; g,n1)dE dn

- Q0 -~ 00
o
- <f(s,'t); [ [\y(s,t; £,1) e &% o~ Mtyg dn> .o (3.3,
) ~-00

proof : Since Y (u,v,;s,t) € L, p is of rapid descent by

b
similar arguments as that for lemma 3,5-1 [ 2, p,64] we have
for fixed reals r and 1!

yr fr <f(3:t) ’ e—ES e~nt> \‘/(Ua\’; E,ﬂ)didﬂ

-T -r'
. T r'
= <f(s,t), { J Y (u,v; &1) o~ s oMt dEdn>... (3.3.3)
- =T1!

— - 1 1 3
where T = (rl, r2) and T (r e 2) satisfy al<(rl <’bl,

. . 1 3
3,1, < byi 3;<r"y < by a, {r', <b,. Moreover since

V(s,t; g,n) is of rapid descent while < f(s,t), e~ES e-nt>>
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is bounded by a polynomial in|E|[|n|, the integral on LHS of
(3.3.3) converges to the integral on LHS of (3,3,2) as

r—>o, r'-os>wm,

Also K K
S 172 w o r r'
Kap(ot)  wy—o LOf [ = [ [ )
-00 ~00 -T =T!
Y(u,v; ¥E,1) e~ o=t gpan l
( ) akl+k2 (? CF 0? _[r' 'c()o (r'
=K s,t - + +
" 3s Lot 2 el e T
~r T _Es
L0 ) Y, g e e M dEdn ] {
-0 =Y
k,+k o @®
172 ~-sg -tn
Ky,plsit) 9"1;;"—?2 [ [ vuwvigm e "o dr dn[
ds ~ dt -® r'
k,+k ® L7
1 72 _ _
+ Ky plset) Q—-g——-k f [ Yiuvigm e °Fe t"dgdnl
h 9s Lat 2 @ @
k,+k o ¢/ T -sF =t
+ | K_ ,(s,t) 3 1 2 f [ Y (u,v;gm) e e dE dn
; a,b kl kz 2 _p
ds ~ Ot
k,+k - T
1 2 -sg -1tn
+ ’ Ka,b(s,t) d EE——?; ]' f \V(u,v;E,n)e e dEdnl
ds "9t ¢ o -r'

v..(3.3,4)



Consider first term on RHS of this inecuality (3,3.4)
k.,+

1%
K, plsyt) —p—p o f f ¥ (u,v, £n) e 5% e"Pdgan !
’ dS ? -0 T

i k,+k k k
=} [ [ %, pls)Yuvigm (-1 12 Bl g2 ook e‘t"dsdnl
-00

o
&® k
/

-0

® k
f Bk k ‘\V(U9V; E,Mn) E 1 n 2 dEdn

r

where B are constants,
kl,k2

Since VY(u,v,%,n) is of rapid descent, the above integral,
which is independent of s and t, vanishes as r' —» o,

[

Arquing similarly for other terms on RHS of (3,3.4) we

finally obtain as r—m, 1 >

o T’
[ [ vl g e” §5 o™Mtaran

-r =T

mw o . t
— f f\}f(u,vz’é,n) € % &7 dEdn
-® ~-®
in the space La e Proof of the lemma is now complete,
y

Isomorphism between spaces Ma b and La b is established
’ ’

in the following theorem,
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Theorem 3,3-1

Let (x,y) € R2+ and (s,t) € R be relatad hy x = a5

k]

y = e-t, Then the mapning

8(x,y) +— e S teoe S, Y A d(s,t) ce.(3.445)

> - * I\
is an isomorphism of Aa,b onto La,b'

The inverse mapping is given by

1

B(s,t) +~—> x Tyl g(-log x, -log y) =8 (x,y) ...(3.4.6)

Proof : Let n ¢ 0 (x,y) +—> e’se't e(e's,e"t) and

1 y'l @ (~log x,-log V).

7]2 : ¢(5ot) — x
Then (nzonl) (8) = Mo [nl(e) ]
= TIQ [ e”® e_t &) (e-s,e-t) ]

x~ly-l

]

¥Y(-log x, -log y) where
Yi(s,t) = =St g (e"s,e't)
-1 - 1
Therefore (n2°n1)(8) = x ly lelng o100y S(e‘ogx, elogy)

1 -1

= x"7y" " xy © (x,y)

8 (x,y).

Similarly it can be shown that n.on, (#) = @.

Thus M and n, are inverses of cach other., Hence they
are one-to-one and onto, Further it is clear that these
mappings are linear. What remains to prove is continuity of

T]l and n2'
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Let ©(x,y) € M, . If we compute

’

kl+k2 .
§~E~-E [ e™Se~ T o(e” %, e"t) ] then we get
ds 1ot 2
P+l p,+l 3P1YP2
r z ap x © oy S -E-9 (x,vy)
P1 Py dx 1 dy 2
where ap are constants and p = (pl, p2)_
k.+k
172 - -t -5 -
Therefore K_,(s,t) Q“E——""E [ e e™ 0 (% t )]
’ ds L at ?
pl+l p2+l apl+p2
=5y % ap Z:a’b(x,y) X y —*SZ-*S;~ e(x,y)
P1 P2 dx “dy
Hence A . . (7)
311855 bl’b2’ kl’k2
= A ) . -s -t -5 =t
314855 bl’b2’ kl,k2 [ e77e7 8 (e77,e77) ]

S I EN I A (0)

Consequently i is a continuous mapping of Ma b onto La b
* ¥

Now asmume @(s,t) € La pe  We have

k,+1 k,+1 k,+k
x 1 Yy 2 _éii__é_ [ x"'ly'l @(-log x, -log y) ]
dx léy 2
apl+p2
= £ £ b ——— s,t)

P P P
P1 Py ds 1 3t 2
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K +1 k+l ok1tks

-1 -1
Therefore b(x,y)x 1 v kK szx y ~#(-logx,-loay) ]
’ 6x aY
pl+p2
1 2 ds ~ot
Consequently o« . . (Q)
CIRLDY bl’b2’ klk2

£z © b A . .
= pl p? ‘ p l 61,829 bl’bz, pl’pz (¢)9
where bp are constants, This proves continuity of n, from

La b onto Ma,b‘ It follows that space Ma,b is isomorphic to

?

space La b and proof of theorem is complete,
3

The next theorem relates dual spaces M' and L' .
a,b a,b

Theorem 3,3-2 :

The mapping f(x,y) +—> f(e™%, e"t) defined by

CEE™®, &0, 8 (5,000 2 (EGy), 800y >

1
is an isomorphism from M _ onto L _ . The inverse mapping
] | M

is given by

ol-logx, ~logy), O(x,y)> & (als,t), #(s,t) >

t

Proof : For each f(x,y) € M 5.p We can assoclate a functional
b

f(e”s,e't) on La b such that
]

He® e pis, ) D = (Elay), 8ay)
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This me2ans the mapping f(x,y) +—> f(e's,e“t) is the adjoint

mapping of @(s,t) +>06(x,y). It follows that f(x,y) +— f(e's,e"t)

t t
c . . \ v
is an isomorphism from M a,b onto L a,b *

’ t
Now suppose g(s,t) € L 5. p+ e associate functional
L]

g(-logx, -logy) on M_ , with g{s,t) by
)t

<g("'logx9 -1093’), G(X’Y)> = <9(S,t), ¢(S)t)>

Therefore the mapping g(s,t) +> g(-logx, -logy) is the
inverse mapping of f(x,y) +— f(e&”%, e't)

t 1
It is isomorphism from L a,b onto M a,b

Under the mapping defined in theorem 3,3-1 the functions
e %Y, o=tV correspond to the functions xu“l, yv'l respe-
ctively, Therefore by using theorem 3.3-2, we get following

theorem,

Theorem 3,3-3 :

The distribution f(x,y) is m-transformable if and only
if f(e S, e't) is &-transformable, In this case the two
tubes of definition of m[f(x,y)] and £ [f(e’s,e"t)] coincide
and m [f(x,y)] = F(u,v) = &£ [f(e—s, e-t)] for (u,v) € -ﬂ»f,

3.4 Substitution Theorems

Let A, K be single'valued analytic functions real on

R2+, and G, H, G'l = g, H™L = h be single valued analytic



functions real on (o, ) such that

G(0) = 0, H(0)

0O and G({m)

1
3

( or G(0) o, HO) = o, and G(w) =0, H(oo) =0)

Let m [£(x,y)] = F(u,v), m[A(x,y)£(x,y)] = F'(u,v)

for al<Reu<bl; a2<Rev<b2

Also suppose that

£ [V(u,v; 2,m) 1 = ¥ (u,v; p,a)  and

£ \,,*(u,v; £,1)] = Y’*(u,v: Pyq) where
VY (u,v; -logx,-logy) = [9(X)]U"l[h(y)]V"lK(g(X),h(y))-
o ) | v
and \If* (u,v; -logx, -logy)

= [g(x) *" 1h(y) Mk (a(x) ,h(y)) [o' (0] [ bt | xy [AGx,y) T

The following theorem is obtained from lemma 3,3-1 by using

isomorphism between Ma,b and La,b'

Theorem 3,4-1 :

Let m [f(x,y)] = f£(u,v) for a, < Reu <bl and

ay { Rev < b2. Let ¥ (u,v; p,q) be in L, . such that

3

¥ (u,v; p,q) =



o o | 52
= f YV (u,v; E,n) eS8 oM gyan
-0

f f {E(x,y) ot y"1> Yiu,v; ¥,n)dEan
0 o

-

68 0 0]
= <f(x,y), f f‘!’(u,vz gon) x50y gean >
0

0

Now we shall prove our main result,

Theorem 3,4-2

Let m [f(x,y)] = F(u,v) for 3 (Reu(bl and a2<Rev<b2.
Let K(x,y) be a suitably chosen single-valued analytic function
- -1 . .

on R2+, and G, H, G L. g, H = h be single valued analytic

functions real on (o, ©) such that

]

0
8

G(0) = 0, H(0) = 0; and G(om) o, H(oo)
(or G(0) = ®, H(O) =® and G(®») =0, H(m) =0 )

then m [K(x,y) £(G(x), H(y)) ]

a O
= f [ <f(x,y); xz"lyn“l>‘i’(u,V;E,n) dEdn
(o] o]

where & [Y(u,v;En)] = V¥ (u,v; p,q)
and Qf(u,v: ~logx, -logy)

= [a(x) 1" () 17 k(a0 ) [a (] | hen) | xy
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Proof : Let ¢ = (01’02)’ d = (dl’dZ)’ d%(dl,dz), B=(Bl,82)

be in R2. Let 6(x,y) be a member of MC d" where a { ¢, d<h,
b

Then the mapping O(x,y) +—> @(s,t) 1is an isomorohism of Mo 4
S,
onto L_ 4 by theorem 3.3-1, The mapning B(s,t) +~—=>K(s,t)P(s,t)
¥

is an isomorphism from Lc,d onto La,B where o <Jc, d <ip.
Again applying theorem 3,3-1, we see that K(x,y) 6(x,y) +>
K(s,t) #(s,t) is an isomorphism from M, g onto L . Hence
- 3 *
for suitably chosen K(x,y) the mapping 6(x,y) +— K(x,y) 0(x,y)
is an isomorphism from M , onto M for a {c, d <8,
_ c,d a,B

Further in accordance with sectinn 2.5 [2] it follows that

f(x,y) = K(x,y) f(x,y) is an isomorphism from M'm 8

. '
onto M c,d and we have

(Kt 80y = {rlxy), Kixy) 806>

Therefore if mf = F(u,v): @y { Reu (Bl, T, { Rev L Bz

the equation

<K(X 1‘/) ’f(x’Y) ’ XU.-]AYV_I > = <f(x,Y) ’ K(pr) xU-—lyV-—>

has sense, Indeed we have

! u-1 v-1
f(x,y) 6 M «,B, K(x,y) x "y € M,

B
! u~1 v-1l
k(x,y) f(x,y) € M _ 4 and x "7y "h €M,

If X(x,y) = f£(G(x), Hly)) €& M _ 5 then

Y(x,y) +—> K(x,y)*(x,y) 1is an isomorphism

1 4
from M onto M and we can write,
C(.ﬁ C,d :

¥
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() €600, uiy)), =y

= {E6(x), HY)), KOy =yt (3041
Here  £(G(x), H(y)) € M o, K(xy)x"hyVlem g
U-1 v=1

k(x,y) f{(G(x), H(y)) € M c,d and  x Ty EM. 4 -

Let ¥(x,y) &(x,y) = nl(x,y) be an arbitrary member of

2

M Choose a,b € R, a <a, B <hb cuch that

a,B’
1y [a(x), hiy) T la (]| h(y)| € M .

Let K(s,t) #(s,t) = n,(s,t) € L 4 . By theoren 3,3-1 the
Z ’
mapping nl(x,y) +—> n,(s,t) is an isomorphism from Mq g
Pl ]

onto Ly g. Then the mapping n,(s,t) += [q(s)]J[h(t)].
lgt(S)][h,(t)] is an isomorphism from La,B onto La,h .

Again applying theorem 3,3-1 we see that the mapping
n, [9(x), h(y) ]]g"(x)]| h'(y)|

N, [g(s), h(t)] Ig'(s)[[h'(t)l is an isomorphism

from Ma,b onto La,b' Hence the manning
nGy) > (0, () [o"(x)] | hr(y)

is an isomorphism from M onto M . We denote the
a,B a,b

adjoint mapping

1 (x,y) = ny [a(x), h(y) ] ]q'(X)]]h'(y)] by

f(x,y) +—> £(G(x), H(y) )

Then we can write <<f(G(x), H(y)), ﬂl(X,V):>

= Ex,y), nlalx)s h(y) 3 {or (o] [pr(y)] >



By similar arguments to theorem 1,10-2 [2] the mapping
f(x,y) +—> f(G(x), H(y)) 4is an isomorphism from M'a b
’

On‘tO M G,B .

Therefore if m [f(x,y)] = F(u,v), 2 { Reu < b1 a2<:Rev<<b ,

then the equation

<if G(x), H{y)), k(x,y) xu—lyv—l 77

= {etxay)s K(alx), h(y)) [90) 1" () 1Y gt 0] [nr ()

000(30402)

has sense, Indeed we have
fx,y) 6 M, o K(a(x), h(y) [a(x)L |t (x)]

) T | e my

el

f(G(x), H(y)) € M'a g and K(x,y) xu-lyv~l € M

?

a,B’
From (3.4,1) and (3.4,2) we conclude that

f(x,y) +—> K(x,y) f(G(x), H(y)) 1is an isomorphism
t ) .
from M a,b onto M c,d where a { ¢ and d {b and

we write

{xlxy) £6(x), Hy)), xS

LEGxay), R(g(x), hly) Ta(x)" n(y) V71 gt (x) ]h'<y>[:>
(

3.4, 3)

1

Indeed we have f(x,y) € M ,
a,b

K (g(x), h(y)) [90) %Y [ I [arGo] [ niy)] em,
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' U1l v=1 €

c,d’ X y M

K(x,y) £(G(x), H(y)) € M

C,d
The equation (3,4,3) further can be written as

{elxay), Keotx)hey)) [900 1= ) 191 [or o[ [ () | oy =22

1

<f(x,y); VY(u,v; - logx, -logy) ;;%->

o ® -¥1 1
<f(x,y), f f\{/(u,v,g,n). e Flog(t/x) g~Mlog(l/y) L 7 dxdy>
o O

I

Q

Cetn [ Pvtominm <=1 aen

H

aa @
- f [<f(x'y K1 yn-l> Y(u,v; £,n) didn
o o

by using theorem 3,4-1,

Theorem 3,4-3 :

Let m [A(x,y) f(x,y) ] = F*(u,v) where

ay { Reu < by, a, < Rev b, then

m[K(x,y) £(G(x), H(y) ]

® o
J f <if(x,y): x&-1 y= l:>\y (u,v; E,n) dedn
o o

where A, K are single-valued analytic functions real on

R2+ and G, H, G'l = g, H"l = h are single-valued analytic



functions real on (0,00 ) such that

G(0) =0, H(O) =0; and G(w) = », H(»w) = o

(or G(O0) = 00, H(O) = ®, and G(wm) =0, H(w) =0 )
and £ | g? (u,v; E,n) = \f% (u,vi py q)

where \P* (u,v, =logx, - logy)

[n )] xy[AGoy T

= (9001 ) 17 k(at, m) [ ot ()

Proof : The proof of this theorem follows on the same lines

as that of® theorem 3,4-2,

Theorem 3,4-4

Let m [ f(x,y) ] = F(u,v), al<<Reu <b; and
a, { Rev { by; then

m-l [ K(u,v) F(G(u), H(v)) ]
o @

= [ f f(E ,Tl) o (X,Y; E,TI) dEdn .

O o

where K, G, H are analytic functions and

G(u)-1  H(v)-1
m [ (x,y; E,n) ] = K (u,v) & .

= K (u,v) @ [G(u), H(v); E,n 1
Proof :

Fp, = L £(&,m), Ep“l 'nQ—l>

= <f(E,n) o § (P, @ E, n)>
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Therefore F(G(u), H(v)) =

<f(E,n), ® (6(u), H(v); E, n)>

Therefore K(u,v) F (G(u}, H(v) )

H
c
<

e ), Kuw) B (6u), HOV)iE 1) >

o (x,y; £,m) x*"1yV=L axdy >

"
a
o
o
°=—g

. @ ' .
= < ( Oj f(&,n) © (x,y; E,n)dEdn, XU-—lyv_1>

by using theorem 3,4-1,
o0

¢5]
= m | f' f f(&,1) © (x,y; E,n) dg dn ]
o o

Consequently

ml [K(u,v) E(6(u), H(v)) ]

o0 Q@
= f j (% ,n) 6 (x,y; §,n) dgdn .
(o] (o]
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