CHAPTER III

SUBSTITUTION THEOREMS FOR DISTRIBUTIONAL MELLIN TRANSFORMATION

CHAPTER III

3.1 <u>Introduction</u>:

In this chapter we shall prove substitution theorems for distributional Mellin Transformation with two variables. These theorems are similar to those given by Buschman [1]. For this, first we shall define space $L_{a,b}$ and establish isomorphism between spaces $M_{a,b}$ and $L_{a,b}$. Then using the isomorphism between spaces $M_{a,b}$ and $L_{a,b}$; we derive the results.

3.2 Testing function space $L_{a,b}$ and its Dual :

Suppose $a = (a_1, a_2)$, $b = (b_1, b_2)$, $(s,t) \in \mathbb{R}^2$; a < b. we define a function

$$K_{a,b}(s,t) = K_{a_1,a_2}; b_1,b_2 (s,t)$$

$$= \begin{cases} e^{a_1 s} e^{a_2 t} & o \leq s < \sigma, & o \leq t < \sigma \\ e^{a_1 s} e^{b_2 t} & o \leq s < \sigma, & -\infty < t < \sigma \\ e^{b_1 s} e^{b_2 t} & -\infty < s < \sigma, & o \leq t < \sigma \\ e^{b_1 s} e^{b_2 t} & -\infty < s < \sigma, & -\infty < t < \sigma \end{cases}$$

Let L_{a_1,a_2} ; b_1,b_2 denote the linear space of all complex-valued smooth functions $\emptyset(s,t)$ on R^2 ; such that for non-negative integer $k=(k_1,\ k_2)$ the functionals λ_k satisfy

$$\lambda_k (\emptyset) \triangleq \lambda_{a_1, a_2; b_1, b_2; k_1, k_2} (\emptyset)$$

$$\stackrel{\triangle}{=} \begin{array}{c|c} \sup \\ -\infty < s < \infty \\ -\infty < t < \infty \end{array} | K_{a,b}(s,t) \qquad \frac{\partial^{k_1+k_2}}{\partial s^{k_1} \partial t^{k_2}} \emptyset (s,t) | < \infty \qquad \dots (3.2.1)$$

The collection $\left\{\lambda_k\right\}_{k\geqslant 0}$ is a collection of seminorms, and further a multinorm on L_{a_1} , a_2 ; b_1 , b_2 . If we assign to L_{a_1,a_2} ; b_1,b_2 the topology generated by this multinorm then it becomes a multinormed space. e^{-su} e^{-tv} is a member of L_{a_1,a_2} ; b_1,b_2 if and only if $a_1\leqslant \mathrm{Reu}\leqslant b_1$; $a_2\leqslant \mathrm{Rev}\leqslant b_2$.

A sequence $\{\emptyset_{\nu}\}_{\nu=1}^{\infty}$ is a Couchy-sequence in $L_{a_{1},a_{2};b_{1},b_{2}}$ if and only if each \emptyset_{ν} is in $L_{a_{1},a_{2};b_{1},b_{2}}$ and for each fixed non-negative integer $K=(k_{1},k_{2})$ the functions

$$K_{a,b}(s,t) \frac{\partial^{k_1+k_2}}{\partial s^{k_1} \partial t^{k_2}} \emptyset (s,t)$$

converge uniformly on \mathbb{R}^2 as $\nu \to \infty$. This type of convergence we shall refer as convergence in L_{a_1,a_2} ; b_1,b_2 . Hereafterwards the space $L_{a_1,a_2}; b_1,b_2$ will be denoted simply by $L_{a,b}$, unless it is specifically mentioned. It is clear that $L_{a,b}$ is sequentially complete and hence a Frechet space.

Dual space of $L_{a,b}$ is denoted by $L'_{a,b}$. Thus $L'_{a,b}$ consists of continuous linear functionals on $L_{a,b}$. Since $L_{a,b}$

is a testing-function space, $L'_{a,b}$ is space of generalized functions. We assign to $L'_{a,b}$ its customary (weak) topology. It follows that $L'_{a,b}$ is also complete.

3.3 Laplace Transformation £:

Now we shall define Laplace transformation £ of a distribution f. We shall say that a distribution f is £-transformable if there exists at least one pair of points $a = (a_1, a_2)$, $b = (b_1, b_2)$ in R^2 with $a_1 < b_1$; $a_2 < b_2$ such that $f \in L_{a,b}$. For each such f there exists a unique set -- in c^2 which is defined as follows.

A point (u,v) \in c² is in \cap_f if and only if there exist two points $a=(a_1, a_2)$, $b=(b_1, b_2)$ in R^2 with $a_1 < b_1$; $a_2 < b_2$ such that

 $\mathbf{a}_1 < \mathrm{Reu} < \mathbf{b}_1$; $\mathbf{a}_2 < \mathrm{Rev} < \mathbf{b}_2$ and $\mathbf{f} \in \mathbf{L'}_{\mathsf{a},\mathsf{b}}$. \mathbf{h}_{f} is a tube, since if $\sigma_1 + \mathrm{i} \mathbf{w}_1 \in \mathbf{h}_{\mathsf{f}}$ for some fixed σ_1 and \mathbf{w}_1 , then $\sigma_1 + \mathrm{i} \mathbf{w} \in \mathbf{h}_{\mathsf{f}}$ for all \mathbf{w} . Moreover \mathbf{h}_{f} is an open set.

Let f(s,t) be a £-transformable distribution. Its Laplace transform £f is the function F(u,v) from Ω_f into c^1 defined by

$$(\pounds f)(u,v) \triangleq F(u,v) \triangleq \langle f(s,t), e^{-us} e^{-vt} \rangle$$
 ... (3.3.1)

The RHS of (3.3.1) has a sense as the application of $f \in L'_{a,b}$ to $e^{-us} e^{-vt} \in L_{a,b}$ so long as (s,t) $\in \Omega_f$. Note that this definition is independent of the choices of a and b.

Lemma 3,3-1:

Let $\pounds [f(s,t)] = F(u,v)$, for $a_1 < \text{Reu} < b_1$ and $a_2 < \text{Rev} < b_2$ and $\Psi(u,v;s,t) \in L_{a,b}$ such that $\Psi(u,v;s,t) = \int\limits_{-\infty-\infty}^{\infty} \psi(u,v;\xi,\eta) \ e^{-\xi s} \ e^{-\eta t} \ d\xi \ d\eta$ then $\int\limits_{-\infty-\infty}^{\infty} \int\limits_{-\infty}^{\infty} \langle f(s,t), e^{-\xi s} \ e^{-\eta t} \rangle \Psi(s,t;\xi,\eta) \ d\xi \ d\eta$ $= \langle f(s,t); \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} \Psi(s,t;\xi,\eta) \ e^{-\xi s} \ e^{-\eta t} \ d\xi \ d\eta \rangle \ \dots (3.3.2)$

<u>Proof</u>: Since $\Psi(u,v,;s,t)\in L_{a,b}$ is of rapid descent by similar arguments as that for lemma 3.5-1 [2, p.64] we have for fixed reals r and r'

$$\int_{-r}^{r} \int_{-r'}^{r'} \langle f(s,t), e^{-\xi s} e^{-\eta t} \rangle \psi(u,v;\xi,\eta) d\xi d\eta$$

$$= \langle f(s,t), \int_{-r}^{r} \int_{-r'}^{r'} \psi(u,v;\xi,\eta) e^{-\xi s} e^{-\eta t} d\xi d\eta \rangle ... (3.3.3)$$

where $\mathbf{r}=(\mathbf{r}_1,\ \mathbf{r}_2)$ and $\mathbf{r}'=(\mathbf{r}'_1\ \mathbf{r}'_2)$ satisfy $\mathbf{a}_1<\mathbf{r}_1<\mathbf{b}_1,$ $\mathbf{a}_2<\mathbf{r}_2<\mathbf{b}_2,$ Moreover since $\Psi(\mathbf{s},\mathbf{t};\ \mathbf{s},\mathbf{\eta})$ is of rapid descent while $\mathbf{c}=(\mathbf{f}(\mathbf{s},\mathbf{t}),\ \mathbf{e}^{-\mathbf{\xi}\mathbf{s}}\ \mathbf{e}^{-\mathbf{\eta}\mathbf{t}}>\mathbf{g}$

is bounded by a polynomial in $|\xi||\eta|$, the integral on LHS of (3.3.3) converges to the integral on LHS of (3.3.2) as $r\to\infty$, $r'\to\infty$.

Also
$$\begin{vmatrix}
K_{a,b}(s,t) & \frac{\partial^{k} 1^{tk} 2}{\partial s^{k1} \partial t^{k2}} & [(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} - \int_{-r-r'}^{r-r'}) \\
\Psi(u,v; \xi,\eta) & e^{-\xi s} e^{-\eta t} d\xi d\eta
\end{vmatrix} = \begin{vmatrix}
K_{a,b}(s,t) & \frac{\partial^{k} 1^{tk} 2}{\partial s^{k1} \partial t^{k2}} & [(\int_{-\infty}^{\infty} \int_{r'}^{\infty} + \int_{-\infty-m'}^{\infty} + \int_{-r'}^{\infty} \int_{-r'}^{r'}) \\
+ & \int_{-\infty-r'}^{r} & [(\int_{-\infty}^{\infty} \int_{r'}^{\infty} + \int_{-\infty-m'}^{\infty} + \int_{-r'}^{\infty} \int_{-r'}^{r'}) \\
+ & \int_{-\infty-r'}^{r} & [(\int_{-\infty}^{\infty} \int_{r'}^{\infty} + \int_{-\infty-m'}^{\infty} + \int_{-r'}^{\infty} \int_{-r'}^{r'} \\
+ & \int_{-\infty-r'}^{r} & [(\int_{-\infty}^{\infty} \int_{r'}^{\infty} + \int_{-\infty-m'}^{\infty} + \int_{-r'}^{\infty} \int_{-r'}^{r'} \\
+ & \int_{-\infty-r'}^{r} & [(\int_{-\infty-m}^{\infty} \int_{r'}^{\infty} + \int_{-\infty-r'}^{\infty} \int_{-r'}^{r'} + \int_{-r'}^{\infty} \int_{-r'}^{r'} \\
+ & \int_{-\infty-r'}^{r} & [(\int_{-\infty-r'}^{\infty} \int_{-r'}^{r} + \int_{-\infty-r'}^{\infty} \int_{-r'}^{r} + \int_{-r'}^{r} \\
+ & \int_{-\infty-r'}^{r} & [(\int_{-\infty-r'}^{\infty} \int_{-r'}^{r} + \int_{-r'}^{\infty} \int_{-r'}^{r} + \int_{-r'}^{r} \\
+ & \int_{-\infty-r'}^{r} & [(\int_{-\infty-r'}^{\infty} \int_{-r'}^{r} + \int_{-r'}^{\infty} \int_{-r'}^{r} + \int_{-r'}^{r} \\
+ & \int_{-\infty-r'}^{r} & [(\int_{-\infty-r'}^{\infty} \int_{-r'}^{r} + \int_{-r'}^{\infty} \int_{-r'}^{r} + \int_{-r'}^{r} \\
+ & \int_{-\infty-r'}^{r} & [(\int_{-\infty-r'}^{\infty} \int_{-r'}^{r} + \int_{-r'}^{r} + \int_{-r'}^{r} \\
+ & \int_{-\infty-r'}^{r} & [(\int_{-\infty-r'}^{\infty} \int_{-r'}^{r} + \int_{-r'}^{\infty} \int_{-r'}^{r} + \int_{-r'}^{r} \\
+ & \int_{-\infty-r'}^{r} & [(\int_{-\infty-r'}^{\infty} \int_{-r'}^{r} + \int_{-r'}^{r} + \int_{-r'}^{r} + \int_{-r'}^{r} \\
+ & \int_{-\infty-r'}^{r} & [(\int_{-\infty-r'}^{r} \int_{-r'}^{r} + \int_{-r'}^{r} + \int_{-r'}^{r} + \int_{-r'}^{r} \\
+ & \int_{-\infty-r'}^{r} & [(\int_{-\infty-r'}^{r} \int_{-r'}^{r} + \int_$$

Consider first term on RHS of this inequality (3.3.4).

$$\left| K_{a,b}(s,t) \frac{\partial^{k_1+k_2}}{\partial s} \int_{\partial t}^{\infty} \int_{-\infty}^{\infty} \Psi(u,v,\xi,\eta) e^{-s\xi} e^{-t\eta} d\xi d\eta \right|$$

$$= \left| \int_{-\infty}^{\infty} \int_{\mathbf{r}'}^{\infty} K_{a,b}(s,t) \, \Psi(u,v;\xi,\eta) \, (-1)^{k_1+k_2} \, \left| \int_{\xi^1}^{k_1} \eta^{k_2} \, e^{-s\xi} \, e^{-t\eta} \, d\xi d\eta \right| \right|$$

$$\leq \int_{-\infty}^{\infty} \int_{\mathbf{r}'}^{\infty} B_{k_1,k_2} \left| \Psi(u,v;\xi,\eta) \, \xi^{k_1} \, \eta^{k_2} \, \right| \, d\xi d\eta$$

where B_{k_1,k_2} are constants.

Since $\Psi(u,v,\xi,\eta)$ is of rapid descent, the above integral, which is independent of s and t, vanishes as $r' \to \infty$.

Arguing similarly for other terms on RHS of (3.3.4) we finally obtain as $r\to\infty$, $r'\to\infty$

$$\int_{-r}^{r} \int_{-r'}^{r'} \psi(u,v; \xi,\eta) e^{-\xi s} e^{-\eta t} d\xi d\eta$$

$$-r -r'$$

$$\longrightarrow \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi(u,v; \xi,\eta) e^{-\xi s} e^{-\eta t} d\xi d\eta$$

in the space La,b. Proof of the lemma is now complete.

Isomorphism between spaces $M_{a,b}$ and $L_{a,b}$ is established in the following theorem.

Theorem 3.3-1

Let $(x,y) \in \mathbb{R}^2_+$ and $(s,t) \in \mathbb{R}^2$ be related by $x = e^{-s}$, $y = e^{-t}$. Then the mapping

$$\Theta(x,y) \longrightarrow e^{-s}e^{-t} \Theta(e^{-s},e^{-t}) \triangleq \emptyset(s,t) \dots (3.4-5)$$

is an isomorphism of $M_{a,b}$ onto $L_{a,b}$.

The inverse mapping is given by

$$\emptyset(s,t) \longrightarrow x^{-1}y^{-1} \emptyset(-\log x, -\log y) = \Theta(x,y) \dots(3.4.6)$$

 $\frac{\text{Proof}}{\eta_2}: \quad \text{Det} \quad \eta_1: \quad \Theta \; (\text{x,y}) \; \longleftrightarrow \; \text{e}^{-\text{s}} \text{e}^{-\text{t}} \; \Theta (\text{e}^{-\text{s}},\text{e}^{-\text{t}}) \quad \text{and} \quad \eta_2: \quad \emptyset (\text{s,t}) \; \longleftrightarrow \; \text{x}^{-1} \; \text{y}^{-1} \; \emptyset \; (-\log \, \text{x,-log y}).$

Then
$$(\eta_2 \circ \eta_1) (\Theta) = \eta_2 [\eta_1(\Theta)]$$

 $= \eta_2 [e^{-s} e^{-t} \Theta (e^{-s}, e^{-t})]$
 $= x^{-1}y^{-1} \Psi(-\log x, -\log y)$ where
 $\Psi(s,t) = e^{-s}e^{-t} \Theta (e^{-s}, e^{-t})$

Therefore $(\eta_{2} \circ \eta_{1})(\Theta) = x^{-1}y^{-1}e^{\log x} e^{\log y} \Theta(e^{\log x}, e^{\log y})$ $= x^{-1}y^{-1} xy \Theta(x,y)$ $= \Theta(x,y).$

Similarly it can be shown that $\eta_{10}\eta_{2}$ (\emptyset) = \emptyset .

Thus η_1 and η_2 are inverses of each other. Hence they are one-to-one and onto. Further it is clear that these mappings are linear. What remains to prove is continuity of η_1 and η_2 .

Let
$$\Theta(x,y) \in M_{a,b}$$
. If we compute

$$\frac{\partial^{k} 1^{+k} 2}{\partial s^{k} 1 \partial t^{k} 2} \left[e^{-s} e^{-t} \Theta(e^{-s}, e^{-t}) \right] \text{ then we get}$$

$$\sum_{p_1, p_2} \sum_{q_p} a_p \times p_1^{+1} y^{p_2+1} \frac{\partial^{p_1+p_2}}{\partial x^{p_1} \partial y^{p_2}} \Theta (x,y)$$

where a_p are constants and $p = (p_1, p_2)$.

Therefore
$$K_{a,b}(s,t) = \frac{\partial^{k_1+k_2}}{\partial s^{k_1} \partial t^{k_2}} \left[e^{-s} e^{-t} \Theta \left(e^{-s} e^{-t} \right) \right]$$

$$= \sum_{p_1} \sum_{p_2} a_p \zeta_{a,b}(x,y) x^{p_1+1} y^{p_2+1} \frac{\partial^{p_1+p_2}}{\partial x^{p_1} \partial y^{p_2}} \Theta(x,y)$$

Hence λ_{a_1,a_2} ; b_1,b_2 ; k_1,k_2 (Ø)

$$= \lambda_{a_1,a_2}; b_1,b_2; k_1,k_2 [e^{-s}e^{-t} \Theta (e^{-s},e^{-t})]$$

$$\leq \sum_{p_1, p_2} \sum_{p_1, p_2} |a_p| \gamma_{a_1, a_2; b_1, b_2; p_1, p_2}$$
 (9)

Consequently η_1 is a continuous mapping of $M_{a,b}$ onto $L_{a,b}$

Now assume $\emptyset(s,t) \in L_{a,b}$. We have

$$x^{k_1+1} y^{k_2+1} \frac{\partial^{k_1+k_2}}{\partial^{k_1} \partial^{k_2}} [x^{-1}y^{-1} \emptyset(-\log x, -\log y)]$$

$$= \sum_{p_1, p_2} \sum_{p_2, p_3} b_p \frac{\partial^{p_1+p_2}}{\partial s^{p_1} \partial t^{p_2}} \emptyset(s,t)$$

Therefore
$$\zeta_{a,b}(x,y) \times {1 \choose y}^{k_1+1} \times {1 \choose y}^{k_2+1} = \frac{\partial^k 1^{+k_2}}{\partial^k 1^{-k_2}} [x^{-1}y^{-1} / (-\log x, -\log y)]$$

$$= \sum_{p_1} \sum_{p_2} b_p K_{a,b}(s,t) \frac{\partial^{p_1+p_2}}{\partial s^{p_1}\partial t^{p_2}} \emptyset (s,t).$$

Consequently $\gamma_{a_1,a_2}^{\prime}; b_1,b_2; k_1k_2$ (9)

$$\leq \sum_{p_1, p_2} |b_p| \lambda_{a_1, a_2}; b_1, b_2; p_1, p_2 (\emptyset),$$

where b_p are constants. This proves continuity of η_2 from $L_{a,b}$ onto $M_{a,b}$. It follows that space $M_{a,b}$ is isomorphic to space $L_{a,b}$, and proof of theorem is complete.

The next theorem relates dual spaces M'a,b and L'a,b

Theorem 3.3-2:

The mapping $f(x,y) \leftrightarrow f(e^{-s}, e^{-t})$ defined by

$$\langle f(e^{-s}, e^{-t}), \emptyset (s,t) \rangle \triangleq \langle f(x,y), \Theta(x,y) \rangle$$

is an isomorphism from $M'_{a,b}$ onto $L'_{a,b}$. The inverse mapping is given by

$$\langle g(-\log x, -\log y), \Theta(x,y) \rangle \triangleq \langle g(s,t), \emptyset(s,t) \rangle$$

<u>Proof</u>: For each $f(x,y) \in M'_{a,b}$ we can associate a functional $f(e^{-s},e^{-t})$ on $L_{a,b}$ such that

$$\langle f(e^{-s}, e^{-t}); \emptyset(s,t) \rangle = \langle f(x,y), \Theta(x,y) \rangle$$

This means the mapping $f(x,y) \longleftrightarrow f(e^{-s},e^{-t})$ is the adjoint mapping of $\emptyset(s,t) \longleftrightarrow \Theta(x,y)$. It follows that $f(x,y) \longleftrightarrow f(e^{-s},e^{-t})$ is an isomorphism from $M'_{a,b}$ onto $L'_{a,b}$.

Now suppose $g(s,t) \in L_{a,b}^{'}$. We associate functional $g(-\log x, -\log y)$ on $M_{a,b}$ with g(s,t) by

$$\langle g(-\log x, -\log y), \Theta(x,y) \rangle = \langle g(s,t), \emptyset(s,t) \rangle$$

Therefore the mapping $g(s,t) \leftrightarrow g(-\log x, -\log y)$ is the inverse mapping of $f(x,y) \leftrightarrow f(e^{-s}, e^{-t})$ It is isomorphism from $L'_{a,b}$ onto $M'_{a,b}$.

Under the mapping defined in theorem 3.3-1 the functions e^{-su} , e^{-tv} correspond to the functions x^{u-1} , y^{v-1} respectively. Therefore by using theorem 3.3-2, we get following theorem.

Theorem 3.3-3:

The distribution f(x,y) is m-transformable if and only if $f(e^{-s}, e^{-t})$ is £-transformable. In this case the two tubes of definition of m[f(x,y)] and £ $[f(e^{-s},e^{-t})]$ coincide and $m[f(x,y)] = F(u,v) = £ <math>[f(e^{-s}, e^{-t})]$ for $(u,v) \in A_f$.

3.4 Substitution Theorems :

Let A, K be single valued analytic functions real on \mathbb{R}^2_+ , and G, H, $\mathbb{G}^{-1}=\mathbb{G}$, $\mathbb{H}^{-1}=\mathbb{G}$ be single valued analytic

functions real on $(0, \infty)$ such that

$$G(O) = O, \ H(O) = O \ \text{ and } \ G(\infty) = \infty, \ H(\infty) = \infty$$

$$(\text{ or } G(O) = \infty, \ H(O) = \infty, \ \text{and } \ G(\infty) = O, \ H(\infty) = O)$$

$$\text{Let } m \ [f(x,y)] = F(u,v), \ m[A(x,y)f(x,y)] = F^*(u,v)$$

$$\text{for } a_1 < \text{Reu} < b_1; \ a_2 < \text{Re } v < b_2$$

Also suppose that

$$\pounds \left[\Psi(u,v;\,\xi,\eta) \right] = \Psi\left(u,v;\,p,q\right) \quad \text{and}$$

$$\pounds \left[\psi^{*}(u,v;\,\xi,\eta) \right] = \psi^{*}(u,v;\,p,q) \quad \text{where}$$

$$\Psi (u,v; -\log x, -\log y) = [g(x)]^{u-1}[h(y)]^{v-1}K(g(x),h(y)).$$

$$[g'(x)][h'(y)] \times y$$

and Ψ^* (u,v; -logx, -logy)

$$= [g(x)]^{u-1}[h(y)]^{v-1}K(g(x),h(y))|g'(x)||h'(y)| xy [A(x,y)]^{-1}.$$

The following theorem is obtained from Lemma 3.3-1 by using isomorphism between $M_{a,b}$ and $L_{a,b}$.

Theorem 3,4-1:

Let
$$m[f(x,y)] = f(u,v)$$
 for $a_1 < Reu < b_1$ and $a_2 < Rev < b_2$. Let $\Psi(u,v;p,q)$ be in $L_{a,b}$ such that $\Psi(u,v;p,q) =$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Psi(u,v; \xi,\eta) e^{-s\xi} e^{-t\eta} d\xi d\eta,$$

then

$$\int_{0}^{\infty} \int_{0}^{\infty} \left\langle f(x,y), x^{\xi-1} y^{\eta-1} \right\rangle \Psi(u,v; \xi,\eta) d\xi d\eta$$

$$= \left\langle f(x,y), \int_{0}^{\infty} \int_{0}^{\infty} \Psi(u,v; \xi,\eta) x^{\xi-1} y^{\eta-1} d\xi d\eta \right\rangle$$

Now we shall prove our main result.

Theorem 3.4-2:

Let m[f(x,y)] = F(u,v) for $a_1 < Reu < b_1$ and $a_2 < Rev < b_2$. Let K(x,y) be a suitably chosen single-valued analytic function on R^2_+ , and G, H, $G^{-1} = g$, $H^{-1} = h$ be single valued analytic functions real on (o, ∞) such that

$$G(0) = 0, \quad H(0) = 0; \quad \text{and} \quad G(\varpi) = \varpi, \quad H(\varpi) = \varpi$$

$$(\text{or } G(0) = \varpi, \quad H(0) = \varpi \quad \text{and} \quad G(\varpi) = 0, \quad H(\varpi) = 0)$$

$$\text{then } \quad \text{m} \quad \left[K(x,y) \quad f(G(x), \quad H(y)) \right]$$

$$= \int_{0}^{\varpi} \int_{0}^{\varpi} \left\langle f(x,y); \quad x^{\xi-1}y^{\eta-1} \right\rangle \Psi(u,v;\xi,\eta) \, d\xi d\eta$$

$$\text{where } \quad \pounds \left[\Psi(u,v;\xi,\eta) \right] = \Psi(u,v;p,q)$$

$$\text{and } \quad \Psi(u,v;-\log x,-\log y)$$

$$= \left[g(x) \right]^{u-1} \left[h(y) \right]^{v-1} K(g(x),h(y)), \quad \left| g'(x) \right| \left| h'(y) \right| xy$$

Proof: Let $c = (c_1, c_2)$, $d = (d_1, d_2)$, $\alpha = (\alpha_1, \alpha_2)$, $\beta = (\beta_1, \beta_2)$ be in R^2 . Let $\Theta(x,y)$ be a member of $M_{c,d}$. where a < c, d < b. Then the mapping $\Theta(x,y) \longleftrightarrow \emptyset(s,t)$ is an isomorphism of $M_{c,d}$ onto $L_{c,d}$ by theorem 3.3-1. The mapping $\emptyset(s,t) \longleftrightarrow K(s,t)\emptyset(s,t)$ is an isomorphism from $L_{c,d}$ onto $L_{\alpha,\beta}$ where $\alpha < c$, $d < \beta$. Again applying theorem 3.3-1, we see that $K(x,y) \Theta(x,y) \longleftrightarrow K(s,t) \emptyset(s,t)$ is an isomorphism from $M_{\alpha,\beta}$ onto $L_{\alpha,\beta}$. Hence for suitably chosen K(x,y) the mapping $\Theta(x,y) \longleftrightarrow K(x,y) \Theta(x,y)$ is an isomorphism from $M_{c,d}$, onto $M_{\alpha,\beta}$ for $\alpha < c$, $d < \beta$. Further in accordance with section 2.5 [2] it follows that

 $f(x,y) \longleftrightarrow K(x,y) f(x,y)$ is an isomorphism from $M'_{\alpha,\beta}$ onto $M'_{c,d}$ and we have

$$\langle K(x,y) f(x,y), \Theta(x,y) \rangle = \langle f(x,y), K(x,y) \Theta(x,y) \rangle$$

Therefore if mf = F(u,v); $\alpha_1 < \text{Reu} < \beta_1$, $\alpha_2 < \text{Rev} < \beta_2$ the equation

$$\langle K(x,y) f(x,y), x^{u-1}y^{v-1} \rangle = \langle f(x,y), K(x,y) x^{u-1}y^{v-1} \rangle$$

has sense. Indeed we have

$$f(x,y) \in M'_{\alpha,\beta}$$
, $K(x,y) \times^{u-1} y^{v-1} \in M_{\alpha,\beta}$, $k(x,y) f(x,y) \in M'_{c,d}$ and $x^{u-1} y^{v-1} \in M_{c,d}$

If $\chi(x,y) = f(G(x), H(y)) \in M'_{\alpha,\beta}$ then $\gamma(x,y) \leftrightarrow \kappa(x,y) \gamma(x,y)$ is an isomorphism from $M'_{\alpha,\beta}$ onto $M'_{c,d}$ and we can write,

$$\langle K(x,y) \ f(G(x), H(y)), x^{u-1} \ y^{v-1} \rangle$$

= $\langle f(G(x), H(y)), k(x,y)x^{u-1}y^{v-1} \rangle$...(3.4.1)

Here $f(G(x), H(y)) \in M'_{\alpha,\beta}, K(x,y)x^{u-1}y^{v-1} \in M_{\alpha,\beta}$ $k(x,y) f(G(x), H(y)) \in M'_{c,d} \text{ and } x^{u-1}y^{v-1} \in M_{c,d}$.

Let K(x,y) $\Theta(x,y) = \eta_1(x,y)$ be an arbitrary member of $M_{\alpha,\beta}$. Choose $a,b \in \mathbb{R}^2$, $a < \alpha$, $\beta < b$ such that

$$\eta_1 [g(x), h(y)] [g'(x)] [h'(y)] \in M_{a,b}$$
.

Let K(s,t) $\emptyset(s,t) = \eta_2(s,t) \in L_{\alpha,\beta}$. By theorem 3.3-1 the mapping $\eta_1(x,y) \longleftrightarrow \eta_2(s,t)$ is an isomorphism from $M_{\alpha,\beta}$ onto $L_{\alpha,\beta}$. Then the mapping $\eta_2(s,t) \longleftrightarrow [g(s)][h(t)]$.

g'(s) h'(t) is an isomorphism from $L_{\alpha,\beta}$ onto $L_{a,h}$. Again applying theorem 3.3-1 we see that the mapping

$$\eta_1 [g(x), h(y)] |g'(x)| h'(y) \longleftrightarrow$$

 η_2 [g(s), h(t)] |g'(s)||h'(t)| is an isomorphism from $\text{M}_{a.b}$ onto $L_{a.b}.$ Hence the mapping

$$\eta_1(x,y) \longrightarrow \eta_1(g(x), h(y))[g'(x)][h'(y)]$$

is an isomorphism from ${}^{M}_{\alpha,\beta}$ onto ${}^{M}_{a,b}.$ We denote the adjoint mapping

$$\eta_1(x,y) \longleftrightarrow \eta_1[g(x), h(y)][g'(x)][h'(y)]$$
 by
$$f(x,y) \longleftrightarrow f(G(x), H(y))$$

Then we can write $\langle f(G(x), H(y)), \eta_1(x,y) \rangle$

$$= \left< f(x,y), \ \eta_1[g(x), h(y)] \ \middle| g'(x) \middle| \ \middle| h'(y) \middle| \right>$$

By similar arguments to theorem 1.10-2 [2] the mapping $f(x,y) \longleftrightarrow f(G(x), H(y))$ is an isomorphism from $M'_{a,b}$ onto $M'_{\alpha,\beta}$.

Therefore if m[f(x,y)] = F(u,v), $a_1 < Reu < b_1$ $a_2 < Rev < b_2$, then the equation

$$\langle f(G(x), H(y)), k(x,y) x^{u-1}y^{v-1} \rangle$$

= $\langle f(x,y); K(g(x), h(y)) [g(x)]^{u-1} [h(y)]^{v-1} |g'(x)| |h'(y)| \rangle$
...(3.4.2)

has sense. Indeed we have

$$f(x,y) \in M'_{a,b}, K(g(x), h(y)) [g(x)]^{u-1}, |g'(x)|$$

$$[h(y)]^{v-1} |h'(y)| \in M_{a,b},$$

$$f(G(x), H(y)) \in M'_{\alpha, \beta}$$
 and $K(x, y) x^{u-1}y^{v-1} \in M_{\alpha, \beta}$.

From (3.4.1) and (3.4.2) we conclude that

 $f(x,y) \xrightarrow{\leftarrow} K(x,y) f(G(x), H(y))$ is an isomorphism from $M'_{a,b}$ onto $M'_{c,d}$ where a < c and d < b and we write

$$\langle K(x,y) \ f(G(x), H(y)), \ x^{u-1}y^{v-1} \rangle$$

$$= \langle f(x,y), \ K(g(x), h(y) \ [g(x)^{u-1}[h(y)]^{v-1} \]g'(x) | \ [h'(y)] \rangle$$
... (3.4.3)

Indeed we have $f(x,y) \in M'_{a,b}$, $K(g(x),h(y))[g(x)]^{u-1}[h(y)]^{v-1}[g'(x)][h'(y)] \in M_{a,b}$

$$\begin{split} & \text{K}(\mathsf{x},\mathsf{y}) \ \ f(\mathsf{G}(\mathsf{x}),\ \mathsf{H}(\mathsf{y})) \ \ \in \ \ \mathsf{M}_{\mathsf{c},\mathsf{cl}}^{\mathsf{l}}, \ \ \mathsf{x}^{\mathsf{u}-1} \ \mathsf{y}^{\mathsf{v}-1} \ \ \in \ \ \mathsf{M}_{\mathsf{c},\mathsf{cl}}^{\mathsf{l}} \end{split}$$

$$& \text{The equation } (3.4.3) \ \ \text{further can be written as} \\ & \text{m} \ \left[\ \mathsf{K}(\mathsf{x},\mathsf{y}) \ \ f(\mathsf{G}(\mathsf{x}),\ \mathsf{H}(\mathsf{y})) \ \right] \\ & = \left\langle f(\mathsf{x},\mathsf{y}), \ \mathsf{K}(\mathsf{g}(\mathsf{x}),\mathsf{h}(\mathsf{y})) \ \left[\mathsf{g}(\mathsf{x}) \right]^{\mathsf{u}-1} \left[\mathsf{h}(\mathsf{y}) \right]^{\mathsf{v}-1} \ \left| \mathsf{g}^{\mathsf{l}}(\mathsf{x}) \right| \left| \mathsf{h}^{\mathsf{l}}(\mathsf{y}) \ \right| \ \mathsf{x} \mathsf{y} \ \frac{1}{\mathsf{x} \mathsf{y}} \right\rangle \\ & = \left\langle f(\mathsf{x},\mathsf{y}), \ \int_{\mathsf{o}}^{\mathsf{o}} \int_{\mathsf{o}}^{\mathsf{o}} \Psi(\mathsf{u},\mathsf{v},\mathsf{\xi},\mathsf{\eta}). \ \ \mathsf{e}^{-\mathsf{g}\log(\mathsf{l}/\mathsf{x})} \ \mathsf{e}^{-\mathsf{\eta}\log(\mathsf{l}/\mathsf{y}) \frac{1}{\mathsf{x} \mathsf{y}}} \ \mathsf{d} \mathsf{x} \mathsf{d} \mathsf{y} \right\rangle \\ & = \left\langle f(\mathsf{x},\mathsf{y}), \ \int_{\mathsf{o}}^{\mathsf{o}} \int_{\mathsf{o}}^{\mathsf{o}} \Psi(\mathsf{u},\mathsf{v},\mathsf{\xi},\mathsf{\eta}). \ \ \mathsf{x}^{\mathsf{\xi}-1} \ \mathsf{y}^{\mathsf{\eta}-1} \ \mathsf{d} \mathsf{\xi} \mathsf{d} \mathsf{\eta} \right\rangle \\ & = \int_{\mathsf{o}}^{\mathsf{o}} \int_{\mathsf{o}}^{\mathsf{o}} \left\langle f(\mathsf{x},\mathsf{y}), \ \ \mathsf{x}^{\mathsf{\xi}-1} \ \mathsf{y}^{\mathsf{\eta}-1} \right\rangle \Psi(\mathsf{u},\mathsf{v};\ \mathsf{\xi},\mathsf{\eta}) \ \mathsf{d} \mathsf{\xi} \mathsf{d} \mathsf{\eta} \end{split}$$

Theorem 3,4-3:

Let
$$m [A(x,y) f(x,y)] = F^*(u,v)$$
 where $a_1 < Reu < b_1$, $a_2 < Rev < b_2$ then
$$[K(x,y) f(G(x), H(y)]]$$

$$= \int_0^\infty \int_0^\infty \left< f(x,y); x^{\xi-1} y^{\eta-1} \right> \psi^*(u,v; \xi,\eta) d\xi d\eta$$

by using theorem 3.4-1.

where A, K are single-valued analytic functions real on R^2_+ and G, H, $G^{-1}=g$, $H^{-1}=h$ are single-valued analytic

functions real on $(0,\infty)$ such that

$$G(0) = 0$$
, $H(0) = 0$; and $G(\infty) = \infty$, $H(\infty) = \infty$

$$(\text{or }G(0)=\infty, H(0)=\infty, \text{ and } G(\infty)=0, H(\infty)=0)$$

and £
$$[\psi^{\dagger}(u,v;\xi,\eta) = \psi^{\dagger}(u,v;p,q)$$

where ψ^* (u,v, -logx, - logy)

=
$$[g(x)]^{u-1} [h(y)]^{v-1} K(g(x), h(y)) |g'(x)| [h'(y)| xy[A(x,y)]^{-1}.$$

<u>Proof</u>: The proof of this theorem follows on the same lines as that of theorem 3.4-2.

Theorem 3.4-4:

Let m [f(x,y)] = F(u,v),
$$a_1 < \text{Reu} < b_1$$
 and $a_2 < \text{Rev} < b_2$; then
$$m^{-1} [K(u,v) F(G(u), H(v))]$$

$$= \int_0^\infty \int_0^\infty f(\xi,\eta) \; \theta \; (x,y;\; \xi,\eta) \; d\xi d\eta \; .$$

where K, G, H are analytic functions and

m [
$$\Theta$$
 (x,y; ξ , η)] = K (u,v) ξ G(u)-1 H(v)-1
= K (u,v) Φ [G(u), H(v); ξ , η]

Proof:

$$F(P,Q) = \left\langle f(\xi,\eta), \xi^{P-1} \eta^{Q-1} \right\rangle$$
$$= \left\langle f(\xi,\eta); \Phi(P,Q;\xi,\eta) \right\rangle$$

Therefore
$$F(G(u), H(v)) =$$

$$\langle f(\xi,\eta), \Phi (G(u), H(v); \xi, \eta) \rangle$$

Therefore K(u,v) F (G(u), H(v))

$$= \left\langle f(\xi, \eta), K(u, v) \right\rangle \left(G(u), H(v); \xi, \eta \right) \right\rangle$$

$$= \left\langle f(\xi, \eta), \int_{0}^{\infty} \int_{0}^{\infty} \Theta(x, y; \xi, \eta) x^{u-1} y^{v-1} dxdy \right\rangle$$

$$= \left\langle \int_{0}^{\infty} \int_{0}^{\infty} f(\xi, \eta) \Theta(x, y; \xi, \eta) d\xi d\eta, x^{u-1} y^{v-1} \right\rangle$$

by using theorem 3.4-1.

$$= m \left[\int_{0}^{\infty} \int_{0}^{\infty} f(\xi, \eta) \Theta(x, y; \xi, \eta) d\xi d\eta \right]$$

Consequently

$$m^{-1} [K(u,v) F(G(u), H(v))]$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} f(\xi,\eta) \Theta(x,y; \xi,\eta) d\xi d\eta.$$

• •

REFERENCES

[1] BUSCHMAN R.G.

Substitution Theorems for

Integral Transforms.

Doctoral Thesis,

University of Colorado (1956).

[2] ZEMANIAN A.H.

Generalized Integral

Transformations.

Interscience Publishers (1968).

• • •