CHAPTER-II

ON THE PROBABILITY DENSITIES INVOLVING

THE HYPERGECMETRIC FUNCIION AND THE
H - FUNCTION
2.1 In this chapter, we have considered, the general family of probability distributions introduced by Mathai and Saxena [22]. The object of this'chapter is to investigate the probability distribution of the sum of two independent stochastic variables utilizing similar types of probability density functions. To. . ootain this probability density function we have used the technique of convolution theorem in Laplace transforms.

We also presert here a new probability density function - of the sum of two independent random variables in that, whereas the rectangular or uniform pdf has been assumed for the random variable X_{2} new pdf have been introduced for the random variable, X_{1} and the pdf of $X_{1}+X_{2}$ has been obtained.
2.2 The Distribution of the Sum of Two Independent Variables :

We consider here the probability distribution of the sum of two independent stochastic variables having the pdfs belonging to the same class of density functions as $p(x)$ in (1.4.1). Let X_{1} and X_{2} be two independent stochastic variables with pdfs

$$
\begin{aligned}
(2.2 .1) \quad p_{j}\left(u_{j}\right) & =k_{j} u_{j}^{c j-1}{ }_{2} F_{1}\left(\alpha_{j}, \beta_{j} ; \gamma_{j} ;-a_{j} u_{j}^{d_{j}}\right) \\
& =0 \text { for } u_{j} \geqslant 0
\end{aligned}
$$

with $c_{j}>0, \alpha_{j}-c_{j} / d_{j}>0, \quad \beta_{j}-c_{j} / d_{j}>0$, $r_{j} \neq 0,-1,-2, \ldots$ and

$$
\begin{aligned}
& (2.2 .2) k_{j}=\frac{\alpha_{j} a_{j} c_{j} / d_{j}{ }_{j}\left(\alpha_{j}\right) \Gamma\left(\beta_{j}\right){ }_{i}\left(\gamma_{j}-c_{j} / \alpha_{j}\right)}{\Gamma\left(c_{j} / d_{j}\right) \Gamma\left(\gamma_{j}\right) \Gamma\left(\alpha_{j}-c_{j} / \alpha_{j}\right) \Gamma\left(\beta_{j}-c_{j} / \alpha_{j}\right)} \\
& \text { with } j=1,2 \text {. }
\end{aligned}
$$

Then the pdf of the sum $x_{1}+x_{2}$ is given by the convolution

$$
\left.\begin{array}{rl}
(2.2 .3) & q(x)
\end{array}=\int_{0}^{x} p_{1}\left(x-u_{2}\right) p_{2}\left(u_{2}\right) d u_{2} ; \quad x>0\right)
$$

, raking Laplace transforms of both the sides of (2.2.3) and. using (1.3.6) we get

$$
(2.2 .4) \&\{q(x)\}=\&\left\{p_{1}(x)\right\} \&\left\{p_{2}(x)\right\}
$$

Writing $p_{1}(x)$ and $p_{2}(x)$ from (2.2.1) in terms of hypergeometric series, taking Laplace transforms and using (1.3.4), equation (2.2.4) becomes

$$
\because(2.2 .5) \&\{q(x)\}=k_{1} k_{2} \sum_{\eta=0}^{\infty} \frac{\left(\alpha_{1}\right)_{\nu}\left(\beta_{1}\right)}{\nu!\left(\gamma_{1}\right)} \nu_{\nu}\left(\nu \alpha_{1}+c_{1}\right)\left(-a_{1}\right)^{\nu}
$$

$$
\begin{gathered}
x \sum_{n=0}^{\infty} \frac{\left(\alpha_{2}\right)_{n}\left(\beta_{2}\right)_{n}}{n!\left(\gamma_{2}\right)_{n}} \Gamma\left(n d_{2}+c_{2}\right)\left(-a_{2}\right)^{n} \times \\
x \cdots \frac{1}{s^{v d_{1}+n d_{2}}+c_{1}+c_{2}}
\end{gathered}
$$

By taking inverse Laplace transform for (2.2.5) we get that
(2.2.6) $q(x)=k_{1} k_{2} x^{c_{1}+c_{2}-1} \sum_{\nu=0}^{\infty} \frac{\left(\alpha_{1}\right)_{\nu}\left(\beta_{1}\right)_{\nu}}{\left(\gamma_{1}\right)_{\nu}} \frac{\left(-a_{1} x^{d}\right)^{\nu}}{\nu!} \Gamma\left(\nu d_{1}+c_{1}\right)$

$$
\sum_{n=0}^{\infty} \frac{\left(\alpha_{2}\right)_{n}\left(\beta_{2}\right)_{n}}{\left(\gamma_{2}\right)_{n}} \frac{\left(-a_{2} x^{2}\right)}{n!} \frac{\Gamma\left(c_{2}+n d_{2}\right)}{\sim\left(\nu d_{1}+n d_{2}+\left(c_{1}+c_{2}\right)\right.}
$$

Now using Gauss multiplication theorem [34,p.26], (2.2.6) takes the form

$$
\begin{aligned}
& \times{ }_{j=1}^{d_{1}}\left(\frac{c_{1}+j-1}{d_{1}}\right) \nu \sum_{n=c}^{\infty} \frac{\Gamma\left(\alpha_{2}+n\right) \Gamma\left(\beta_{2}+n\right) \Gamma\left(c_{2}+d_{2} n\right)}{\Gamma\left(\gamma_{2}+n\right) \Gamma\left(c_{1}+c_{2}+d_{2} n\right)} \\
& \times \frac{\prod_{j=1}^{d^{1} \Gamma}\left(\frac{c_{1}+c_{2}+j-1}{d_{1}}+\frac{d_{2}}{d_{1}} n\right)\left(-a_{2} x^{d_{2}}\right)^{n}}{\prod_{j=1}^{n} \Gamma\left(\frac{c_{1}+c_{2}+\nu d_{1}+j-1}{d_{1}}+\frac{d_{2}}{d_{1}} n\right) .} \text { n!} .
\end{aligned}
$$

Summing the inner series in (2.2.7) with the help of (1.2.4) we have
(2.2.8) $q(x)=k_{1} k_{2} x^{c_{1}+c_{2}-1 \Gamma\left(\gamma_{2}\right) \Gamma\left(c_{1}\right)} \frac{\left.\left(\alpha_{2}\right)-\beta_{2}\right)}{\infty} \frac{\left(\alpha_{1}\right)_{\nu}\left(\beta_{1}\right)_{\nu}}{\left(\gamma_{1}\right)_{\nu}!}\left(-a_{1} x^{d_{1}}\right)^{\nu}$

$$
\left[\begin{array}{c|c}
a_{2} x^{d_{2}} & \left.\begin{array}{l}
\left(1-\alpha_{2}, 1\right),\left(1-\beta_{2}, 1\right),\left(1-c_{2}, d_{2}\right\}!\left\{\Delta\left(d_{1}, 1-c_{1}-c_{2}\right) \frac{d_{2}}{d_{1}}\right. \\
(0,1),\left(1-\gamma_{2}, 1\right),\left(1-c_{1}-c_{2}, d_{2}\right), i \Delta\left(d_{1}, 1-c_{1}-c_{2}-\nu d_{1}\right) \\
d_{2}
\end{array}\right\}
\end{array}\right]
$$

$$
\text { for } x>0
$$

$$
q(x)=0 \quad \text { otherwise },
$$

with $c_{1}, c_{2}>0$ and $c_{1}+c_{2}>1 . k_{1}$ and k_{2} are as given in (2.2.2).
2.3 In this section we consider another general class of probability distributions and study the probability law of the sum of two independent stochastic variables following this probability law.

Let the random (or stochastic) variable's X_{1} and X_{2} be governed by the probability density function introduced by Mathai and Saxena [23] viz. •

$$
\begin{aligned}
& \text { (2.3.1) } f_{i}(x)=\gamma_{\varphi}{ }^{\sigma_{i} / r} \phi\left(\sigma_{i}\right) x^{\sigma_{i}-1}
\end{aligned}
$$

$$
\begin{aligned}
& =0 \text { otherwise }
\end{aligned}
$$

for $i=1,2$ respectively where $\theta, \gamma, \sigma_{1}^{-}, \sigma_{2}>0$. $\phi\left(\sigma_{i}\right)=\frac{1}{Y\left(\sigma_{i} / E\right)}, E>0$ and $\boldsymbol{X}(\xi)$ is given by

Since X_{1} and X_{2} are mutually independent the probability density for $X_{1}+X_{2}$ will be given by the convolution

* (2.3.3) $h(x)=\int_{0}^{x} f_{1}(x-v) f_{2}(v) d v, x>0$

$$
=0 \text { otherwise }
$$

Taking Laplace transforms of both the sides in (2.3.3) and using convolution theorem we get that
(2.3.4) $£\{h(x)\}=£\left\{f_{1}(x) j £\left\{f_{2}(x)\right\}\right.$.

After substituting for $f_{1}(x)$ and $f_{2}(x)$ in (2.3.4) from (2.3.1) and replacing the two $H_{p, q}^{m, n}[\cdot]$ functions by contour integrals as given by (1.1.1), taking inverse Laplace transform and by writing the resulting double contour integral in symbolic form, (2.3.4) becomes
(2.3.5) $h(x)=r^{2} \theta^{\left(\sigma_{1}+\sigma_{2}\right) / r} \phi\left(\sigma_{1}\right) \not\left(\sigma_{2}\right) x^{\sigma_{1}+\sigma_{2}-1}$

$$
\left.\begin{array}{c}
\times H\left[\begin{array}{l}
{\left[\begin{array}{l}
0,0 \\
0,1
\end{array}\right]} \\
{\left[\begin{array}{l}
n+1, m \\
p-n, q-m
\end{array}\right]} \\
{\left[\begin{array}{l}
n+1, m \\
p-n, q-m
\end{array}\right]}
\end{array}\left|\begin{array}{cc}
-\quad\left(\sigma_{1}+\sigma_{2}, r\right) \\
\left(1-\sigma_{1}, r\right), & \left(a_{p}, \alpha_{p}\right) ;\left(b_{q}, \beta_{q}\right) \\
(1-r), & \left(a_{p}, \alpha_{p}\right) ;\left(b_{q}, \beta_{q}\right)
\end{array}\right| \theta x^{r}\right]
\end{array}\right]
$$

in which H[.] represents. Fox's. H-function of two variables defined by Munot and Kalla [31] as given in (1.2.5).

The result (2.3.5) will be true. subject to the conditions

$$
\begin{equation*}
\theta, r, \sigma_{1}, \sigma_{2}>0 ; \sigma_{2}+r \min \operatorname{Re}\left(b_{j} / \beta_{j}\right) \geqslant 0 \tag{2.3.6}
\end{equation*}
$$

$$
\text { for } j=1, \ldots, m ; \quad \alpha \equiv \sum_{j=1}^{p} \alpha_{j}-{\underset{j=1}{q} \beta_{j}^{\prime} \leqslant 0 ; ~}_{j=1}
$$

$\left|\arg \left(\theta x^{x}\right)\right| \leqslant \frac{1}{2} a^{\prime} \pi \quad$ where

$$
\alpha^{\prime} \equiv \sum_{j=1}^{n} \alpha_{j}+\sum_{j=1}^{m} \beta_{j}-\sum_{j=n+1}^{p} \alpha_{j}-\sum_{j=m+1}^{q}>0 .
$$

2.4 Case where X_{2}, is characterized by the Rectangular or Uniform pdf:

Following the idea given by Dwass [11]. Let us consider two independent random variables X_{1} and X_{2} which have their pdf a's follows :

$$
\begin{aligned}
\text { The pdf of } X_{1} & =f(x) \text { for } 0 \leqslant x \leqslant a \\
& =0 \text { otherwise, } \\
\text { the pdf of } X_{2} & =g(x) \text { for } 0 \leqslant x \leqslant a \\
& =0 \text { otherwise. }
\end{aligned}
$$

$f(x)$ and $g(x)$ are assumed nor negetive and such that

$$
\int_{0}^{a} f(x) d x=\int_{0}^{a} g(x) d x=1
$$

Then it can be seen that the pdf of $X_{1}+X_{2}$ is given by (2.4.1) $h(x)=\int_{0}^{x} f(v) g(x-v\} d v, \quad n \leqslant x \leqslant a$

$$
\begin{aligned}
& =\int_{x-a}^{a} f(v) g(x-v) d v, \quad a \leq x \leq 2 a \\
& =0 \text { otherwise. }
\end{aligned}
$$

Consider now the case in which the random variable X_{2} is characterized by the rectangular or uniform pdf given by

$$
\begin{aligned}
g(x) & =1 / a, \quad 0 \leqslant x \leq a \quad(a>0) \\
& =0 \text { othexwise }
\end{aligned}
$$

and X_{1} is characterized by the pdf $f(x)$ as defined below. The pdf $h(x)$ for $X_{1}+X_{2}$, obtained by $u s i n g(2.4 .1)$ has been noted below. The parameters involved are supposed to be so chosen that the pdf is always non=negative. From the result in [4] it can be readily verified that

$$
\int_{0}^{a} f(x) d x=1 \text { and } \int_{0}^{2 a} h(x) d x=1
$$

Take

Then .

$$
=0 \text { otherwise }
$$

where

$$
A=a^{-p-1} / \underset{H_{p+1, q+1}^{m, n+1}}{H^{-p}}\left[\cdot a \left\lvert\, \begin{array}{l}
(1-p, 1),\left(a_{p}, A_{p}\right) \\
\left(b_{q}, B_{q}\right), \\
(-p, 1)
\end{array}\right.\right] \quad .
$$

$$
\begin{aligned}
& h(x)=A x{\underset{H}{p+1}, q+1}_{\rho, n+1}\left[x \left\lvert\, \begin{array}{l}
(1-P, 1),\left(a_{p}, A_{p}\right) \\
\left(b_{q}, B_{q}\right),(-\mathcal{R}, 1)
\end{array}\right.\right], 0 \leqslant x \leqslant a \\
& =A\left\{\begin{array} { l l }
{ p _ { H _ { p + 1 } , q + 1 } }
\end{array} \left[\left.a\right|_{\left(b_{\dot{q}}, B_{q}\right),} ^{(1-P, 1),}\left(\begin{array}{ll}
\left(a_{p}, A_{p}\right)
\end{array}\right]\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& -0 \leq x \leq 2 a
\end{aligned}
$$

$$
\begin{aligned}
& x 1 / \underset{p+1, q+1}{H^{\prime}, n+1}\left[a \left\lvert\, \begin{array}{l}
(1-0,1),\left(a_{p}, A_{p}\right) \\
\left(b_{q}, B_{q}\right),(-0,1)
\end{array}\right.\right], 0 \leqslant x \leqslant a \\
& =0 \text { otherwise. }
\end{aligned}
$$

