CONVENTIONS

Signature of the metric tensor $g_{a b}:\left(-\sim_{+}\right)$. Reimann curvature tensor : $R_{b c d}^{a}=r_{b d, c}^{a}-r_{b c, d}^{a}+\Gamma_{b d}^{k} r_{c k}^{a}-$ $-\mathbf{r}_{b c}^{k} \mathbf{r}_{d k}^{a}$.
Ricci Tensor $: \quad R_{b c}=R_{b c a}^{a}=R_{a b c d} g^{a d}$. Scalar curvature : $R=R_{a}^{a}=g^{a d_{R}}$. Einstein Tensor : $\quad G_{a b}=R_{a b}-\frac{1}{2} R g_{a b}$ Stress-energy momentum tensor of gravitational maffer: $T_{a b}$ Einsteins gravitational field equation : $G_{a b}=-\frac{8 \pi G}{c^{4}} \quad T_{a b}$. Units : We consider the centimeter as the unit of length and then choose the units of line and mass so as to give the velocity of light in free-space C, and the constant of gravitation $\frac{8 \pi G}{c^{4}}$ the value unity.

Note :

$$
\begin{array}{ll}
\text { Skew symmetrization : } A_{[a b]}=1 / 2\left(A_{a b}-A_{b a}\right) \\
\text { Symmetrization } & : A_{(a b)}=1 / 2\left(A_{a b}+A_{b a}\right) .
\end{array}
$$

A semicolon denotes the operation of covariant differentiation. A comma denotes the operation of partial differentiation. Dot denozes the projection of covariant derivative along the flow vector i.e., $U_{a ; b} U^{b}=\dot{U}_{a}$.
C.C., denotes the complex conjugate of the preceding term. An overhead bar on a vector (scalar) denotes the complex conjugate of the corresponding vector (scalar).

(xi)

Greek letters as subscripts or superscripts denote tetrad components, while Latin letters denote the tensor components.
 Synonym : Transport, propagation, Invariance.

