CHAPTER - 3

CHAPTER - III

Kannan Type Mapping in H. Space

In this chapter we have used Ishikawa
iteration for process to obtain a fixed point for a Kannan type mappin Hilbert space. Further, it is shown that the teorem can be extended for two different mappints T_{1} and T_{2} by the process of Ishikawa [19].

3.0 Kannan mapping in Hilbert space [23]

Definition :
Let C be a closed subset of a Hilbert space H and $T: C \rightarrow C$ be a self map satisfy the condition, $\quad 7$
$||T x-T y|| \leqslant[||x-T x||+||y-T y||]$
for all $x, y \in C$ where $0<\alpha<\frac{1}{2}$. Then T is called Kannan mapping in Hilbert space.
3.0.1 In 1991 Kannan type mapping in Hilbert [24] space was defined by Koparde and Waghmode and proved the following theorem by using the Picard's iteration process.

Definition :

A mapping $T: C \rightarrow C$ where C is a subset of a Hilbert space H, is called a Kannan type mapping if

$$
\|T x-T y\|^{2} \leqslant \alpha\left[\|x-T x\|^{2}+\|y-T y\|^{2}\right]
$$

for all $x, y \in C$ and $0<\alpha<\frac{1}{2}$
3.0.2 Theorem : [24] Let C be a closed subset of a Hilbert space H. Let T be a self mapping on C satisfying

$$
\|T x-T y\|^{2}<a\left[| | x-T x \|^{2}+||y-T y||^{2}\right]
$$

for all $x, y \in C$ and $0<\alpha<\frac{1}{2}$. Then T has a unique fixed point in C.

For our work we need the definition (3.0.1)
and the theorem (3.0.2) and Ishikawa iteration process ($\mathrm{I}-1.1 .8$ and $\mathrm{I}-1.1 .9$)

Our result runs as follows :
3.0.3 Theorem :

Let C be a closed convex subset of a Hilbert
space H. Let T be a self map on C satisfying (2.0.1) with $\alpha\left(1+\beta_{n}^{2}\right)<1$. Suppose x_{o} is any point in C and the sequence $\left\{x_{n}\right\}$ associated with T is defined by Ishikawa scheme I -1.1.8 and I - 1.1.9. Suppose that $\left\{\alpha_{n}\right\}$ is bounded away from zero. i.e. $\lim \alpha_{n}=\alpha>0$. If the sequence $\left\{x_{n}\right\}$ converges to P, then P is a unquie fixed point of T.

Proof : Equation I-1.1.8 implies that

$$
x_{n+1}-x_{n}=a_{n}\left(T y_{n}-x_{n}\right)
$$

suppose $x_{n} \rightarrow P$, then $\left\|x_{n+1}-x_{n}\right\|^{2} \rightarrow 0$ and since $\left\{\alpha_{n}\right\}$ is bounded away from zero we have

$$
\begin{equation*}
\left\|T y_{n}-x_{n}\right\|^{2} \rightarrow 0 \tag{3.0.4}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Using trianle inequality, we have } \\
& \begin{aligned}
&\left\|T y_{n}-P\right\| \|^{2}\left\{\left|\mid T y_{n}-x_{n}\|+\| x_{n}-x_{n+1} \|\right\}^{2}\right. \\
& \rightarrow 0 \text { as } n \rightarrow \infty \\
& \text { i.e. }\left\|T y_{n}-P\right\| \|^{2} \rightarrow 0 \\
& \text { Using } I-1.1 .8 \text { and } I-1.1 .10, \text { where } t \text { stand }
\end{aligned}
\end{aligned}
$$

for β_{n} we obtain the following
inequality :

$$
\begin{aligned}
& \left\|y_{n}-T y_{n}\right\|^{2}=\left\|\beta_{n} T x_{n}+\left(1-\beta_{n}\right) x_{n}-T y_{n}\right\|^{2} \\
& =\beta_{n}| | T x_{n}-T y_{n}\left\|^{2}+\left(1-\beta_{n}\right)| | x_{n}-T y_{n}\right\|^{2} \\
& -\beta_{n}\left(1-\beta_{n}\right)| | T x_{n}-x_{n}| |^{2} \\
& =\beta_{n}| | T x_{n}-T y_{n} \|^{2}-\beta_{n}\left(1-\beta_{n}\right)| | I x_{n}-\tilde{x}_{n}| | \sum_{2}^{2} \\
& \text { by 3.0.4 } \\
& \text {..... 3.0.6 } \\
& \text { Since } T \text { satisfies that }
\end{aligned}
$$

$$
\|T x-T y\|^{2} \leqslant \alpha\left\{\quad\|x-T x\|^{2}+\|y-T y\|^{2}\right\}
$$

we have,

$$
\left\|T x_{n}-T y_{n}\right\|^{2} \leqslant \alpha\left\{\left\|x_{n}-T x_{n}\right\|^{2}+\left\|y_{n}-T y_{n}\right\|^{2}\right\}
$$

Using 3.0.6, the above inequality becomes

$$
\begin{aligned}
\left\|T x_{n}-T y_{n}\right\|^{2} \leqslant \alpha\left\{\left\|x-T x_{n}\right\|^{2}\right. & +\beta_{n}\left\|T x_{n}-T y_{n}\right\|^{2} \\
& -\beta_{n}\left(1-\beta_{n}\right)\left\|T x_{n}-x_{n}\right\|^{2}
\end{aligned}
$$

$$
\begin{gathered}
\Longrightarrow\left|\left|T x_{n}-T y_{n}\left\|^{2} \leqslant \alpha \mid\left[1-\beta_{n}\left(1-\beta_{n}\right)\right]\right\| x_{n}-T x_{n} \|^{2}+\right.\right. \\
\beta_{n}\left\|T x_{n}-T y_{n}\right\|^{2} \\
\Rightarrow\left(1-\alpha \beta_{n}\right)\left\|T x_{n}-T y_{n}| |^{2-\alpha}\left(1-\beta_{n}+\beta_{n}^{2}\right)| | x_{n}-T x_{n}\right\|^{2} \\
\Rightarrow\left\|T x_{n}-T y_{n} \mid\right\|^{2} \leqslant \frac{\alpha\left(1-\beta_{n}+\beta_{n}^{2}\right)}{1-\alpha \beta_{n}}\left\|x_{n}-T x_{n}\right\|^{2}
\end{gathered}
$$

Now we use triangle inequality to get

$$
\left\|x_{n}-T x_{n}\right\|^{2} \leqslant\left\{\left\|T x_{n}-T y_{n}\right\|+\left\|T y_{n}-x_{n}\right\|\right\}^{2}
$$

Therefore 3.0 .7 becomes

$$
\begin{aligned}
& \left\|T x_{n}-T y_{n}\right\|^{2} \leqslant \frac{\alpha\left(1-\beta_{n}+\beta_{n}^{2}\right)}{1-\alpha \beta_{n}}\left[| | T x_{n}-T y_{n}\left\|^{2}+| | T y_{n}-x_{n}\right\|^{2}\right. \\
& \left.+2| | T x_{n}-T y_{n}| | \cdot| | T y_{n}-x_{n}| |\right] \\
& \equiv \frac{\alpha\left(1-\beta_{n}+\beta_{n}^{2}\right)}{1-\alpha \beta_{n}}\left|\left|T x_{n}-T y_{n}\right|\right|^{2} \\
& \text { by 3.0.4 } \\
& \Rightarrow\left[1-\frac{\alpha\left(1-\beta_{n}+\beta_{n}^{2}\right)}{1-\alpha \beta_{n}}\right]\left\|T x_{n}-T y_{n}\right\|^{2} \leqslant 0 \\
& \Longrightarrow\left[1-\alpha\left(1+\beta_{n}^{2}\right)\right] \quad\left\|T x_{n}-T y_{n}\right\|^{2} \leqslant 0
\end{aligned}
$$

$$
\text { Since }\left(1+\beta_{n}^{2}\right)<1 \text { for } 0<\alpha<\frac{1}{2} \text { and }
$$

$\|.\| \nmid 0$; we have

$$
\begin{array}{r}
\left\|T x_{n}-T y_{n}\right\|^{2}=0 \quad \text { i.e. }\left\|T x_{n}-T y_{n}\right\| \rightarrow 0 \\
\ldots \ldots(3.0 .8)
\end{array}
$$

Hence,

$$
\begin{array}{r}
\left.\left\|x_{n}-T x_{n}\right\|^{2} \leqslant f\left\|x_{n}-T y_{n}\right\|+\left\|T x_{n}-T y_{n}\right\|\right\}^{2} \rightarrow 0 \\
\ldots \ldots(3.0 .9)
\end{array}
$$

and

$$
\left\|P-T x_{n}\right\|^{2} \leqslant\left\{\left\|P-x_{n}\right\|+\left\|x_{n}-T x_{n}\right\|\right\}^{2} \rightarrow 0
$$

.......(3.1.0)

Now we show that P is a fixed point of T.

$$
\text { As } T \text { satisfies the inequality in the }
$$

statement we have,

$$
\begin{array}{rr}
\left\|T x_{n}-T P\right\|^{2} & \leqslant \alpha| | x_{n}-T x_{n}\left\|^{2}+\right\| P-T P \|^{2} \\
& \rightarrow \alpha\|P-T P\|^{2} \quad \text { by } \quad 3.0 .9 \\
(\ldots .3 .1 .1)
\end{array}
$$

Next, using tringle inequality

$$
\begin{aligned}
& \|\mathrm{P}-\mathrm{TP}\|^{2}
\end{aligned} \leqslant\left\{\left\|\mathrm{P}-\mathrm{Tx}_{\mathrm{n}}\right\|+\left\|\mathrm{T} \mathrm{x}_{\mathrm{n}}-\mathrm{TP}\right\|\right\}^{2} \mathrm{x} \text { by (3.1.0 and 3.1.1) }
$$

Since $0<\alpha<\frac{1}{2}$ and $\|\| \neq$.0 , we have $\left|\mid \mathrm{P}-\mathrm{TP} \|^{2}=0\right.$ i.e. $||\mathrm{P}-\mathrm{TP}| \mid=0$
. TP=P i.e. P is a fixed point of T
Let if possible P and q be two fixed
points of T, then

$$
\begin{aligned}
& \|P-q\|^{2}=\|\mathrm{PP}-\mathrm{Tq}\|^{2} \\
& \leqslant \alpha\left\{| | P-T P\left\|^{2}+\right\| q-T q \|^{2}\right\} \\
& 0 \\
& \|P-q\|=0 \quad P=q
\end{aligned}
$$

Therefore a mapping T : $C+C$ has a unique fixed point in C.

We verify the above theorem by the following example,

Example :

```
Let T : [0,1]->[0,1] be a mapping
```

defined by

$$
T x-=\frac{x}{4}, \text { for all } x \text { in }[0,1]
$$

Then 0 is the only fixed point of T
Now,

$$
\begin{aligned}
\|T x-T y\|^{2} & =\left\|\frac{x}{4}-\frac{y}{4}\right\|^{2} \\
& \equiv \frac{1}{16}\|x-y\|^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
& \alpha\left[\|x-T x\|^{2}+\| y-T y^{2}\right] \\
& \quad=\alpha\left[\left\|x-\frac{x}{4}\right\|^{2}+\left\|y-\frac{y}{4}\right\|^{2}\right] \\
& \quad=\frac{9 a}{16}\left[\|x\|^{2}+\|y\|^{2}\right]
\end{aligned}
$$

Therefor for $\frac{1}{9} \leqslant a<\frac{1}{2}$ we have

$$
\|\mathrm{Tx}-\mathrm{Ty}\|^{2} \leqslant a \mid\|\mathrm{x}-\mathrm{Tx}\|^{2}+\|\mathrm{y}-\mathrm{Ty}\|^{2}
$$

Also for any $x_{0}{ }^{\varepsilon}[0,1]$

$$
\begin{aligned}
& x_{n}=\frac{1}{4^{n}} x_{0} \\
& +0 \quad \text { as } \rightarrow n
\end{aligned}
$$

By the statement of the theorem this limit 0 is the unique fixed point of T. This verifies the theorem.
3.2.0 Theorem :

Let C be a closed convex subset of a
Hilbert space H. Let T_{1} and T_{2} be two self mappings on C satisfying

$$
\left\|T_{1} x-T_{2} y\right\|^{2} \leqslant \alpha\left[\left\|x-T_{1} x\right\|^{2}+| | y-T_{2} \|^{2}\right]
$$

$\forall x, y$ in C with $0<\alpha<\frac{1}{2}$ and $\alpha+\beta_{n}^{2}<1$
Suppose x_{0} is any point in C and the sequence $\left\{x_{n}\right\}$
associated with T_{1} and T_{2} defined by Ishikawa
scheme I-1.1.8 and I-1.1.9. Suppose further that $\left\{\alpha_{n}\right\}$ is bounded away from zero. If the sequence $\left\{x_{n}\right\}$ converges to P, then P is a unique common fixed point of T_{1} and T_{2}

Proof :

From Chapter I-1.1.8 we have,

$$
\begin{aligned}
x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T_{2} y_{n} \\
\Longrightarrow x_{n+1} & x_{n}=\alpha_{n}\left(T_{2} y_{n}-x_{n}\right)
\end{aligned}
$$

Suppose $x_{n} P$, then $\left\|x_{n+\overline{1}} x_{n}\right\|^{2} \rightarrow 0$ and $\left\{\alpha_{n}\right\}$ is a sequence bounded away from zero we have $\left\|T_{2}{ }_{n}^{y_{n}^{n}}-x_{n}\right\|^{2} \rightarrow 0$

Using triangle inequality it follows
that

$$
\begin{gather*}
\left\|\mathrm{T}_{2} \mathrm{y}_{\mathrm{n}}-\mathrm{P}\right\| \|^{2} \leqslant\left\{| | \mathrm{T}_{2} \mathrm{y}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}}\|+\| \mathrm{x}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}+1} \|\right\}^{2} \\
\rightarrow 0 \quad \text { as } \mathrm{n} \rightarrow \infty \tag{3.2.2}
\end{gather*}
$$

i.e. $\left\|\mathrm{T}_{2} \mathrm{y}_{\mathrm{n}}-\mathrm{P}\right\|^{2} \rightarrow 0$

Using (I-1.1.8 and 1.1.10), where
t stands for β_{n} we obtain the following inequality

$$
\left\|y_{n}-T_{2} y_{n}\right\|^{2}=\| \beta_{n} T_{1} x_{n}+\left(1-\beta_{n}\right) x_{n}-T_{2} y_{n}| |^{2}
$$

$$
\begin{align*}
= & \beta_{n}\left\|T_{1} x_{n}-T_{2} y_{n}\right\|^{2}+\left(1-\beta_{n}\right)\left\|x_{n}-T_{2} y_{n}\right\|^{2} \\
& -\beta_{n}\left(1-\beta_{n}\right)\left\|T_{1} x_{n}-x_{n}\right\| \|^{2} \tag{3.2.3}
\end{align*}
$$

Using the inequality of the statement we have,

$$
\begin{aligned}
& \left\|\mathrm{T}_{1} \mathrm{x}_{\mathrm{n}}-\mathrm{T}_{2} \mathrm{y}_{\mathrm{n}}\right\|^{2} \leqslant \alpha\left[\left\|\mathrm{x}_{\mathrm{n}}-\mathrm{T}_{1} \mathrm{x}_{\mathrm{n}}\right\|^{2}+\left\|\mathrm{y}_{\mathrm{n}}-\mathrm{T}_{2} \mathrm{y}_{\mathrm{n}}\right\|^{2}\right] \\
& \leqslant \alpha| |\left|x_{n}-T_{1} x_{n}\left\|\left.\right|^{2}+\beta_{n}\right\| T_{1} x_{n}-T_{2} y_{n}\| \|^{2}\right. \\
& +\left(1-\beta_{n}\right)| | x_{n}-T_{2} y_{n} \|^{2}-\beta_{n}\left(1-\beta_{n}\right) \\
& \left.\left\|T_{1} x_{n}-x_{n}\right\|^{2}\right] \\
& \text { by ... 3.2.3 } \\
& \left.\Rightarrow\left\|T_{1} x_{n}-T_{2} y_{n}\right\|\right|^{2 \leqslant \alpha \beta_{n}\left\|T_{1} x_{n}-T_{2} y_{n}\right\|^{2}+} \\
& {\left[\alpha-\alpha \beta_{n}\left(1-\beta_{n}\right)\right]\left\|x_{n}-T_{1} x_{n}\right\|^{2}} \\
& \Longrightarrow\left(1-\alpha \beta_{n}\right)\left\|T_{1} x_{n}-T_{2} y_{n}\right\|^{2} \leqslant\left[\alpha-\alpha \beta_{n}\left(1-\beta_{n}\right)\right]\left\|x_{n}-T_{1} x_{n}\right\|^{2} \\
& \Rightarrow\left\|T_{1} x_{n}-T_{2} y_{n}\right\|^{2} \leqslant \frac{\alpha+\alpha \beta_{n}+\alpha \beta_{n}^{2}}{1-\alpha \beta_{n}}\left\|x_{n}-T_{1} x_{n}\right\|^{2} \\
& \text {.... (3.2.4) }
\end{aligned}
$$

Now,

$$
\left\|x_{n}-\mathbf{t}_{2} x_{n}\right\| \|^{2} \leqslant\left\{\left\|\mathbf{x}_{1} x_{n}-\mathbf{T}_{2} y_{n}\right\|+\left\|T_{2} y_{n}-x_{n}\right\|\right\}^{2}
$$

Therefore 3.2.4 becomes

$$
\begin{align*}
& \left\|T_{1} x_{n}-T_{2} y_{n}\right\|^{2} \leqslant \frac{\alpha-\alpha \beta_{n}+{ }_{n}^{2}}{1-\alpha \beta_{n}}\left[\left\|T_{1} x_{n}-T_{2} y_{n}\right\|^{2}\right. \\
& \left.+\left\|T_{2} y_{n}-x_{n}\right\|\left\|^{2}+2\right\| T_{1} x_{n}-T_{2} y_{n}\|x\| T_{2} y_{n}-x_{n} \|\right] \\
& \text { Using Triangle inequality } \\
& \Rightarrow\left[1-\frac{\alpha-\alpha \beta_{n^{+}} \alpha \beta_{n}^{2}}{1-\alpha \beta_{n}}\right] \quad\left|\left|T_{1} x_{n}-T_{2} y_{n}\right| \|^{2} \leqslant 0\right. \\
& \text { by 3.2.1 } \\
& \Rightarrow\left[1-\alpha\left(1+\beta_{n}^{2}\right)\right]\left\|T_{1} x_{n}-T_{2} y_{n}\right\|^{2} \leqslant 0 \\
& \text { Since } 0 \leqslant \alpha+\alpha \beta_{n}^{2}<1 \text { for } 0<\alpha<\frac{1}{2} \text {, } \\
& \text { we have }\left\|T_{1} x_{n}-T_{2} y_{n}\right\|^{2}=0 \tag{3.2.5}
\end{align*}
$$

Next, using triangle inequality, we have

$$
\begin{aligned}
&\left\|x_{n}-T_{1} x_{n}\right\| \|^{2} \leqslant\left\{\left\|x_{n}=T_{2} y_{n}\right\|+\left\|T_{1} x_{n}-T_{2} y_{n}\right\|\right\}^{2} \\
& \rightarrow 0
\end{aligned} \quad \text { by } 3.2 .1 \text { and } \ddot{3} \cdot 2.52 .24
$$

and

$$
\begin{gathered}
\left\|P-T_{1} x_{n}\right\|^{2} \leqslant\left\{\left\|P-x_{n}| |+| | x_{n}-T_{1} x_{n}\right\|\right\}^{2} \\
\rightarrow 0 \text { as } x_{n} \rightarrow P \text { and } 3.2 .6
\end{gathered}
$$

Now we try to show that P is a fixed point of both T_{1} and T_{2} :
consider,

$$
\begin{array}{r}
\left\|T_{1} x_{n}-T_{2} P\right\|^{2} \leqslant a\left[\left\|x_{n}-T_{1} x_{n}\right\|\left\|^{2}+\right\| P-T_{2} P \|^{2}\right] \\
\ldots \cdots(2.2 .7) \\
\rightarrow a\left\|P-T_{2}\right\|^{2} \text { by } 3.2 .6
\end{array}
$$

Using triangle inequality we have

Since $0<\bar{\alpha}<\frac{1}{2}$ and $\|\cdot\| \leqslant 0$ we have,

$$
\left|\left|\mathrm{P}-\mathrm{T}_{2} \mathrm{P}\right|\right|=0 \quad \mathrm{~T}_{2} \mathrm{P}=\mathrm{P}
$$

Similarly we can show that P is also a fixed point of T_{1} i.e. $T_{1} P=P$. Thus P is a common fixed point of T_{1} and T_{2}.

Let if possible P and q be two common fixed points of T_{1} and T_{2}, then

$$
\begin{aligned}
\left|\mid p-q \|^{2}\right. & =\left\|T_{1} P-T_{2} q\right\|^{2} \\
& \leqslant \alpha\left[| | p-T_{1} P\left\|^{2}+| | q-T_{2} q\right\|^{2}\right] \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow||p-q||=0 \\
& \Rightarrow p=q
\end{aligned}
$$

Hence T_{1} and T_{2} have unique common fixed point
in C .

