CHAPTER - 2

CHAPTER - II

Fixed point theorem identity mapping

2.1 Let B denote a Banach space with the norm $\|$.$\| and C$ be a closed subset of B. The transformation F : C \rightarrow C is called contraction if there exists a constant K with $0<K<1$ such that $||F x-F y|| \leqslant K| | x-y| |$. If $K=1$ it is called non-expansive. Banach contraction principle states that a contraction mapping C into C has a unique fixed point. This conclusion is also true for $\|F x-F y\|^{2} \leqslant K\|x-y\|^{2}$ but it is no longer true for $K=1$. However, Browder [5] has proved that every non-expansive mapping of a closed, bounded and $=$ convex subset of a uniformly, convex Banach space has at least one fixed point.

In 1971, Goebel and Zlotkiewicz [15] have proved the following theorem :

2.1.1 Theorem :

If C is a closed and convex subset of $B \quad$ 三 and $F: C \rightarrow C$ satisfies
(i) $\quad F^{2}=I \quad, \quad$ is identity mapping
$\left|\left|F_{x}-F_{y}\right|\right| \leqslant K \quad| | x-y| | \quad$ where $0 \leqslant K<2$, then F has at least one fixed point.

In 1991, Sharma and Sahu [42] have obtained the most generalised theorem from the result of Goebel and Zlotkiewicz [15]
2.1.2 Theorem :

Let F be a mapping of a Banach space X
into itself and satisfy

$$
\begin{equation*}
\mathrm{F}^{2}=\mathrm{I}, \quad \text { Where } \mathrm{I}: \text { Identity mapping } \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\|F x-F y\| \leqslant \frac{a| | x-F x\|| | y-F y\|}{\|x-F y\|+\|y-F y\|+\|x-y\|}+ \tag{ii}
\end{equation*}
$$

$\frac{b\|x-F x\|\|y-F y\|}{\|x-y\|}+C\{| | x-F x| |+\| y-F y| |\}$

$$
+d\{| | x-F y| |+\| y-F x| |\}+e \| x-y| |
$$

For every x, y हो X and $x \neq y, a, b, c, d, e \geqslant 0$ $a+4 b+4 c+4 d+e<2,2 d+e<1$. Then F has a unique Fixed Point.
2.1.3 Semi-generalised v-contraction mapping [25]

Definition :

A mappint T from a closed subset C into C of a Hilbert Space H satisfying

$$
\|T x-T y\|^{2} \leqslant \alpha| | x-T x\left\|^{2}+\beta| | y-T y| |+v\right\| x-y \|^{2}
$$

is called semi-generalised v-contraction with $0<\alpha+\beta+\boldsymbol{v}<1$ and $\alpha \beta \cdot v>0$

2.1.4 Parallelogram Law [26] P. 130

Let H be a Hilbert space and $x, y \in H$ Then

$$
\begin{equation*}
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+\|y\|^{2} \tag{i}
\end{equation*}
$$

From (i) we have.,

$$
\begin{align*}
& \|x+y\|^{2} \leqslant 2\left[| | x\left\|^{2}+\right\| y \|^{2}\right] \tag{ii}\\
& \|x-y\|^{2} \leqslant 2\left[| | x\left\|^{2}+\right\| y \|^{2}\right]
\end{align*}
$$

Now we recall the definition of Identity mapping
2.1.5 A mapping $I: X \rightarrow X$ is called Identity mapping if $I(x)=x$ for all x in X

Using (2.1.4 and 2.1.5) and the equation(ii) we prove the following Theorem

2.1.6 Theorem :

Let F be a mapping of a Hilbert space H into itself satisfying
(i)
$F^{2}=I \quad ; \quad I$ is the identity mapping
(ii) $\quad\|F x-F y\|^{2}<\alpha| | x-F x\left\|^{2}+\beta\right\| y-F y \|^{2}+$ $v\|x-y\|^{2}$

For all x, y in H where $\alpha, \beta, v \geqslant 0$ and $0<\alpha+\beta+\nu<1$

Proof : Let x be a fixed point of H.

$$
\begin{aligned}
& \text { Set } y=\frac{1}{2}(F+I) x, z=f(y) \\
& \text { and } u=2 y-z
\end{aligned}
$$

Then by using (i) and (ii) we get

$$
\begin{aligned}
\|z-x\|^{2}= & \|F(y)-x\|^{2}=\left\|F(y)-F^{2}(x)\right\|^{2} \\
\leqslant & a\left\|F(x)-F^{2}(x)\right\|^{2}+B\|y-F(y)\|^{2} \\
& +v\|y-F(x)\|^{2} \\
\leqslant & a\|F(x)-x\|^{2}+\beta\|y-F y\|^{2} \\
& +v \mid 2\|y-F(y)\|^{2}+2\|F(y)-F(x)\|^{2}
\end{aligned}
$$

by 2.1.4

Next,

$$
\begin{aligned}
& \|\hat{F}(y)-\hat{F}(x)\|^{2} \leqslant 2\|F(y)-x\|^{2}+2\|x-F(x)\|^{2} \\
& \leqslant 4\|x-F(x)\|^{2} \quad \text { proved } \\
& \left|\left|\mathrm{F}^{\mathrm{F}}(\mathrm{y})-\mathrm{x}\right|\right| \leqslant||\mathrm{x}-\mathrm{F}(\mathrm{x})|| \\
& \therefore \quad\left|\mid z-x\left\|^{2} \leqslant \quad(\alpha+8 v)\right\| x-F(x) \|^{2}+!: \leq\right. \\
& +(\beta+2 v)\|y-f(y)\|^{2}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\|u-x\|^{2} & =\|2 y-F(y)-x\|^{2} \\
& =\|(F+I) x-F(y)-x\|^{2} \\
& =\|F(y)-F(x)\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
\leqslant \alpha| | x-F(x) \|^{2} & +\beta\|y-E(y)\|^{2} \\
& +v\|x-y\|^{2} \\
<\alpha\|x-F x\|^{2}+\beta\|y-F y\|^{2}+ & \ddots \\
& \because v\left[2\|x-F y\|^{2}+2\|y-R y\|^{2}\right]
\end{aligned}
$$

But

$$
\begin{aligned}
\|x-F y\|^{2} & \leqslant 2\|x-F x\|^{2}+2\|F x-F y\|^{2} \\
& \leqslant 2\|x-F x\|^{2}+8\|x-F x\|^{2} \\
& =10\|x-F(x)\|^{2}
\end{aligned}
$$

\therefore

$$
\begin{aligned}
& \quad\left|\left|u-x\left\|^{2} \leqslant \alpha| | x-F x\right\|^{2}+\beta\|y-F y\|^{2}\right.\right. \\
& \\
& +v\left[20\|x-F x\|^{2}+2\|y-F y\|^{2}\right] \\
& \therefore\|u-x\|^{2} \leqslant(\alpha+20 v)\|x-F x\|^{2}+(\beta+2 v)\|y-F y\|^{2}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left|\left|z-u\left\|^{2} \leqslant 2| | z-x\right\|^{2}+2\right|\right| u-x \|^{2} \\
& \leqslant 2(\alpha+8 v)\|x-F x\|^{2}+\left.2(\beta+2 v)\|y-F y\|\right|^{2} \\
& +2(\alpha+20 v)| | x-E x \|^{2}+2(\beta+2 v)| | y-E y| |^{2} \\
& \therefore\left|\left|\mathrm{z}-\mathrm{u}\left\|^{2} \leqslant 4(\alpha+20 \nu)| | \mathrm{x}-\mathrm{Fx}\right\|^{2}+4\left(\alpha+2 v| | \mathrm{y}-\mathrm{Fy} \|^{2}\right.\right.\right. \\
& \therefore v<1
\end{aligned}
$$

We have,

$$
\begin{aligned}
\|z-u\|^{2} & =\|u-z\|^{2}=\|2 y-z-z\|^{2} \\
& =4\|y-z\|^{2} \\
& =4\|y-E(y)\|^{2}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& 4\left|\mid y-F y\left\|^{2}=\right\| z-u \|^{2}\right. \\
\leqslant & 4(+20 v)\left|\mid x-F x\left\|^{2}+4(\beta+2 v)\right\| y-F y \|^{2}\right. \\
\therefore & \left|\left|y-F i y\left\|^{2} \leqslant(\alpha+20 v)\right\|^{\|}\right| x-F x\left\|^{2}+(\beta+2 v)\right\| y-F y \|^{2}\right. \\
& |1-(\beta+2 v)| \mid y-F y\left\|^{2} \leqslant(\alpha+20 v)\right\| x-F x \|^{2} \\
& \left|\left|y-F y\left\|^{2} \frac{\alpha+20 v}{1-(\beta+2 v)}| | x-F x\right\|^{2}\right.\right.
\end{aligned}
$$

Let $G=\frac{1}{2}(F+I), \quad$ then for all $x \in H$

$$
\left\|G^{2} x-G x\right\|^{2}=\|G y-y\|^{2}
$$

$$
=\left\|\frac{1}{\underline{z}}(F+I) y-y\right\|^{2}
$$

$$
\left.=\frac{1}{4} f \right\rvert\, y-k y \|^{2}
$$

$$
\leqslant \frac{1}{4} \frac{\alpha+20 \nu}{[1-(\beta+2 \nu]}| | x-F x| |^{2}
$$

$$
=\frac{1}{4} \frac{\alpha+20 v}{1-(\beta+2 v)}\|x-(2 G x-x)\|^{2}
$$

$$
=\frac{\alpha+20 v}{1-(\beta+2-v)}| | G x-x \|^{2}
$$

$\therefore\left|\left|G^{2} x-G x\right|\right| \leqslant||G x-x|| \quad \because \frac{\alpha+20 \nu}{1-(\beta+2 \nu)}<1$
Therefore the sequence $\left\{x_{n}\right\}$ defined by $x_{n}=G^{n}(x)$ is a cauchy seeunce in H.

Since H is complete

$$
\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} G^{n} x=x_{0}
$$

Consider,

$$
\begin{aligned}
& \left\|x_{o}-G x_{0}\right\|^{2}=\left\|x_{o}-x_{n+1}+x_{n+1}-G x_{o}\right\|^{2} \\
& \leqslant 2\left\|x_{o}-x_{n+1}\right\|^{2}+2\left\|x_{n+1}-G x_{0}\right\|^{2} \\
& =2\left\|x_{0}-x_{n+1}\right\|^{2}+2\left\|G x_{n}-G x_{0}\right\|^{2} \\
& =2\left\|x_{0}-x_{n+1}\right\|^{2}+2\left\|\frac{1}{2}(F+I) x_{n}-\frac{1}{2}(F+I) x_{0}\right\|^{2} \\
& =2| | x_{0}-x_{n+1}| |^{2}+\left.\frac{1}{2}\left\|(F+I) x_{n}-(F+I) x_{0}\right\|\right|^{2} \\
& \leqslant 2\left\|x_{o}-x_{n+1}\right\|^{2}+\left\|x_{n}-x_{0}\right\|^{2}+\left\|\mid x_{n}-\kappa x_{0}\right\|^{2} \\
& \leqslant 2\left\|x_{0}-x_{n+1}\right\|^{2}+\left\|x_{n}-x_{0}\right\|^{2}+\alpha\left\|x_{n}-F x_{n}\right\|^{2} \\
& +B\left\|x_{0}-f x_{0}\right\|^{2}+v\left\|x_{n}-x_{0}\right\| \|^{2} \\
& =2\left\|x_{0}-x_{n+1}\right\|^{2}+(1+v)\left\|x_{n-x_{0}}\right\|^{2}+ \\
& \alpha\left|\left|x_{n+1}-x_{n}\|+\beta\| G x_{o}-x_{o}\right|\right|^{2}
\end{aligned}
$$

As $n \rightarrow \infty$, we get

$$
\begin{array}{rll}
& \left\|x_{0}-G x_{0}\right\|^{2} \leqslant \beta\left\|G x_{0}-x_{0}\right\|^{2} \\
\Longrightarrow & G x_{0}=x_{0} & \because \beta<1
\end{array}
$$

Now,

$$
\begin{aligned}
x_{\circ} & =G x_{\circ} \\
& =\frac{1}{2}(F+I) x_{\circ} \\
2 x_{\circ} & =F\left(x_{0}\right)+I x_{\circ} \\
2 x_{\circ} & =F\left(x_{0}\right)+x_{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \Longrightarrow \quad F\left(x_{0}\right)=x_{0} \\
& \Longrightarrow \quad x_{0} \text { is a fixed point of } F
\end{aligned}
$$

Uniqueness :

Let if possible x_{0} and y_{o} are two distinct fixed points of F in H

Then,

$$
\begin{aligned}
&\left\|x_{0}-y_{0}\right\|^{2}=\left\|F x_{0}-F y_{0}\right\|^{2} \\
& \leqslant \alpha\left\|x_{0}-F x_{0}\right\|_{-}^{2}+\beta\left\|y_{0}-F y_{0}\right\|^{2}+v\left\|x_{0}-y_{0}\right\|^{2} \\
& \therefore\left\|x_{0}-y_{0}\right\|^{2} \leqslant v\left\|x_{0}-y_{0}\right\|^{2} \\
& \Rightarrow(1-v)\left\|x_{0}-y_{0}\right\|^{2} \leqslant 0
\end{aligned}
$$

Since $v<1$ and $\|\| \leqslant$.
We have $\left\|x_{0}-y_{0}\right\|^{2}=0$
$\Rightarrow\left\|x_{0}-y_{0}\right\|=0$
$\Rightarrow x_{0}=y_{0}$
Hence x_{0} is a unque fixed point of F.

