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ARTICLE THREE

Some Self-reciprocal
Generalized Functions
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In this section we shall extend the transform defined

as follows,

© .
{ }\(y/Z—p/Z-l-l)-l/Z A A

(f) = (xy)

h i
Vil _./

O

nggfx y )f(y)dy *(3)

to a class of distributions and study different properties of

this transformation,

* 3.1

Let p be any real number and ) o,

?bewf?éiiﬁgmgﬁnQEiQUﬂ5969§,5p
]

e e

1
And Its Dual H .
y ARG 2R T

H is the space
oA P

of all complex-valued smooth functions ¢(x) defined on the open

interval I =

integers m and k.,

Y U (@(x)) =

sup

0< x<o0

If we assign to Hp

[LEN
countable multinorm

function space,

fo
Ym,kj

Putting 3 = 1, we have H

(o0, @), such tiat for each pair of non-negative

k =\ p-p+1./2 g
) x ¢(X);(»c>

!

my,

! 1=2)
Px o (x D

X

) the topology generated by the

’

s, then Hp becomes a testing

m, k=0

b

= H 30, p.l129],
po - Ty [305 p.129]

The space consisting of continuous linear functionals defined

on H is called the dual

BoA
1

1
by H We assign to H

Bar® B

space of H , and it is denoted

Fal
, the weak tcpology generated by
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! ;
multinorm{.aa(f) }, where ﬁd(f) =§<:}, @::)% Q€ Hu X Thus,
¥ " : , \-

~the dual space H; \ is also comnlete,
¥

' t
% 3,2 : Properties of H And H :

pihgtet xeite Rty (V% N | 1 g
The following properties were developed by Ghosh[9,VIII]

in a similar way to Zemanian [30, pp, 130-133],

(1) @(x) is a member of Hp , if and only if it satisfies the

LAN
following conditions,

(1)  @(x) is a smooth complex-valued function on open set

o< x £, By a smooth function, we mean a function that possesses

derivatives of all orders which are continuous at all points of
its domain,
(ii) For each nonnegative integer k, and any real numbers

Ks A >0,

_ ApFa-1/2 25 2k

@(x) = x [agt a9X +.4atag X +Ry (X))
where ay 's are constants given by

1-2 k  —yp=r+1/2
B 5 A ABTA '

ok = kf(?ﬁTk Lim, oot (x D) x ?(x

and the reminder term Rzk{x) satisfies

1-25

k
(x D) Ry (x) = 0(1), x— 04,
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(iii) For each nonnegative integer k, ¥ @(x) is of rapid

descent as x-+oo (i,e. DX @(x) tends to zero faster than any

power of (1l/x) as x—>ao),

(2) Let D(I) be the space of all complex valued smooth
functions defined on I, The space D(I) is a sub-space of

Hp N for every choice of p and ) » o0, and the covergence in
?

D(I) implies convergence in Hp . Consequently, the restriction
H

of any f € H' to D(I) is a member of D'(I),
B

(3) If q 1is an even positive integer, then Hp*q \ is a
' b4

sub: space of H . The topology of H is stronger than

HoA wEaq, A

1
that induced on it by Hu \’ and hence restriction of f € HP‘X
] v 9

t
is a member of H . However, H is not dense

to H
BN pHa,A wtqg,A

in H R
PaA

(4) For each p and > o, Hp \ is a dense sub- space ot E(I),
b

where E(I) is the space of all complex valued smooth functions
on o<x <, Zemanian [30, p.36]. ioreover D(I) is a dense in
E(I). The topology of HP:A is stronger than that induced on
it by E(I), Hence E'(I), the dual of E(I), is a subspace of

HL \ whatever be the choice of .
?

(5) For each choice of nonnegative integer r, set
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o Pk Bsh oé¢m £r
U7 @ = max 124 @),

t
then for each f C Hu ) there exists a positive constant C
b

and a nonegative integer r such that

-~
Y

[ ~‘§‘__ P’??\. . ) ]
g (\f, QL/Q"C; Qr‘ (@), for every @ € hp,kf
Here, C and r depends on f but not on @,

(6) 1f f(x) be a locally integrable function on o04x <

. - }\ p’*‘l 1,2
such that f(x) is of slow growth as x —» o , and x £(x)

is absolutely integrable on o< x < 1, Then, f(x) generates
1

a reqular generalized functien f in H by the definition

oA
00
e ™~ [,4. =
Of, @ >= ] f(x) @(x) dx, @& H .
~. - / B
o]
t
% 3.3 : Some Operations on H and H :

RoA ™" A

The following results were developed by Ghosh[9,VIII

in a similar way to [30, p. 134],

(i) Multipliers in H :~ Amultiplier is a continuous
-4

linear mapping from a testing function space into itself, Let

GK be the linear space of all smooth functions ©(x) defined on

o<{x<w such that, fcr each nonnegative integer v, there
1-2y v AR

s 3 vhi g ! i

exist an integer n  for which(x EQ Q(x)/(l+x ¥y is

bounded on o ¢ x < w, Clearly the product of any two



mendo~~s ¢f Oy iz also in QA. ow £ € By is a multiplier for

H'l' ) for every w and p o, infact Q(x)SG)\ implies that
Y N .

o(xA) & 6, it follows from [ 30, p, 134] for j = 1,
conseqdently, the linear mapping d'”é'@(XYA) ¢ is a continuous

mapping of M on to itself, It is clear that the mapping
, 1/25=172

@ —>x @l(xl’k) is a continuous linear mapping from

[2=1/2
& g, (xM)

L J

H onto Hp’ the inverse mapping being @r“ﬁ*x

P A i

1/25-1/2 1/
Now combining thne facts that, @;—> x )

. 1(x
1/

dl(x ) is a continuous linear mapping from Hp \ onto Hp;
?

. 17y
@({x) —>6(x ) @(x) is a continuous linear mapping of Hp onto

, A 2"']-/2 A
itself and @(x)—rx @(x") is a continuous linear

mapping of HP ontc Hp A" This implies that @}*>Q(x) d, is a
b

continuous linear mapging from H into itself and hence,
L4

g € Gxis a multiplier for H We can define the adjoint

N
operator f —>¢of on Hﬁsk by the relation,

o N . E ‘ _
e, @> <7 a®> , £6H, , GEH, ;E€a.

1
Clearly, f-—>© f is a continuous linear mapping from Hp N into
*

itself, We emphasize that the linear space GA does not depends

upon y, it is a space of multipliers for Hu N no matter what
2

real value p assumes,
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, i\
(1ii) The mapping @(x)~>x  @(x) is an isomorphism

from Hp onto H . .. Consequently, the mapping .: .

Ly P, )

. nx
f(x) —> x f(x), which is defined by

i

<::_xnkf(x), ¢(x;t> <if(x), an ¢(xi}is an isomorphism

t t
fror
ron Hu+n,x onto HP»A'
Infact,
ptn,n g PrA
A
(x @) = ¥ (@).
m,k m,k

Some Differential And Integral Operators :

We define two linear differential operations Np N and
b4
MP’K and a integral operator N;fh by
N Bx) = B2 ARt gy (3.3.1)
LEXS X
~Ap-atl/2 ARFL/2
MM:A d(x) = x D, x d‘x) (3.3.2)
X
X ap-1/2
-1 ApRA-1/2 AW :
and N @(x) = x J t @(t) dt..(3.3.3)
B ®
-1
The operator Np N is certainly defined on every locally
integrable function of rapid descent and therefore on every
@€ Hp+l,h' Moreover, NP:A and N;,K are inverses of each

other whenever ¢ and its derivatives are continuous on
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04 x £ w, and of rapid descent as x —»>@

(iii) The differential operator Np \ defined in (3,3.1)

b

is continuous transformation cf H into H i, e, the
a ansf i o} Y in Wkl i

@ is a continuous linear mapping of H into

mappin | —>N
pping @ on

UyA
Hp+l,x‘

(iv) The operator ¢~“é'Mp \ @ is a continuous linear
9.

mapping of M Hp+l,h into HP’A°

(v) The generalized differential operator Np \? defined
b4

t

H b
on Y Y

e N 1 ,
1 =< - N

P

Consequently, f—~%-Np (f) is a continuous linear mapping of
!

t . !
HP,K into Hp+l,x'

(vi) The generalized differential operator Ivl}L \
H

14
defined on Hu*l,k by the relation

< (£}, & ¢, -N @ > feh ¢ €eH
X\ M ) > =N =0 ; .
N Mt 8 (\ r TNy a 0L prl,n? Kok
1
Theref fo> M (f) i i orphism from H ont
erefore, TP ) is an isomorphis om uhl o

Hp \e It follows by generalization of the Lemma [30, p.137].
k4



{vii) Ve can define the generalized differential

: 1
operator M. _ N _ for f € H € b
PErator Tum Tpan T by 06 Buy B

el
N Ny () ::> <; Yoo Mo (@ >

Consequently, f M (f) is a continuous linear

F:k P»A
mapping of H into itself,
XN -1
Lemma ¢ 3.3 : P emmm—— e3> N (¢) is
Kok
a continuous linear mapping of Hn+l,x into HP,A'
proof : Assume that, @ 6 H and k be a fixed positive
w1,

integer, Then, we have

ptloa
5 (v, 8(x))

m,k

I my,  1-2) k =Ap-\tl/2 aph-1/2 X A =172

= Sup bx (x D) x (x _j/ t

odx <00 } @©

x.'
my 1-25 k12 [ =ap=1/2

= Sup x (x D) (x Dx)‘f/ t ¢(t)dt;

o X oo} 00 |

fmy 1-2) k-l 1-2) =~ap~1/2 '

- s [T T TN g |

o{x oo i ‘

my,  1-2) kel = (p+l)-1/2

= Sup x  (x Dx) X @(x)

0< x<{®

20

Qﬁ(t)dﬂ}
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p+l,x
=Y s k=1,2,3, ... (a)
m,k-1 m=0, 1, 2, ....

Similar result for the case k = O, can be obtained as fcllows :

m\ -7\?’_?\"'1/'2 S |

H
N H
2 X X dN, (@)g
my, —Ap—k+l/2 Ap+h"l/2 : ‘AP’1/2
= | x  x (x t @(t) dt
X
m .
m) P o=p~l/2
€ x /f’ |t ¢(t)f dt
x : 7
m !
) ] m-aweLli2 '
= f t dt
&
X
< mp—pp-1/2
£ 1 (£) | at
o i
r (1) (m+3)
A -1 m+l) m+3)
&« L 7oAt G ) sup 9 |(t + )
N 2\
1+t .
0o T @
“AR=22+1/2
t t){}dt
Therefore,
\/pn\ L e W?+l’h \y+l,x
(N @) £ (=) n | (@) + (@) (b)
m,o P2A A D [ m+l,o0 m+3,0 J
m=0,1,2,......

From (a) and (b) the result follows,



* 3,4 : Operation Transform Formulae :

Wie have the following results from Ghosh [9,VIII],
(1) For p>»~- 1/2 and ; >0, the mapping qu_ehu A(d)
?

ig an automorphism from H cnto itself,
¥

(2) For py- 1/2, y>o, If g€ Hoao then

?

A
- = N h ¢ 3.4,1
A B, (X @) =, b0 (@) ( )
A
N =. h 2.4.2
P+l,?\(l p':?\¢) AY 11RYY ( QS ) ( )
2 on :
h -x“A @) =M N h 3.4,3
A B ( . $) Bod KA HoA (Q) ( )
. ) ( 2 2x ' ,
h v N = - 4.
o (1 o 1%}\05) AT Y hum(@) (3.4,4)
It ¢ © Hp+l,A’ then
}\. 4 = i \ - B
A hl-m\ (xA @) M}m\ hP»“*‘l:)\ () (3.4,5)
h (M. @)= » y?\ h (@) (3.4,6)
Boh R : ptlyn

3.9 An Isomorphism From H Onto H, :
. - - B ormsy ?L,k o - - . ‘}’K

Theorem : 3,5.1 : For v + p>» -1 and }» o the mapping

¢~4>hy,p’h (@) is an iscmorphism from HP’A onto H”:A’ the

inverse mapring being @ —>h (@),
| ZXET

Proof For ¢ € Hu X we have

A
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(6 &] !
A(v/2-9/2+1)-1/2
hy L (9) j (xy) Ty ) d(y)

i

it

(V/Z-D/Z).)f A“l/ (hyh)

HW
)\(v/2-1.x/2)
(y B(y)) dy
a(v/2-p/2) A(v/72-p/2)
2
/5 -
op Mp/2-v/2) _ A(v/2-p/2) )

x by (@) = hzgu, , v @(y)) (3.5.1)
Now, the mapping @ (y)-*~4>yﬁ(”/2'”/2) @ (y) is a continuous
linear mapping of HP:K onto HZ%E’K'

For, +
d YN
2 A(v/2-p/2)
Y (y d(y) )
My
| my 1-2y “n(p/2+p/241¥472  (v/2= p/2) !
= Sup ky (y Dy)k Y (y ¢(Y)ﬁ
0<yLoo |
my 1-2y, “Ap-A+1/2
= Sup z (v DY )k Y 05(}’)
oLy £ !
FaA
= ¥ (&y))

m,k
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fw

A(Ri2=9/2)
Again, it can be easily shown that the mapping @-y @

; rf ) / .
is the inverse of the above mapping @—*ﬁyk(”’é"p’z) @; and is

a continuous linear manping from HZiE:k onto HP’K'
2
infact,
Fod o (w/2-v/2)
}\ pol ?}/
Y (v) ).
m,k
j my  1-2)  k =apeatl/2 a(pi2-v/2)
= sup Ly (y D) vy (y @(Y»‘
0Ly Lo ! Y »
| omy 1-2p -n(v/24p/2) = + 1/2 ‘
= Sup 1y (y Dy)k Yy ¢(YH
oLy L | |
_ yg}h)\
= v @) (3.5.2)
m,k

In view of, the known result (3.4.(1)), we have h%ik’h is an

2

automorphism on Hy+g, <

s (v/2-u/2)
Again from (3.5.2) it follows that @ —>y d(y) is a

onto H . Combining the

continuous linear mapping of H
’

YiW, A
above results we have 2 ,
A (v/2=u/2) A(»/2=p/2) |
Bly) — x ~h ooy @ (y)l) is a continous
AZP;A

linear mapping from Hy N ontc Hu X It follows, from (3.5,1)
Ly y

that ¢-€fhy " A(Q) is a continuous linear mapping from
’ ]

H onto H , It is also clear from (3,5.1) that h

’ YV,

[PERZEDN



is the inverse of hy Y and so is a continuous linear mapping
? ]

from H onto H . Hence, tihe result,
RN LEN

Theorem : 3,5,2 : For v+u>- 1 and >0, If ¢ Hp \ then

¥

A ,
Khy+1,p+1,A(‘X @) = N,y Py (@) (3.5.3)
h (N, @) = -y'h (&) (3.5.4)
vl pkl, ) Ry M By pan . e
2 2
M N = - A
L T @) = -\ v hy uos (@) (3.5.5)
Az h (-x’A @) =M _ N, h (@) (3.5.6)
YVaUsA B VY'A  YiyHoA *
If @ € H
@ p+l"}x’ then
Ay =
h (M @)=y h (@)
Vopon CRan T M Tyrl) wrlg (3.5.8)
Proof : For »+u% -~ 1, ) >0 and if @€ HR N then by theorem
Az (v/2-p/2)
(3.5.1), we obtain x k ¢eH
2§kvk
au/2-v/2) : a(v/2-pu/2)
and y hy wn (@) = By y (X @) by (3.5-1),
2 (3.5.9).
Therefore,
aA(p/2 -~ v/2) AL A (v/2-p/2+1)
Y h -3 = s h -
Al L, prl,y (X 0D = A wu +l,x( X ?(x))
A(v/2~u/2)

Ny%ﬁ’x hy—gﬂ,A X d) by<3o4ol)



or A(p/2-v,2) A
A Dysl,pt1,n (-xd)
= A(P/2~v/2) ‘
Ny%&:A (y By wa (@) by (3.5,9)
. Mg A(v/2-p/2) A p/2=2/2)
l'eo )\ hv+l,u+l’)\(-x ) - Y NQ{;PA Y ’),p"k

N”9A h”!Prk

(@)

Hence (3.5.3) follows,

Sinc € H
ince @ o

’

and by theorem (3,5.1), it follows that

a(w/2-p/2)
X de H, 4 \? and in view of (3.4.2), we obtain
)
A(v/2-ps2) A a(v/2-p/2)
h N = -
sron Nzt D) =ny by (x ?)
2 2 2
It is clear that .
a(v/2=pl2) Dep /2
N X @) = xx(y/ w/2) N (4).
7".5_2: A Ko
Therefore, ( / y )
av/2-pi2) . A A (v/2-p/2)
hZ%Hfl:A(% NP’A(Q) S TAY hk%k’ ALX ¢)

A (p/2-v/2) ‘ , r a(w/2-2/2) f
or y T N LN R A By u,y (@)
: h (N, . @) = M ()

Lo €e y+lyp+lxk lp’K - AY Vel .

Hence (3,5.4) follows,

Fore sy

Ty

UF: |

LT IwY viarive ol Y, Bt oargl

(@))
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»

If » + p>-1, A> 0 and de HZ%BJA’ then in view of (3,4.3)

we get

2
2
A - = N
hzg,um (=x @) Mﬁz.;&, < hzgp y (@

a(v/2-p/2)

Since @ € Hp:k implies that x g€ Hzgﬂgk

Therefore,

2 : a(v/2-u/2+2)
- X
vy,

71/2- /2
Ai2i2)

M N h
VHR,A  YEULA O 2ER.A
2 2 2

A (w/2-v/2) 25
or kz Y hV,p:K (-x = 9)

-\ (v/2+u/2-1)+1/2 s (v/2+p/2)+1/2
= Y Dy Y
a(v/2+p/2)+1/2 s (v/2+p/2)+1/2
(Y Dy ¥

(v/2=p/2)
" )

) 2 23 _ "}\P'"}\_‘*'l/z A(PW)‘*‘J- ‘}\?)"}\4‘1/2
i.e. % hv,u,x('x @) =y D (y D, ¥ hy e
2

ie. 3% h (-x @) =

M N h ]
XN TTN Esh  Bah YslsA (@)

Thus, the result (3,5,6) follows,

Again in view of (3.4,ﬁ),we kncw that for v%q;j&—l, AD> O



d if € H th A/2-p02) ® & H
and i en X 5
+ +
Therefore, ,
. . a(v/2-u/2) 1
vru, A{ Mutn o, a 28
2 2 |
A A (v/2-u/2) 4
A Pypy 41,y X ).
2
A (v/2-0/2) A A(p/2-v/2), (@)
l,e, STRTRY X M " =AY Y y+1l,pt+l,n
2
i.e. h M @) = Ay h |
rE TN RSN 7)+ly,p+l,)\ (¢).
Hence, (3,5.,8) follows,
The results (3,5,5) and (3.,5.7) can be obtained by similar
argument from the results of (3,4(2)).
% 3,6 : Definition of Self-Reciprocal Generalized ¢
Function R! _ -
) 4
We shall now give a definition of self-reciprccal
generalized function R’ .
Definition : For gk 2-1/2 and ) >0, a gerieralized function
f in H' is said to be a self-reciprocal generalized function

[1EIN



R if £) = £ in H .,
Ban T w\() in B, o

! . ~,
i.e, if {hp N (£), & >=<f, §», for all § € H Thus, a
?

Bade
generalized functlon f in H; \ is a self-reciprocal generalized

?
function R if <\ v (E) ¢>= <f, &>, for y+p3 -1 and

f € H . It i 1 that = h fo: »-1/2,
or all ¢ L is clear that h, . . b, FOT B /

Also, when » = 1 and p»~1/2, it reduce to h, (f) = f i,e, if

)
B
, 1] . ~

< hy(£), 3> =<f, ¢> for all B H, £ 6 HL. Which implies
that £ is a self-reciprocal generalized function R;.

%£3,7 : The Distributicnal Hankel Transformation h' onH'
'a,xv,v.‘«i.-.”‘.“ PO s I L T =T e R T ) ")’p’K Bt p,x

e

1
We shall give a definition of h (f) for £ € H
Vil BsA

as follows :

Definition : For » + p3-1, x>0 and 4 € Hu )’ we define a
)

t
distributional Hanlkel transformation h on H as the
Vel Pl
idint of h defi } by t tion,
adjoint o ARTIY efined on HP:A y the relation
<n! o (f), 6> = <, n (@) >, f €H e (3.7.1)
VKA YVibsA B

From the consequence of known result of Zemanian [30, P 29]

and Theorem 3,5-1, we have the following

sARE. R LIRPARY
e SRR R SR A PO
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t
Theorem : 3,7 : The operator f =-——» h,, " A(f) is an
H y

f {
isomorphism from H” Aonto Hp \ Moreover, the inverse operator
? ?

4
i h
being £ —=>h, . (f).

Proof : Since @ = hW:P,A(¢) is an isomorphism from Hu,x

is the adjoint of h defined on

4
ento Hv, , and h ST

A Vb

!

Bar®

1 '
, h
REYN Vb

Now, let = h & H ’
oW, e \1! "”:]J'!%.(¢) o YA fOI‘ ¢ EHP’)\o
t

! t';l
f €H v h = f
any - ve have ( v,p,x) (h”,p,gﬁ

1
H is a continuous linear mapping of Hv \ into H
’

"For

-1
oY < = f
because, <f, ¥ >= <f, (hy’p’x) (hV:P,A¢):>

-1
_ T t ~
<(hy’p’?\) hﬁ)!p’h(f), Vo

t ! !
Simi € . h h =
imilarly, for any g HP:A we have ( ﬂ:%:k)( v,p,x)g g

b se f € H
ecause for ¢ e

-

-1 N
<9’ ¢>= <g’ (h’.’),p,;\)(h'y,p,}\) ¢/\
-1

- /(h' 1

h
?"ﬂ%h) Vil -

t t
It follows that hv,u,h is a one-to-one mapping from Hy,h
1

.~ "Mence, the theorem,
LX2N

on o H



#3,7,1 ¢ Operation Transform Formula ¢
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In this section, we shall establish a féw results in

the form of theorem with the help of Theorem 3,5.2,

Theorem ¢ 3,7,1
e A
X h'yip:?\ (=%£) =
1
I =
Putt, Wi Ny, ()
2, 2
A hv,u,x(x ) -
f
N . 3
By uan Ml ()%
- f o e
If S HQ)‘Fl,A’ theﬁ
' A )
A hvsﬂﬂ\ (x ) -
hy (M (£)) =
TR TR VIvY -

Procf
Let @ (y) € Hial o0

We have

t

NV!X hV!PiK(f)
AT .
Y hy,p,x (£)

1
Mawa P yua
2 2 1
YD

(f)

(f)

y
Mﬂfk h”*l; Wl (f)
Aot ;

18] hy+l, wkl o (£)

: Firstly, we shall establish the result (3,7.2).

<:h;*l, iy Ny (8 ¢ (1).>

. , N
For v +p 2 «ky 3 >0 and if £ € H’%h then

(3.7.1)

(3.7.2)

(3:7,3)

(3.7.4)

(3.7.5)

(3.7.6)



tvee By, prr,y (N (80 @ (>

= ey (e (85))) Dby (3.3(v)

KA
=5, o (e by (3.5.7)
’ L&Y TV <
1 A
= - f Y
) by ),y D
At
= - N
N ymy, (8, B ()
Hence
]
h, (N f) M
vHL, whla et = oAy by (f).
1
The equality has a sense in HP+lsA because
(-A)YA h' (£f) beiungs to H. . So its
LR ZVN p-1,
t
restriction to Hu+l,x is in Hp+l,x'
No we prove the result (3.7,1).
! t '
. tF = h f th L.
For f € HP»A Le By (f) en
£f= n (F) and F € H"
- Vel an 'V,?\,.
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Now,
N (h () = N__(f)
Vak' Vit Y f
) (h'v+l,u+l,x)(hv+l,p+l,x)Nv,A<f)
1 At ]
= ,(- f)
h7’+lyp+ls?\3 Y h'V)P"?\( ) ]
— ! )\
- hv+l,p+l,A("K y F)
Therefore,

1 ' A
N h f) = — . F
LERN "),P'ﬂ\( ) Ah"""'l,p*'-'—,)\.(y )

This is the same case as (3,7.1), by replacing y by x and F
t
. : . in H
by f respectively, This equality has a sense 1in p+l,n
Again the result (3,7.6) established as follows

Let @ € H _, we can write
22N

<h’1/,]»h}\(M'l),)\f)’ QS(Y); =<M,V’}\(f e Volhs K(d(Y)
= <&, N, by Ad(y)\\by (3.3(vi))
-

» APy e, (Y @)y by (3.5.3)

ANt
\KY hv+l Jtl )7 ¢<Y)>

Therefore,

A

1
! A = 4
hv,p,)\(i‘&?}’}\f) A Y h?)“"l,].ﬁ“l,}\ (f)o



3‘1

It is clear that the equality is in H, ., Lastly, we shall

paatl
prove (3,7.,5) as follows :

Let @ € H , then we have
2N

' : — ! » 7
PLTRCERENE @(Y)t>"‘\hv+l,u+l,x(f)’ “Nuﬁx¢(3):>
by (3.3.(vi))

=
=Nt hv+l,p+l 5 Ny h¢(v ))D
' A N
=<<f » A% hv;?:h(w(Y)L) by (3.5.4)
=<\ n'
=A by, (X , dy) >
Thus,
M h (£) = an' . (e).
oA vl ptl,y = ah VypoA X

The results (3,7,3) and (3.7.4) can be obtained by similar

argument,

The definitio f the t sfo h n H where
inition o ran rm AN o wan’

v and p are any pair of real numbers, can be obtained as a

generalization of the transform h defined on H by the
Vel HaA
equation (3) for »+p»-1, Let k be any positive integer
such that v+p+2k > -1, We define the transformation h 1,k
] 4

on H,  as follows, For v+p+2k >~1, >0 and if ¢ € H
, .

and § (y) =

HaA

hy’p A(¢) then



= h .
Ply) vk (@)
k —k -ak 4
= (=1 h N eeolN , .. (3.8,1
and
plx) = h (,@:'(y
- k k,~1 -1
= (CDITO et ) )0 ek, (Y 80D (3.802)
Where hp+k,v+k,x is the inverse of hv+k,p+k,x'
When » + p > -1, it is clear that
h = h and h-1 = ht and so we can
U222 99 W Z2 TN 2 7). 37 N 23 TN
. -1 . .
consider hy,p,k, is the inverse of hv,p,k,k‘ Clearly hv,p,k,x
is an isomorphism from H onto H e« It can be shown that
KA YN

the transformations defined as in (3.8,1) and (3,8,2) are
unique in the sanse that

= } +u+2k > - + 1 -
hv,p,k,)\ hv,p.,p where y+pu+2k 2> =1 and y+u+2p ) -1,

p is a positive integer,

Similarly -1
ho = h
Vehy Ky VaylsPaA

The generalization of @(y) = h

where y+u+2k > -1 and y+ut+2p 2 -1,

(@) and its inverse for

Vet

@ € H can also be given by
Boh

$(y) = hy ok, (@)

k k =~1 -1
(- ) A (N’V }\"‘Nﬁ)'i'k—l,)\)h?)'*'k p’.‘_k’)\(x ¢)

L

i




36

-1
Simi : i i
imilarly, hy,ﬂyk,k is defined on HP,A by
-l
@(x) = (@ (v))
:1»3'9
k =k «\k
= (-—l) A X h},ﬂ"k,';‘)‘fk,)\( ’1)+k"'l A... é(y
..(3.8.4)

It is clear that

. -1 -1
h = h d h = h f +y 2> -1,
Vel Yyt an ivvpyk ViR or vtk #

This extension is also unique, We shall show that the two

generalizations discussed above are actually the same,

From the result Jahnke, Emde, and Losch [30, pp, 139-140],

we have

( u+l) (p+2)-1
D (0 I Y = GNYY L (389)

and

“AR A A A —alp-1)-1 A A
Dx(x Jp(x Y )) = —}\y X J}L’*‘l(x Y )00(3-806)

Theorem : 3,8, : For v + p + 2k > -1, 350 and if ¢ € Hey oyt
]

then

hyau’ks?\ (¢) - -ﬁv!pykyk(¢) -+ (3.8.7)

and

~1
(@) =Hh (@) ..(3.8.8)

h”,uvk:k Vyfakyn

Proof : To establish the equation (3,8,7)., 1t is sufficient
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to show that for @ belongs to Hu \

) k.&,—l -1 Akd
vypokyp (O (o) N, e 5 WP i, (0 203D

i,e, to show that

h

k 4 , k 2k Aké
(N'D'{‘k'l,}\‘.'N"})}\) A h?),p:,k,)\( ) = g\""l') A hv+k,p+k,)\(x (X))o
Now, we consider only one term of the L,H,S, of the above
equation,
N, By (800)
k -k
- N .ooN
Nv,x (-1) ¥ hv+k,p+k,x( ptk=1,n p,x¢)

~\k r A (v/2en/2 +1)=1/2
g[(xy)

k av+l/2 -AW’A+1/2<

= (-1) v D,y

y y

A A
J {(xy )¥(x)dx
where ¥ (x) =

.k
L€ Nﬂyki A hV,Pyk’A (¢(X))}

Nopgemtye e Ny, 9%

= (-1) y J By 4 4 (xy)

w L]
k xv+l/2 /7 ; -x(z%E + k) AA }
o

A(y/Z—p/2+l)—l/2 V(x) dx
X
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o0
k —pk . (v/2-u/241)=-1/2
= a0 Y [T |
o]

A A AL
ngg ICRRITIOE ;}dx by (3.8.6)

k =)k , A
ALY B ke, (X V(X))

i

Differentiation within the sign of integration may be justified,

Thus, we have
N k 4 k -2k A
Yy A h')),‘p,k,)\( ) - "’)\_("l) Y hy+k+l,p,+k+l,)\(x W(x))o

By similar procedure, we obtain

k -2k

(N Y1)y bk, (X))

y+k-l,x"‘Ny+l,ANv,A

k =)k A
= ?\ Y h7)+2k,p+2k,}\(x W(X)) -'(308¢9)

k
1,e, (N’))'{"k"‘l,x."Nv,}\)}" h,])’u,k,}\(¢)
k -k Ak
=EANY h’}}+2k, w2k, (X W(X))

k -2k
AY h

Ak
y+2k,p+2k ,K(X Np+k—l ’A,. e, I. .Np‘;h (d))

k -2k k k ak Ak
=AY (1) A Y R uek,y, (5 2(30)

k 2k Ak
= (-Da 0 B e, (00 8(x)

by repeated application of(3.7.2),
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Hence, the result follows, Similarly the result (3,8,8,) can

be established,

Corollary : For vp+k 2 -1/2 and 3 > 0, If € Hp \? then

*

(@) = h ().

h ”:k’A

V,Ky
The proof of this follows by putting ¥ = § in above theorem,

% 3,8,1 : By Theorem 3,8,1, we can say that either (3,8,1) or
(3.8,3) can be considered as the extension of the
The orem 3.5.1 for any pair of real numbers y and § such that

¥+ p + 2k = -1 for any positive inceger k Inverse transform

of this extension is given by either (3.8,2) or (3.8.4).

Now, we can define the transform hy RN for
*

1
fe H”’A by the relation

by, (0,8 >=<e,n, (8 >, ..(3.8.10)

t
i . S 3
for § € FP,A, f e Hv’A and » + p + 2k 1, > 0.

(@). is an isomorphism from H onto

Since e
¢ hv,}hk,}\ TN

H,, < In view of the known result [30, p,29] it follows that
2

the transformation hy o defined by (3.,8,10), is an isomorphism
b H -

on to H . U#here as the cortssponding inverse mapping
Vi He

hy,u?A is given by

L
from H"



4()

-1

-1
< h".u;l-l':}\(f)’ ¢> = <1, h?’ru»ks?\ (@) >

Y

/
\‘f, hp,v,k,x(¢):>

_/
\ u,i’,x(f)’ ¢> @ © H VA
Therefore,
-1
t 1
£ =
hv,u,x( ) hp’y,k(f)..

3,9 ¢ On Self-Reciprocal Distribution :

In this section we shall prove a theorem on self-

reciprocal distribution which is a generalization of theocrem(Z2,2).

Theorem : 3,9 ¢ If f is a self-reciprocal generalized function

R’ , then h (f) is a self-reciprocal generalized function
LEDN Viyta
R, . f -2 >y »=1/2,

o or ¥ v »-1/

Proof : To prove the theorem, we have to show:that

!
h f) € H d h h f) = h f) in H
y,p,,;\( ) Ko an pﬂ\( V:Pﬂ\.( ) v,u;)\( ) in B
since the mapping ¢ o g hy,p’x(¢) is an isomorphism from
HP»A onto Hv,k for v + ¢ > ~1 and by the consequence of

' » - ’
[30, p-29], we have for f € H, ,implies that h . . (f) €H .
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Therefore, it remains to show that

by, (£), 6> = (£),8>, 1,

I TR N Vil P oo(avgcl)

VP)\

The L,H.S, of (3.9.1) can be written as follows

= 1 -
LS, =Ch, o (£), h A (9)2 for b+ k %-1/2,

ok

="
B \f’ hv T ' ;\ p (¢))> v + p+ 2k>-~1, 0o {(3.9.2)

Now, the equation (3,9,1) can be written as follows -

i
ehy g (o (@) =<h) | (5), @>by (3.9.2)..(3.9.3)

Again, in order to prove (3,9.,3), it is sufficient to show that

(£, D> ..(3.9.4
N QV’P" 1?\ }h )/ < ! V:ks?\(h'l’:}*’k:)\(mn/ (3.9.4)
f +u+2k > -1 € H .
or Y+ ’ ¢ B
For,
SO\ '
f, h h = f
<{f, Q)’k,}\( ,,,%Mw))/ <hv,)\( ) s hv,p,k,x(¢)>
= (f, By (@D
= hy () D
= R.H.S. of (3.9.3).
We shall prove (3,9,4), by showing that
h (h (@) -
V’uvkr)\ p"k,)\ ) - h?/,k,}\( P13 P’ k Al(¢)) 0'(3.9.5)
For ¢ € H, , and considering both sides of (3.9.5) to be a
’
function of variable z,

3948 -
A S e gy



Now, R,H,S, of (3,9,5)

k =k =)k
(-1) » =z h

i

N (@(x))

N Lre
vk, k-1, LYY hV’Psk’h
_MAk ak
=z hv+k,h(hv+k,v*k,x(x @)) by (3.8.1) and (3.8.9)
Similarly, L, H S, of (3,9,5)

k —kA*xk
- N R\ h (
G2 by Nkl u:x( u,k,xk¢(x)))

by (3.8.1)

k =k =3k .
- ' N
(-1} x 2 Rk, wtk A k=107 * Ny { (=1)"

il

k -k
y A

Y
eesN
hosk,y Nurkel,y P»x¢(x)}

"Xk

Ak
( (x @(x))) by (3.8.9)

hyfk,p+k,A hﬂ+kﬁh

Again the result (3,9,5) follows, if we can show that

Ak Ak
hv+k’p+k’K(hu+k,x(x d)) = hy+k,h (hﬁ+k,p+k,A(X @)) and for
this, we shall show that

( hk¢ ( Akd)) (3.9.6)
h = h h y .. 3;9.
b P (0 90 = hy Ry

where pu=-2>v 2 1/2.

Now by the known result of Erdelyi (6, p.48), for any variable
z>0 and » >0, we have



-1/2
/- M-l () (6™ ay

Yty

S _—whw

o

(y/2-u/241)=1/2
Moy 3 (MM dy

y+
* e (3.9.7)

i

Py A A
{
St @y
o
For p>v > =1/2 and in view of (3,9,7), we have

z(v/2-p/241)-1/2 A A a-1/2

o o0
/f' O(x)dx /[ (zy) ngg(z y)) (xy)
O

Jp(xAY*) dy

0 © -1/2 (p/2-p/2+1)=1/2
= f e [T @Y et
(o] (o]
Jmu”y*) dy ..(3.9.8)
:

Changing the order of integration in (3,9,8) by Fubin's

theorem, we obtain



® A v/2=pf2+1)=1/2 A A
jf' (zy) J  (zy)dy

o 1

- ~1/2
/e 6N 8 60 e

o

® ~1/2 = (v/2=-p/2+1)=1/2
ST @ N e Lo

0 0

A
J%m(x"y ) & (x) dx.

Therefore ,

hy (hp'h(d)) = hy’A(hy’u’k(¢)).

Hence, the theorem,
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