ARTICLE THREE

In this section we shall extend the transform defined as follows,

$$
\begin{equation*}
h_{\nu, \mu, \lambda}(f)=\int_{0}^{\infty}(x y)^{\lambda(\nu / 2-\mu / 2+1)-1 / 2} J_{\frac{\nu+\mu}{2}}\left(x^{\lambda} y^{\lambda}\right) f(y) d y^{\prime} \tag{3}
\end{equation*}
$$

to a class of distributions and study different properties of this transformation.

* 3.1 : The Testing Function space $H_{\mu, \lambda}$ And Its Dual $H_{\mu, \lambda}^{\prime}$: Let μ be any real number and $\lambda>0 . H_{\mu, \lambda}$ is the space of all complex-valued smooth functions $\phi(x)$ defined on the open interval $I \equiv(0, \infty)$, such tiat for each pair of non-negative integers m and k.

$$
\gamma_{m, k}^{\mu, \lambda}(\phi(x))=\sup _{0<x<\infty} x^{m \lambda}\left(x^{1-2} \lambda_{D}\right)^{k} x^{-\lambda \mu-\lambda+1 / 2} \phi(x)<\infty
$$

If we assign to $H \mu, \lambda$, the topology generated by the countable multinorm $\left\{\begin{array}{r}\mu, \lambda \\ \gamma_{m}, k\end{array}\right\}_{m, k=0}^{\infty}$, then $H_{\mu, \lambda}$ becomes a testing function space. Putting $\lambda=1$, we have $H_{\mu, \lambda}=H_{\mu}[30$, p. 129]. The space consisting of continuous linear functionals defined on $H_{\mu, \lambda}$ is called the dual space of $H_{\mu, \lambda}$, and it is denoted by $H_{\mu, \lambda}^{\prime}$. We assign to $H_{\mu, \lambda}^{\prime}$, the weak topology generated by
 the dual space $H_{\mu, \lambda}^{\prime}$ is also complete.

* 3.2 : Properties of $\mathrm{H}_{\mu, \lambda, \text { And } H_{\mu, ~}^{\prime}}^{\prime}$:

The following properties were developed by Ghosh[9,VIII] in a similar way to Zemanian [30, pp. 130-133].
(1) $\phi(x)$ is a member of $H_{\mu, \lambda}$ if and only if it satisfies the following conditions.
(i) $\phi(\mathrm{x})$ is a smooth complex-valued function on open set $0<x<\infty$. By a smooth function, we mean a function that possesses derivatives of all orders which are continuous at all points of its domain.
(ii) For each nonnegative integer k, and any real numbers $\mu, \lambda>0$.

$$
\phi(x)=x^{\lambda^{\mu+\lambda-1 / 2}}\left[a_{0}+a_{2} x^{2 \lambda}+\ldots+a_{2 k} x^{2 k \lambda}+R_{2 k}(x)\right]
$$

where a_{i} 's are constants given by

$$
a_{2 k}=\frac{1}{k!(2 \pi)^{k} \operatorname{Lim}_{x \rightarrow 0+}}\left(x^{1-2 \lambda_{x}}\right)^{k} x^{-\lambda \mu-\lambda+1 / 2} \phi(x)
$$

and the reminder term $\mathrm{R}_{2 \mathrm{k}}(\mathrm{x})$ satisfies

$$
\left(x^{1-2 \lambda_{D_{x}}}\right)^{k} R_{2 k}(x)=0(1), x \rightarrow 0+
$$

(iii) For each nonnegative integer $k, D^{k} \phi(x)$ is of rapid descent as $x \rightarrow \infty$ (i.e. $D^{k} \phi(x)$ tencis to zero faster than any power of $(1 / x)$ as $x \rightarrow \infty)$.
(2) Let $D(I)$ be the space of all complex valued smooth functions defined on I. The space $D(I)$ is a sub-space of $H_{\mu, \lambda}$ for every choice of μ and $\lambda>0$, and the covergence in $D(I)$ implies convergence in $H_{\mu, \lambda^{*}}$. Consequently, the restriction of any $f \in H^{\prime}$ to $D(I)$ is a member of $D^{\prime}(I)$.

$$
\mu, \lambda
$$

(3) If q is an even positive integer, then $H_{\mu+q, \lambda}$ is a sub: space of $H_{\mu, \lambda}$. The topology of $H_{\mu+q, \lambda}$ is stronger than that induced on it by $H_{\mu, \lambda}$, and hence restriction of $f \in H_{\mu, \lambda}^{\prime}$ to $H_{\mu+q, \lambda}$ is a member of $H_{\mu+q, \lambda}^{\prime}$. However, $H_{\mu+q, \lambda}$ is not dense in $H_{\mu, \lambda}$.
(4) For each μ and $\lambda>0, H_{\mu, \lambda}$ is a dense sub. space of $E(I)$, where $E(I)$ is the space of all complex valued smooth functions on $0<x<\infty$, Zemanian [30, p.36]. Moreover $D(I)$ is a dense in $E(I)$. The topology of $H_{\mu, \lambda}$ is stronger than that induced on it by $E(I)$. Hence $E^{\prime}(I)$, the dual of $E(I)$, is a subspace of $H_{\mu, \lambda}^{\prime}$ whatever be the choice of μ.
(5) For each choice of nonnegative integer r, set

$$
\rho_{r}^{\mu, \lambda}(\phi)=\max \gamma_{m, k}^{\mu, \lambda}(\phi), \quad 0 \leqslant m \leqslant r ~ l l o r ~ 0 \leqslant k \leqslant r
$$

then for each $f C H_{\mu, \lambda}^{\prime}$, there exists a positive constant C and a nonegative integer r such that

$$
\left\langle f, \phi>=C \rho_{r}^{\mu, \lambda}(\emptyset), \text { for every } \varnothing \in H_{\mu, \lambda}\right.
$$

Here, C and I depends on f but not on ϕ.
(6) If $f(x)$ be a locally integrable function on $0<x<\infty$ such that $f(x)$ is of slow growth as $x \rightarrow \infty$, and $x^{\lambda \mu+1 / 2} f(x)$ is absolutely integrable on $0<x<1$. Then, $f(x)$ generates a regular generalized function f in $H_{\mu, \lambda}^{\prime}$ by the definition

$$
\langle f, \phi\rangle=\int_{0}^{\infty} f(x) \phi(x) d x, \phi \in H_{\mu, \lambda}
$$

* 3.3 : Some Operations on $H_{\mu, \lambda}$ and $H_{\mu, \lambda}^{\prime}$:

The following results were developed by Ghosh[9,VIII] in a similar way to $[30, \mathrm{p} .134]$.
(i) Multipliers in $H_{\mu, \lambda}$:- A multiplier is a continuous linear mapping from a testing function space into itself. Let θ_{λ} be the linear space of all smooth functions $\theta(x)$ defined on $0<x<\infty$ such that, for each nonnegative integer ν, there exist an integer n_{ν} for which $\left(x^{1-2 \lambda} D_{X}\right)^{\nu} \theta(x) /\left(1+x^{\lambda n^{2}}\right)$ is bounded on $0<x<\infty$. Clearly the product of any two
merinos of θ_{λ} is also in θ_{λ}. Now $\tilde{=} \varepsilon \theta_{\lambda}$ is a multiplier for $H_{\mu, \lambda}$, for every μ and $\lambda>0$. infect $\theta(x) \in \Theta_{\lambda}$ implies that $\theta\left(x^{1} \hat{\lambda}\right) \epsilon \theta_{\lambda}$, it follows from [30, p. 134] for $\lambda=1$. consequently, the linear mapping $\varnothing \rightarrow \theta\left(x^{Y} \lambda\right) \phi$ is a continuous mapping of H_{μ} on to itself. It is clear that the mapping $\phi \rightarrow x^{1 / 2} \lambda-1 / 2 \phi_{1}\left(x^{1 / \lambda}\right)$ is a continuous linear mapping from $H_{\mu, \lambda}$ onto H_{μ}, the inverse mapping being $\varnothing_{1} \rightarrow x^{\lambda / 2-1 / 2} \phi_{1}\left(x^{\lambda}\right)$. Now combining the facts that, $\varnothing_{1} \rightarrow x^{1 / 2 \lambda-1 / 2} \phi_{1}\left(x^{1 / \lambda}\right)$ $\phi_{1}\left(x^{1 / \lambda}\right)$ is a continuous linear mapping from $H_{\mu, \lambda}$ onto H_{μ}; $\phi(x) \rightarrow \theta\left(x^{1 / \lambda}\right) \phi(x)$ is a continuous linear mapping of H_{μ} onto itself and $\phi(x) \rightarrow x^{\lambda, 2-1 / 2} \phi\left(x^{\lambda}\right)$ is a continuous linear mapping of H_{μ} onto $H_{\mu, \lambda}$. This implies that $\phi_{1} \rightarrow \theta(x) \phi_{1}$ is a continuous linear mapping from $H_{\mu, \lambda}$ into itself and hence, $\theta \in \Theta_{\lambda}$ is a multiplier for $H_{\mu, \lambda}$. We can define the adjoint operator $f \rightarrow \theta f$ on $H_{\mu, \lambda}^{\prime}$ by the relation.

$$
\langle\theta f, \phi\rangle=\langle\mathrm{f}, \theta \emptyset\rangle, \mathrm{f} \in \mathrm{H}_{1!, \lambda}^{\prime}, \emptyset \in \mathrm{H}_{\mu, \lambda} ; \theta \in \Theta_{\lambda}
$$

Clearly, $f \rightarrow \theta$ f is a continuous linear mapping from $H_{\mu, \lambda}^{\prime}$ into itself. We emphasize that the linear space θ_{λ} does not depends upon μ, it is a space of multipliers for $H_{\mu, \lambda}$ no matter what real value μ assumes.
(ii) The mapping $\phi(x) \rightarrow x^{n \lambda} \phi(x)$ is an isomorphism from $H_{\mu, \lambda}$ onto $H_{\mu+n, \lambda}$. Consequently, the mapping $\therefore:$. $f(x) \longrightarrow x^{n \lambda} f(x)$, which is defined by

$$
\begin{aligned}
\left\langle x^{n \lambda} f(x), \phi(x)\right\rangle=\langle & \left.f(x), x^{n \lambda} \phi(x)\right\rangle \text { is an isomorphism } \\
& \text { from } H_{\mu+n, \lambda}^{\prime} \text { onto } H_{\mu, \lambda}^{\prime}
\end{aligned}
$$

Infact,

$$
\int_{m, k}^{\mu+n, \lambda}\left(x^{n \lambda} \phi\right)=\gamma_{m, k}^{\mu, \lambda}(\phi)
$$

Some Differential And Integral Operators :
We define two linear differential operations $N_{\mu, \lambda}$ and $M_{\mu, \lambda}$ and a integral operator $N_{\mu, \lambda}^{-1}$ by

$$
\begin{aligned}
N_{\mu, \lambda} \phi(x) & =x^{\lambda \mu+1 / 2} D_{x} x^{-\lambda \mu-\lambda+1 / 2} \phi(x) \\
M_{\mu, \lambda} \phi(x) & =x^{-\lambda \mu-\lambda+1 / 2} D_{x} x^{\lambda \mu+1 / 2} \phi(x) \\
\text { and } \quad M_{\mu, \lambda}^{-1} \phi(x) & =x^{\lambda \mu+\lambda-1 / 2} \int_{\infty}^{x} t^{-\lambda \mu-1 / 2} \phi(t) d t \ldots \text { (3.3.3) }
\end{aligned}
$$

The operator $N_{\mu, \lambda}^{-1}$ is certainly defined on every locally integrable function of rapid descent and therefore on every $\phi \varepsilon H_{\mu+1, \lambda}$. Moreover, $N_{\mu, \lambda}$ and $N_{\mu, \lambda}^{-1}$ are inverses of each other whenever \emptyset and its derivatives are continuous on
$0<x<\infty$, and of rapid descent as $x \rightarrow \infty$
(iii) The differential operator $N_{\mu, \lambda}$ defined in (3.3.1)
is a continuous transformation of $H_{\mu, \lambda}$ into $H_{\mu+1, \lambda}$ i. e. the mapping $\varnothing \rightarrow \mathrm{N}_{\mu, \lambda} \emptyset$ is a continuous linear mapping of $H_{\mu, \lambda}$ into $H_{\mu+1, \lambda}{ }^{\circ}$
(iv) The operator $\phi \rightarrow M_{\mu, \lambda} \phi$ is a continuous linear mapping of $M H_{\mu+1, \lambda}$ into $H_{\mu, \lambda}$.
(v) The generalized differential operator iv $_{\mu, \lambda}$, defined on $H_{\mu, \lambda}^{\prime}$ by

$$
\left\langle N_{\mu, \lambda}(f), \phi\right\rangle=\left\langle f,-M_{\mu, \lambda}(\not)\right\rangle, f \in H_{\mu, \lambda}^{\prime}, \emptyset \in H_{\mu+1, \lambda} .
$$

Consequently, $f \rightarrow N_{\mu, \lambda}(f)$ is a continuous linear mapping of $H_{\mu, \lambda}^{\prime}$ into $H_{\mu+1, \lambda}^{\prime}$.
(vi) The generalized differential operator $M_{\mu, \lambda}$, defined on $H_{\mu+1, \lambda}^{\prime}$ by the relation

$$
\left\langle\mathrm{M}_{\mu, \lambda}(f), \hat{\phi}\right\rangle=\left\langle f,-\mathrm{N}_{\mu, \lambda}(\phi)\right\rangle ; f \in H_{\mu+1, \lambda}^{\prime}, \phi \in H_{\mu, \lambda} .
$$

Therefore, $f \longrightarrow M_{\mu, \lambda}(f)$ is an isomorphism from $H_{\mu+1, \lambda}^{\prime}$ onto $H_{\mu, \lambda}$. It follows by generalization of the Lemma [30, p. 137].
(vii) We can define the generalized differential operator $M_{\mu, \lambda} N_{\mu, \lambda}$ for $f \in H_{\mu, \lambda}^{\prime}, \emptyset \in H_{\mu, \lambda}$ by

$$
\left.\left\langle M_{\mu, \lambda} N_{\mu, \lambda}(f), \phi\right\rangle=\left\langle f, M_{\mu, \lambda} N_{\mu, \lambda}(\phi)\right\rangle\right\rangle
$$

Consequently, $f \rightarrow M_{\mu, \lambda} N_{\mu, \lambda}$ (f) is a continuous linear mapping of $H_{\mu, \lambda}^{\prime}$ into itself.
Lemma : 3.3 : $\varnothing \cdots \cdots N_{\mu, \lambda}^{-1}$
(\varnothing) is
a continuous linear mapping of $H_{\mu+1, \lambda}$ into $H_{\mu, \lambda}$.
proof : Assume that, $\emptyset \in H_{\mu+1, \lambda}$ and k be a fixed positive integer. Then, we have

$$
\gamma_{m, k}^{\mu+1, \lambda}\left(N_{\mu, \lambda} \phi(x)\right)
$$

$$
=\sup _{0<x<\infty}\left|x^{m \lambda}\left(x^{1-2 \lambda} D_{x}\right)^{k} x^{-\lambda \mu-\lambda+1 / 2}\left(x^{\lambda \mu+\lambda-1 / 2} \int_{\infty}^{x} t^{-\lambda \mu-1 / 2} \phi(t) d t\right)\right|
$$

$$
\begin{aligned}
& =\sup _{0\langle x<\infty}\left|x^{m \lambda}\left(x^{1-2} \lambda_{D_{x}}\right)^{k-1}\left(x^{1-2 \lambda} x^{-\lambda \mu-1 / 2} \phi(x)\right)\right| \\
& =\operatorname{Sup}_{0<x<\infty} \mid x^{m \lambda}\left(x^{\left.1-2 \lambda_{D_{x}}\right)^{k-1} x^{-\lambda(\mu+1)-1 / 2} \phi(x) \mid}\right.
\end{aligned}
$$

$$
=\gamma_{m, k-1}^{\mu+1, \lambda} \quad ; \quad \begin{align*}
& k=1,2,3, \quad \ldots \tag{a}\\
& m=0,1,2, \quad \ldots
\end{align*}
$$

Similar result for the case $k=0$, can be obtained as follows:

$$
\begin{aligned}
& \left|x^{m \lambda} x^{-\lambda \mu-\lambda+1 / 2} n^{\prime} N_{\mu, \lambda}^{-1}(\phi)\right| \\
& =\mid x^{m \lambda} x^{-\lambda \mu-\lambda+1 / 2}\left(x^{\lambda \mu+\lambda-1 / 2} x^{t^{-\lambda \mu-1 / 2}} \phi(t) d t \mid\right. \\
& \leq x^{m \lambda} \int_{x}^{\infty}\left|t^{-\lambda \mu-1 / 2} \phi(t)\right| d t
\end{aligned}
$$

$$
\cong \int_{x}^{\infty}\left|t^{m \lambda-\lambda \mu-1 / 2} \mathscr{D}(\mathrm{t})\right| \mathrm{dt}
$$

$$
\leq \int_{0}^{\infty}\left|t^{m_{\lambda}-\lambda \mu-1 / 2} \varphi(f)\right| d t
$$

Therefore,

$$
\begin{array}{r}
\leqslant \frac{1}{\lambda} \int_{0}^{\infty} 1+t^{2} \int_{\lambda}\left(\lambda t^{\lambda-1}\right) \sup \left\{\mid\left(t^{(m+1) \lambda}+t^{(m+3) \lambda}\right)\right. \\
\left.t^{-\lambda \mu-2 \lambda+1 / 2} \phi(t) \mid\right\} d t
\end{array}
$$

$$
\begin{array}{r}
\gamma_{m, 0}^{\mu, \lambda}\left(N_{\mu, \lambda}^{-1} \phi\right) \leqslant\left(\frac{1}{\lambda}\right) \frac{\pi}{2}\left[\gamma_{m+1,0}^{\mu+1, \lambda}(\phi)+\gamma_{m+3,0}^{\mu+1, \lambda}(\phi)\right] \quad(b \tag{b}\\
m=0,1,2, \ldots \ldots
\end{array}
$$

From (a) and (b) the result follows.

* 3.4 : Operation Transform Formulae :

We have the following results from Gosh [9, VIII].
(1) For $\mu \geqslant-1 / 2$ and $\lambda>0$, the mapping $\phi \longrightarrow h_{\mu, \lambda}(\phi)$ is an automorphism from $H_{\mu, \lambda}$ onto itself.
(2) For $\mu \geqslant-1 / 2, \lambda>0$. If $\phi \in H_{\mu, \lambda}$, then

$$
\begin{align*}
& \lambda h_{\mu+1, \lambda}\left(-x^{\lambda} \phi\right)=N_{\mu, \lambda} h_{\mu, \lambda} \phi(\phi) \tag{3,4.1}\\
& h_{\mu+1, \lambda}\left(N_{\mu, \lambda} \phi\right)=-\lambda y^{\lambda} h_{\mu, \lambda}(\phi) \tag{3.4.2}\\
& \lambda^{2} h_{\mu, \lambda}\left(-x^{2} \lambda \phi\right)=M_{\mu, \lambda} N_{\mu, \lambda} h_{\mu, \lambda}(\phi) \tag{3.4.3}\\
& h_{\mu, \lambda}\left(M_{\mu, \lambda} N_{\mu, \lambda} \phi\right)=-\lambda^{2} y^{2} \lambda h_{\mu, \lambda}(\phi) \tag{3.4.4}
\end{align*}
$$

If $\varnothing \in H_{\mu+1, \lambda}$, then

$$
\begin{gather*}
\lambda h_{\mu, \lambda}\left(x^{\lambda} \phi\right)=M_{\mu, \lambda} h_{\mu+1, \lambda}(\phi) \tag{3.4.5}\\
h_{\mu, \lambda}\left(M_{\mu, \lambda} \phi\right)=\lambda y^{\lambda} h_{\mu+1, \lambda}(\phi) \tag{3.4.6}
\end{gather*}
$$

3.5 An Isomorphism From $H_{1, \lambda}$ Onto $H_{\nu, \lambda}$:

Theorem : 3.5.1 : For $\nu+\mu \geqslant-1$ and $\lambda>0$ the mapping $\phi \rightarrow h_{\nu, \mu, \lambda}(\phi)$ is an isomorphism from $H_{\mu, \lambda}$ onto $H_{\nu, \lambda}$, the inverse mapping being $\dot{\phi} \rightarrow h_{\mu, \nu, \lambda}(\emptyset)$.

Proof For $\phi \in H_{\mu, \lambda}$, we have

$$
\begin{align*}
& h_{\nu, \mu, \lambda}(\phi)=\int_{0}^{\infty}(x y)^{\lambda(\nu / 2-\mu / 2+1)-1 / 2} J_{J_{\nu+\mu}}\left(x^{\lambda} y^{\lambda}\right) \phi(y) d y \\
& =x^{\lambda(\nu / 2-\mu / 2)} \int_{0}^{\infty}(x y)^{\lambda-1 / 2} J_{\nu_{2}+\mu}\left(x^{\lambda} y^{\lambda}\right) \\
& \left(y^{\lambda(\nu / 2-\mu / 2)} \phi(y)\right) d y \\
& =x^{\lambda(\nu / 2-\mu / 2)} h_{\frac{\nu+\mu}{2}, \lambda}\left(y^{\lambda(\nu / 2-\mu / 2)} \phi(y)\right) \tag{3.5.1}
\end{align*}
$$

or $x^{\lambda(\mu / 2-\nu / 2)}$
$(\phi)=h_{\frac{\nu+\mu}{2}, \lambda}\left(y^{\lambda(\nu / 2-\mu / 2)} \phi(y)\right)$
Now, the mapping $\phi(\mathrm{y}) \longrightarrow \mathrm{y}^{\lambda(\nu / 2-\mu / 2)} \phi(\mathrm{y})$ is a continuous Linear mapping of $H_{\mu, \lambda}$ onto ${ }_{\frac{H^{\mu+\mu}}{2}, \lambda}$.
For,

$$
\begin{aligned}
& V_{m, \lambda}^{\nu+\mu, \lambda}\left(y^{\lambda(\nu / 2-\mu / 2)} \phi(y)\right) \\
= & \sup _{0<y<00}\left|y^{m \lambda}\left(y^{1-2 \lambda} D_{y}\right)^{k} y^{-\lambda(\nu / 2+\mu / 2+1) p i 2}\left(y^{\lambda(\nu / 2-\mu / 2)} \phi(y)\right)\right| \\
= & \operatorname{Sup}_{0<y<\infty}\left|y^{m \lambda}\left(y^{1-2 \lambda} D_{y}\right)^{k} y^{-\lambda \mu-\lambda+1 / 2} \phi(y)\right| \\
= & \gamma_{m, k}^{\mu, \lambda}(\phi(y)) .
\end{aligned}
$$

Again, it can be easily shown that the mapping $\emptyset \rightarrow y^{\lambda(\mu, 2-y / 2)} \varnothing$ is the inverse of the above mapping $\phi \rightarrow y^{\lambda(\nu / 2-\mu / 2)} \dot{\phi}$; and is a continuous linear mapping from $\mathrm{H}_{\frac{\nu \dot{2}}{2}, \lambda}$ onto $H_{\mu, \lambda}$.

Infect

$$
\begin{align*}
& \gamma_{m, k}^{\mu, \lambda}\left(y^{\lambda(\mu, i-\nu / 2)} \phi(y)\right) . \\
& =\sup _{0<y<\infty}\left|y^{m_{\lambda}}\left(y^{1-2 \lambda} D_{y}\right)^{k} y^{-\lambda \mu-\lambda+1 / 2}\left(y^{\lambda(\mu / 2-\nu / 2)} \dot{D}(y)\right)\right| \\
& =\operatorname{Sup}_{0<y<\infty}\left|y^{m \lambda}\left(y^{1-2 \lambda_{2}}\right)_{y}^{k} y^{-\lambda(\nu / 2+\mu / 2)-\lambda+1 / 2} \phi(y)\right| \\
& =\gamma^{\nu+\mu, \lambda}(\phi(y)) \tag{3.5.2}
\end{align*}
$$

In view of, the known result (3.4.(1)), we have $\frac{h_{\nu+\mu}^{2}, \lambda}{}$ is an automorphism on $\mathrm{H}_{\nu+\mu} \lambda^{-\mu}$
Again from (3.5.2) it follows that $\phi \rightarrow y^{\lambda(\nu / 2-\mu / 2)} \phi(y)$ is a continuous linear mapping of $\mathrm{H}_{\nu+\mu}^{2}, \lambda$ onto $H_{\nu, \lambda}$. Combining the
above results
$\phi(y) \rightarrow x^{\lambda(\nu / 2-\mu / 2)} \cdot h_{\nu_{+}^{+}, \lambda}\left(y^{\lambda(\nu / 2-\mu / 2)} \phi\left(y_{\lambda}\right)\right.$ is a continous linear mapping from $H_{\mu, \lambda}$ onto $H_{\mu, \lambda}$. It follows, from (3.5.1) that $\varnothing \rightarrow h_{\nu, \mu, \lambda}(\emptyset)$ is a continuous linear mapping from $H_{\mu, \lambda}$ onto $H_{\nu, \lambda}$. It is also clear from (3.5.1) that $h_{\mu, \nu, \lambda}$
is the inverse of $h_{\nu, \mu, \lambda}$ and so is a continuous linear mapping from $H_{\nu, \lambda}$ onto $H_{\mu, \lambda}$. Hence, tine result.

Theorem: 3.5.2: For $\nu+\mu \geqslant-1$ and $\lambda>0$. If $\phi H_{\mu, \lambda}$, then

$$
\begin{align*}
& \lambda h_{\nu+1, \mu+1, \lambda}\left(-x^{\lambda} \phi\right)=N_{\nu, \lambda} h_{\nu, \mu, \lambda}(\phi) \tag{3.5.3}\\
& h_{\nu+1, \mu+1, \lambda}\left(N_{\mu, \lambda} \phi\right)=-\lambda y^{\lambda} h_{\nu, \mu, \lambda}(\phi) \tag{3.5.4}\\
& h_{\nu, \mu, \lambda}\left(M_{\nu, \lambda} N_{\mu, \lambda} \phi\right)=-\lambda^{2} y^{2} \lambda h_{\nu, \mu, \lambda}(\phi) \tag{3.5.5}\\
& \lambda^{2} h_{\nu, \mu, \lambda}\left(-x^{2} \lambda \phi\right)=M_{\mu, \lambda} N_{\nu}, \lambda h_{\nu, \mu, \lambda}(\phi) \tag{3.5.6}
\end{align*}
$$

If $\varnothing \in H_{\mu+1, \lambda}$, then

$$
\begin{align*}
& \lambda h_{\nu, \mu, \lambda}\left(x^{\lambda} \phi\right)=M_{\mu, \lambda} h_{\nu+1 ; \mu+1, \lambda}(\phi) \\
& h_{\nu, \mu, \lambda}\left(M_{\mu, \lambda} \phi\right)=\lambda y^{\lambda} h_{\nu+1, \mu+1, \lambda}(\phi) \tag{3,5,7}
\end{align*}
$$

Proof : For $\nu+\mu \geqslant-1, \lambda>0$ and if $\in H_{\mu, \lambda}$ then by theorem (3.5.1), we obtain $x^{\lambda(\nu / 2-\mu / 2)} \phi \in{\underset{\sim}{2}}_{\frac{\nu+\mu}{2}, \lambda}$ and $y^{\lambda(\mu / 2-\nu / 2)} h_{\nu, \mu, \lambda}(\phi)=h_{\nu+\mu, \lambda}^{2}\left(x^{\lambda(\nu / 2-\mu / 2)} \phi\right)$ by $(3.5-1)$.
Therefore,

$$
\begin{aligned}
\lambda(\mu / 2-\nu / 2) & h_{\nu+1, \mu+1, \lambda} \\
& \left(-x^{\lambda} \phi\right)=\lambda^{h^{\nu+\mu}} \\
& =N_{\frac{\nu+\mu}{2}, \lambda} h_{\frac{\nu+\mu, \lambda}{2}}\left(-x^{\lambda(\nu / 2-\mu / 2+1)} \phi(x)\right) \\
&
\end{aligned}
$$

or $\quad \lambda(\mu / 2-\nu / 2)$

$$
\begin{align*}
& \lambda y^{\lambda(\mu / 2-\nu, 2)} h_{\nu+1, \mu+1, \lambda}\left(-x^{\lambda} \phi\right) \\
& \quad=N_{\frac{\nu+\mu}{2}, \lambda}\left(y^{\lambda(\mu / 2-\nu / 2)} h_{\nu, \mu, \lambda}(\phi)\right) \quad \text { by } \tag{3.5.9}
\end{align*}
$$

i.e. $\left.\lambda h_{\nu+1, \mu+1, \lambda}\left(-x^{\lambda} \phi\right)=y^{\lambda(\nu / 2-\mu / 2)} N_{\nu+\mu}^{2} \lambda^{\lambda(\mu / 2-\nu / 2)} h_{\nu, \mu, \lambda}(\phi)\right)$

$$
=N_{\nu, \lambda} h_{\nu, \mu, \lambda}
$$

Hence (3.5.3) follows.
Since $\varnothing \in H_{\mu, \lambda}$ and by theorem (3.5.1), it follows that $x^{\lambda(\nu / 2-\mu / 2)} \phi \in H_{\frac{\nu+\mu,}{2}} \lambda$, and in view of (3.4.2), we obtain $h_{\frac{\nu+\mu, \mu}{2}, \lambda}\left(N_{\nu+\mu, \lambda}\left(x^{\lambda(\nu / 2-\mu / 2)} \phi\right)\right)=-\lambda y^{\lambda} h_{\left.\frac{\nu+\mu}{2}, \lambda^{\left(x^{\lambda(\nu / 2-\mu / 2)}\right.} \phi\right)}$

It is clear that

$$
N_{\frac{\nu+\mu}{2}, \lambda}\left(x^{\lambda(\nu / 2-\mu / 2)} \phi\right)=x^{\lambda(\nu / 2-\mu / 2)} N_{\mu, \lambda}(\phi) .
$$

Therefore,
$h_{\frac{\nu+\mu+1, \lambda}{2}}\left(x^{\lambda(\nu / 2-\mu / 2)}{ }_{\mu, \lambda}(\phi)\right)=-\lambda y^{\lambda}{ }_{\frac{\nu}{\nu+\mu}}^{2}, \lambda\left(x^{\lambda(\nu / 2-\mu / 2)} \phi\right)$ or $y^{\lambda(\mu / 2-\nu / 2)}{ }_{h_{\nu+1}, \mu+1, \lambda}\left({ }^{(N)} \mu_{, \lambda} \phi\right)=-\lambda y^{\lambda} y^{\lambda(\mu / 2-\nu / 2)}{ }_{h_{\nu, \mu, \lambda}}(\phi)$.
ie. $h_{\nu+1, \mu+1, \lambda}\left(\mathbb{N}_{\mu, \lambda} \phi\right)=-\lambda y^{\lambda} h_{\nu, \mu, \lambda}{ }^{(\phi)}$. Hence (3.5.4) follows.

If $\nu+\mu \geqslant-1, \lambda>0$ and $\emptyset \in H_{\frac{\nu+\mu}{2}, \lambda}$, then in view of (3.4.3) we get

$$
\lambda^{2} h_{\frac{\nu+\mu}{2}, \lambda}\left(-x^{2 \lambda} \phi\right)=M_{\frac{\nu+\mu}{2}, \lambda} \frac{N_{\nu+\mu}^{2}}{}, \lambda \frac{h^{\nu+\mu}}{}, \lambda
$$

Since $\phi \in H_{\mu, \lambda}$ implies that $x^{\lambda(\nu / 2-\mu / 2)} \phi \in{\underset{\nu}{2}+\mu_{2} \lambda}$
Therefore,

$$
\begin{align*}
& \left.\lambda^{2} h_{\frac{\nu+\mu}{2},} \lambda^{\left(-x^{\lambda(\nu / 2-\mu / 2+2)}\right.} \phi\right) \\
& =M_{\nu^{+}+\mu}^{2}, \lambda \frac{N_{\nu+\mu}^{2}, \lambda}{} \frac{h_{\nu+\mu}^{2}, \lambda}{}\left(\mathrm{x}^{\lambda(\nu / 2-\mu / 2)} \phi\right) \\
& \text { or } \lambda^{2} y^{\lambda(\mu / 2-\nu / 2)} h_{\nu, \mu, \lambda}\left(-x^{2 \lambda} \varnothing\right) \\
& =y^{-\lambda(\nu / 2+\mu / 2-1)+1 / 2} \mathrm{D}_{\mathrm{y}} \mathrm{y}^{\lambda(\nu / 2+\mu / 2)+1 / 2} \\
& \left(y^{\lambda(\nu / 2+\mu / 2)+1 / 2} D_{y} y^{-\lambda(\nu / 2+\mu / 2)+1 / 2}\right. \\
& \left.h_{\frac{\nu+\mu}{2} \cdot \lambda}\left(x^{\lambda(\nu / 2-\mu / 2)} \phi\right)\right) \\
& \text { i. e. } \lambda^{2} h_{\nu, \mu, \lambda}\left(-x^{2} \lambda \phi\right)=y^{-\lambda \mu-\lambda+1 / 2} D_{y} C^{\lambda(\mu+\nu)+1} D_{y} y^{-\lambda \nu-\lambda+1 / 2} h_{\nu, \mu, \mu} \\
& \text { ide. } \quad \lambda^{2} h_{\nu, \mu, \lambda}\left(-x^{2 \lambda} \phi\right)=M_{\mu, \lambda} N_{\mu, \lambda} h_{\nu, \mu, \lambda}
\end{align*}
$$

Thus, the result $(3.5 .6)$ follows.
Again in view of (3.4.6), we know that for $\nu+\mu \geqslant-1, \lambda>0$
and if $\phi \in \mathrm{H}_{\nu+\mu}^{2}+1, \lambda$ then $x^{\lambda(\nu / 2-\mu / 2)} \otimes \in \mathrm{H}_{\frac{\nu+\mu}{2}+1, \lambda}$

Therefore,
$h_{\frac{\nu+\mu}{2}}, \lambda\left\{\frac{M_{\nu+\mu}^{2}}{}, \lambda\left(x^{\lambda(\nu / 2-\mu / 2)} \phi\right)\right\}$

$$
=\lambda Y^{\lambda} h_{\frac{\nu+\mu}{2}}+1, \lambda\left(x^{\lambda(\nu / 2-\mu / 2)} \phi\right)
$$

i.e. $h_{\nu+\mu, \lambda}\left(x^{\lambda(\nu / 2-\mu / 2)} M_{\nu, \lambda} \emptyset\right)=\lambda y^{\lambda y^{\lambda(\mu / 2-\nu / 2)} h_{\nu+1, \mu+1, \lambda}(\emptyset)}$
i.e. $h_{\nu, \mu, \lambda}\left(M_{\nu, \lambda} \phi\right)=\lambda Y^{\lambda} h_{\nu+1, \mu+1, \lambda}(\phi)$.

Hence, (3.5.8) follows.
The results $(3.5 .5)$ and $(3.5 .7)$ can be obtained by similar argument from the results of (3.4(2)).

* 3.6 : Definition of Self-Reciprocal Generalized Function $R_{\mu, \lambda}^{\prime}$:

We shall now give a definition of self-reciprocal generalized function $R_{\mu, \lambda}^{\prime}$.

Definition : For $\mu \geqslant-1 / 2$ and $\lambda>0$, a generalized function f in $H_{\mu, \lambda}^{\prime}$ is said to be a self-reciprocal generalized function
$R_{\mu, \lambda}$ if $h_{\mu, \lambda}^{\prime}(f)=f$ in $H_{\mu, \lambda}^{\prime}$.
i.e. if $\left\langle h_{\mu, \lambda}^{\prime}\right.$ (f), $\left.\phi\right\rangle=\langle f, \phi\rangle$, for all $\phi \in H_{\mu, \lambda}$. Thus, a generalized function f in $H_{\mu, \lambda}^{\prime}$ is a self-reciprocal generalized function $R_{\mu, \lambda}^{\prime}$ if $\left\langle h_{\nu, \mu, \lambda}^{\prime}(f), \phi\right\rangle=\langle f, \phi\rangle$, for $\nu+\mu \geqslant-1$ and for all $\emptyset \in H_{\mu, \lambda}$. It is clear that $h_{\nu, \mu, \lambda}=h_{\mu, \lambda}$ for $\mu \geqslant-1 / 2$. Also, when $\lambda=1$ and $\mu \geqslant-1 / 2$, it reduce to $h_{\mu}^{\prime}(f)=f$ i.e. if $\left.\left\langle h_{\mu}^{\prime}(f), \phi\right\rangle\right\rangle=\langle f, \phi\rangle$ for all $\emptyset \in H_{\mu}, f \in H_{\mu}^{\prime}$. Which implies that f is a self-reciprocal generalized function R_{μ}^{\prime}.
*3.7 : The Distributional Hanker Transformation ${ }^{\prime}{ }_{\nu, \mu, \lambda}$ on $H_{\mu, \lambda}^{\prime}$:

$$
\text { We shall give a definition of } h_{\nu, \mu, \lambda}^{\prime}(f) \text { for } f \in H_{\mu, \lambda}^{\prime}
$$

as follows :
Definition: For $\nu+\mu \geqslant-1, \lambda>0$ and $\phi \in H_{\mu, \lambda}$, we define a distributional Hansel transformation $h_{\nu, \mu, \lambda}^{\prime}$ on $H_{\mu, \lambda}^{\prime}$ as the adjoint of $h_{\nu, \mu, \lambda}$ defined on $H_{\mu, \lambda}$ by the relation.
$\left\langle h_{\nu, \mu, \lambda}^{\prime}(f), \phi\right\rangle=\left\langle f, h_{\nu, \mu, \lambda}(\phi)\right\rangle, f \in H_{\mu, \lambda}^{\prime} \quad \ldots(3.7 .1)$
From the consequence of known result of Zemanian [30, p. 29] and Theorem 3.5-1, we have the following

Theorem : 3.7: The operator $f \longrightarrow h_{\nu, \mu, \lambda}^{\prime}(f)$ iss an isomorphism from $H_{\nu, \lambda}^{\prime}$ onto $H_{\mu, \lambda}^{\prime}$. Moreover, the inverse operator being $f \longrightarrow h_{\mu, y, \lambda}^{\prime}(f)$.

Proof : Since $\varnothing \cdots h_{\nu, \mu, \lambda}(\phi)$ is an isomorphism from $H_{\mu, \lambda}$ onto $H_{\nu, \lambda}$, and $h_{\nu, \mu, \lambda}^{\prime}$ is the adjoint of $h_{\nu, \mu, \lambda}$ defined on $H_{\nu, \lambda}^{\prime}, h_{\nu, \mu, \lambda}^{\prime}$ is a continuous linear mapping of $H_{\nu, \lambda}^{\prime}$ into $H_{\mu, \lambda}^{\prime}$. Now, let $\psi=h_{\nu, \mu, \lambda}(\phi) \in H_{\nu, \lambda} \quad$ for $\phi \in H_{\mu, \lambda^{\bullet}} \quad$ For any $f \in H_{j, \lambda}^{\prime}$, we have $\left(h_{\nu, \mu, \lambda}^{\prime-1}\right)\left(h_{-, \mu, \lambda}^{\prime}, f\right)=f$
because, $\langle f, \psi\rangle=\left\langle f,\left(h_{\nu, \mu, \lambda}\right)\left(h_{\nu, \mu, \lambda}^{-1}, \psi\right)\right\rangle$

$$
=\left\langle\left(h_{\nu, \mu, \lambda}^{\boldsymbol{h}^{1}}\right) h_{\nu, \mu, \lambda}^{\prime}(f), \psi\right\rangle
$$

Similarly, for any $g \in H_{\mu, \lambda}^{\prime}$ we have $\left(h_{\nu, \mu, \lambda}^{\prime}\right)\left(h_{\nu, \mu, \lambda}^{\prime}\right) g=g$ because for $\phi \in \mathrm{H}_{\mu, \lambda}$,

$$
\begin{aligned}
\langle g, \phi\rangle & =\left\langle g,\left(h_{\nu, \mu, \lambda}^{-1}\right)\left(h_{\nu, \mu, \lambda}\right) \phi\right\rangle \\
& =\left\langle\left(h_{\nu, \mu, \lambda}^{\prime}\right) h_{\nu, \mu, \lambda}^{-1}(g), \phi\right\rangle
\end{aligned}
$$

It follows that $h_{\nu, \mu, \lambda}^{\prime}$ is a one-to-one mapping from $H_{\nu, \lambda}^{\prime}$ on to $H_{\mu, \lambda^{\prime}}^{\prime} \cdots$ Hence, the theorem.

*3.7.1 : Operation Transform Formula :

In this section, we shall establish a few results in the form of theorem with the help of Theorem 3.5.2.
Theorem : 3.7.1: For $y+\mu \geqslant-1 ; \lambda>0$ and if $f \in H_{\nu, \lambda}^{\prime}$ then

$$
\begin{align*}
& \lambda h_{\nu, \mu, \lambda}^{\prime}\left(-x^{\lambda} f\right)=N_{\nu, \lambda} h_{\nu, \mu, \lambda}^{\prime}(f) \tag{3.7.1}\\
& h_{\nu+1, \mu+1, \lambda}^{\prime}\left(N_{\mu, \lambda}(f)\right) \tag{3.7.2}\\
& =-\lambda y^{\lambda} h_{\nu, \mu, \lambda}^{\prime}(f) \tag{3.7.3}\\
& \lambda^{2} h_{\nu, \mu, \lambda}^{\prime}\left(x^{2 \lambda} f\right) \tag{3.7.4}\\
& h_{\nu, \mu, \lambda}^{\prime}\left(M_{\nu, \lambda} N_{\mu, \lambda}(f)\right)
\end{align*}
$$

If $f \in H_{\nu+1, \lambda}^{\prime}$, then

$$
\begin{align*}
& \lambda h_{\nu, \mu, \lambda}^{\prime}\left(x_{f}^{\lambda}\right)=M_{\mu, \lambda} h_{\nu+1, \mu+1, \lambda}^{\prime}(f) \tag{3.7.5}\\
& h_{y, \mu, \lambda}^{\prime}\left(M_{\nu, \lambda}(f)\right)=\pi \varphi^{\lambda} h_{\nu+1, \mu+1, \lambda}^{f}(f) \tag{3.7.6}
\end{align*}
$$

Proof : Firstly, we shall establish the result (3.7.2).
Let $\emptyset(y) \in H_{\mu+1, \lambda}$ 。
We have
$\left\langle h_{\nu+1, \mu+1, \lambda}^{\prime}\left(N_{\mu, \lambda}(f)\right), \phi(\gamma)\right\rangle$

$$
=\left\langle N_{\mu, \lambda}(f)_{s} \cdot h_{\nu+1, \mu+1, \lambda}(\emptyset(y))\right\rangle
$$

ie. $\left\langle h_{\nu+1, \mu+1, \lambda}^{\prime}\left(N_{\mu, \lambda}(f)\right), \quad \phi(y)\right\rangle$

$$
\begin{aligned}
& =\left\langle f, \quad-M_{\mu, \lambda}\left(h_{\nu+1, ~}, \mu+1, \lambda\right.\right. \\
& =\langle f(y)))\rangle \text { by }(3.3(v)) \\
& =\left\langle h_{\nu, \mu, \lambda}\left(y^{\lambda} \phi(y)\right)\right\rangle \quad \text { by }(3.5 .7) \\
& =\left\langle(-\lambda) h_{\nu, \mu, \lambda}^{\prime}(f), \quad y^{\lambda} \phi(y)\right\rangle \\
& =\left\langle(-\lambda) y^{\lambda} h_{\nu, \mu, \lambda}^{\prime}(f), \quad \phi(y)\right\rangle
\end{aligned}
$$

Hence

$$
h_{\nu+1, \mu+1, \lambda}^{\prime}\left(N_{\mu, \lambda}^{f}\right)=-\lambda y^{\lambda} h_{\nu, \mu, \lambda}^{\prime}(f) .
$$

The equality has a sense in $H_{\mu+1, \lambda}^{\prime}$ because
$(-\lambda) y^{\lambda} h_{\nu, \mu, \lambda}^{\prime}$ (f) belungs to $H_{\mu-1, \lambda}^{\prime}$. So its
restriction to $H_{\mu+1, \lambda}$ is in $H_{\mu+1, \lambda}^{\prime}$.
No we prove the result (3.7.1).
For $f \in H_{\mu, \lambda}^{\prime}$. Let $F=h_{\mu, \nu, \lambda}^{\prime}(f)$ then..
$f=h_{\nu, \mu, \lambda}^{\prime}(F)$ and $F \in H_{\nu, \lambda}^{\prime}$.

Now,

$$
\begin{aligned}
N_{\nu, \lambda}\left(h_{\nu, \mu, \lambda}^{\prime}(F)\right) & =N_{\nu, \lambda}(f) \\
& =\left(h_{\nu+1, \mu+1, \lambda}^{\prime}\right)\left(h_{\nu+1, \mu+1, \lambda}^{\prime}\right) N_{\nu, \lambda}(f) \\
& =h_{\nu+1, \mu+1, \lambda}^{\prime}\left\{-\lambda Y^{\lambda} h_{\nu, \mu, \lambda}^{\prime}(f)\right\} \\
& =h_{\nu+1, \mu+1, \lambda}^{\prime}\left(-\lambda Y^{\lambda} F\right)
\end{aligned}
$$

Therefore,

$$
N_{\nu, \lambda} h_{\gamma, \mu, \lambda}^{\prime}(f)=-\lambda h_{\gamma+1, \mu+1, \lambda}^{\prime}\left(y^{\lambda} F\right)
$$

This is the same case as (3.7.1) by replacing y by x and F by f respectively. This equality has a sense in $H_{\mu+1, \lambda}^{\prime}$. Again the result (3.7.6) established as follows Let $\varnothing \in H_{\mu, \lambda}$, we can write

$$
\begin{aligned}
\left\langle h_{\nu, \mu, \lambda}^{\prime}\left(M_{\nu, \lambda} f\right), \phi(y)\right\rangle & =\left\langle M_{\nu, \lambda}(f), h_{\nu, \mu, \lambda}(\phi(y))\right\rangle \\
& =\left\langle f,-N_{\nu, \lambda} h_{\nu, \mu, \lambda} \phi(y)\right\rangle \text { by }(3.3(v i)) \\
& =\left\langle f, \lambda h_{\nu+1, \mu+1, \lambda}\left(y{ }^{\lambda} \phi\right)\right\rangle \text { by }(3.5 .3) \\
& =\left\langle\lambda y^{\lambda} h_{\nu+1, \mu+1, \lambda}^{\prime}(f), \phi(y)\right\rangle
\end{aligned}
$$

Therefore,
$h_{\nu, \mu, \lambda}^{\prime}\left(M_{\nu, \lambda} f\right)=\lambda y^{\lambda} h_{\nu+1, \mu+1, \lambda}^{\prime}(f)$.

It is clear that the equality is in $H_{\mu, \lambda!}^{\prime}$! Lastly, we shall prove (3.7.5) as follows :
Let $\emptyset \in H_{\mu, \lambda}$, then we have

$$
\begin{aligned}
&\left\langle M_{\mu, \lambda} h_{\nu+1, \mu+1, \lambda}^{\prime}(f), \phi(y)\right\rangle=\left\langle h_{\nu+1, \mu+1, \lambda}^{\prime}(f),-N_{\mu, \lambda} \phi(y)\right\rangle \\
& \text { by }(3.3 .(v i)) \\
&=\left\langle f,-h_{\nu+1, \mu+1, \lambda}\left(N_{\mu, \lambda} \phi(y)\right)\right\rangle \\
&=\left\langle f, \lambda x^{\lambda_{h}}, \mu, \lambda\right. \\
&(\phi(y))\rangle \text { by (3.5.4) } \\
&=\left\langle\lambda h_{\nu, \mu, \lambda}^{\prime}\left(x^{\lambda} f\right), \phi(y)\right\rangle
\end{aligned}
$$

Thus,

$$
M_{\mu, \lambda} h_{\nu+1, \mu+1, \lambda}^{\prime}(f)=\lambda h_{\nu, \mu \cdot \lambda}^{\prime}\left(x_{f}^{\lambda}\right)
$$

The results (3.7.3) and (3.7.4) can be obtained by similar argument.
*3. 8 : The Generalized Hankel Transform of Aribtrary Order :
The definition of the transform $h_{\nu, \mu, \lambda}$ on $H_{\mu, \lambda}$, where ν and μ are any pair of real numbers, can be obtained as a generalization of the transform $h_{\nu, \mu, \lambda}$ defined on $H_{\mu, \lambda}$ by the equation (3) for $\nu+\mu \geqslant-1$. Let k be any positive integer such that $\nu+\mu+2 k \geqslant-1$. We define the transformation $h_{\nu, \mu, k, \lambda}$ on $H_{\mu, \lambda}$ as follows. For $\nu+\mu+2 k \geqslant-1, \lambda>0$ and if $\phi \in H_{\mu, \lambda}$ and $\Phi(y)=h_{\nu, \mu, \lambda}(\varnothing)$ then

$$
\begin{align*}
& \Phi(y)=h_{\nu, \mu, k, \lambda}(\phi) \\
&=(-1)_{\lambda}^{k-k}{ }_{y}{ }^{-\lambda k} h_{\nu+k, \mu+k, \lambda}\left(N_{\mu+k-1, \lambda} \ldots N_{\mu, \lambda} \phi\right) \quad \ldots(3.8 .1) \\
& \text { and } \\
& \phi(x)=h_{\nu, \mu, k, \lambda}^{-1}(\Phi(y)) \\
&=(-1)_{\lambda}^{k}{ }^{k}\left(N_{\mu, \lambda}^{-1} \ldots N_{\mu+k-1, \lambda}^{-1}\right) h_{\mu+k, \nu+k, \lambda}\left(y^{\lambda k} \Phi(y)\right) . \tag{3.8.2}
\end{align*}
$$

Where $h_{\mu+k, \nu+k, \lambda}$ is the inverse of $h_{\nu+k, \mu+k, \lambda}$.
When $\nu+\mu \geqslant-1$, it is clear that

$$
h_{\nu, \mu, k, \lambda}=h_{\nu, \mu, \lambda} \text { and } h_{\nu, \mu, k, \lambda}^{-1}=h_{\nu, \mu, \lambda}^{-1} \text { and so we can }
$$

consider $h_{\nu, \mu, k, \lambda}^{-1}$ is the inverse of $h_{\nu, \mu, k, \lambda^{*}}$ Clearly $h_{\nu, \mu, k, \lambda}$ is an isomorphism from $H_{\mu, \lambda}$ onto $H_{\nu, \lambda^{*}}$. It can be shown that the transformations defined as in (3.8.1) and (3.8.2) are unique in the sans that

$$
\begin{array}{r}
h_{\nu, \mu, k, \lambda}=h_{\nu, \mu, p} \text { where } \nu+\mu+2 k \geqslant-1 \text { and } \nu+\mu+2 p \geqslant-1, \\
\\
p \text { is a positive integer. }
\end{array}
$$

Similarly

$$
h_{\nu, \mu, k, \lambda}^{-1}=h_{\nu, \mu, p, \lambda}^{-1} \text { where } \nu+\mu+2 k \geqslant-1 \text { and } \nu+\mu+2 p \geqslant-1 \text {. }
$$

The generalization of $\Phi(y)=h_{\nu, \mu, \lambda}(\phi)$ and its inverse for $\phi \in H_{\mu, \lambda}$ can also be given by

$$
\Phi(y)=\bar{h}_{\nu, \mu, k, \lambda}(\varnothing)
$$

$$
=(-1)^{k} \lambda^{k}\left(N_{\nu, \lambda}^{-1} \ldots N_{\nu+k-1, \lambda}^{-1}\right) h_{\nu+k, \mu+k, \lambda}\left(x^{\left.\lambda^{k} \phi\right) .}\right.
$$

Similarly, $\stackrel{-1}{h_{\nu, \mu, k, \lambda}}$ is defined on $H_{\mu, \lambda}$ by

$$
\begin{aligned}
& \phi(x)=-\frac{\bar{h}_{\nu, \mu, k, \lambda}}{-1}(\Phi(y)) \\
&=(-1)^{k} \lambda^{-k} x^{-\lambda k} h_{\mu+k, \nu+k, \lambda}\left(N_{\nu+k-1, \lambda} \cdots N_{\left.\nu, \lambda^{(}\right)}^{\Phi(y)) .}\right. \\
& \ldots(3.8 .4)
\end{aligned}
$$

It is clear that
$h_{\nu, \mu, \lambda}=\bar{h}_{\nu, \mu, \lambda}$ and $h_{\nu, \mu, \lambda}^{-1}=h_{\nu, \mu, \lambda}^{-1}$ for $\nu+\mu \geqslant-1$.
This extension is also unique. We shall show that the two generalizations discussed above are actually the same.

From the result Jahnke, Emden, and Losch [30, pp. 139-140], we have

$$
D_{x}\left(x^{\lambda(\mu+1)} J_{\mu+1}\left(x^{\lambda} y^{\lambda}\right)\right)=\lambda y^{\lambda(\mu+2)-1} J_{\mu}\left(x^{\lambda} y^{\lambda}\right) \quad \ldots(3.8 .5)
$$

and

$$
D_{x}\left(x^{-\lambda \mu} J_{\mu}\left(x^{\lambda} y^{\lambda}\right)\right) \quad=-\lambda y^{\lambda} x^{-\lambda(\mu-1)-1} J_{\mu+1}\left(x^{\lambda} y^{\lambda}\right) \ldots \text { (3.8.6) }
$$

Theorem : 3.8. : For $\nu+\mu+2 k \geqslant-1, \lambda>0$ and if $\varnothing \in H_{\mu, \lambda}$, then

$$
\begin{equation*}
h_{\nu, \mu, k, \lambda}(\phi)=\bar{h}_{\nu, \mu, k, \lambda}(\phi) \tag{3.8.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{h}_{\nu, \mu, k, \lambda}^{1}(\phi)=\bar{h}_{\nu, \mu, k, \lambda}^{-1}(\phi) \tag{3.8.8}
\end{equation*}
$$

Proof : To establish the equation (3.8.7). It is sufficient
to show that for \varnothing belongs to $H_{\mu, \lambda}$
$h_{\nu, \mu, k, \lambda}(\varnothing)=(-1)^{k} \lambda^{k}\left(N_{\nu, \lambda}^{-1} \cdots N_{\nu+k-1, \lambda}^{-1}\right) h_{\nu+k, \mu+k, \lambda}\left(x^{\lambda^{k}} \phi(x)\right)$
i.e. to show that
$\left(N_{\nu+k-1, \lambda} \ldots N_{\nu, \lambda}\right) \lambda^{k} h_{\nu, \mu, k, \lambda}(\phi)=(-1)^{k} \lambda^{2 k} h_{\nu+k, \mu+k, \lambda}\left(x^{\lambda^{k}} \phi(x)\right)$. Now, we consider only one term of the L.H.S. of the above $\underset{k}{\text { equation. }}$
$N_{\nu, \lambda}\left(\lambda h_{\nu, \mu, k, \lambda}(\phi(x))\right.$

$$
\begin{aligned}
& =N_{\nu, \lambda}(-1)^{k} y^{-\lambda k_{h}}{ }_{\nu+k, \mu+k, \lambda}\left(N_{\mu+k-1}, \lambda^{\cdots} N_{\mu, \lambda} \lambda^{\phi}\right) \\
& =(-1)^{k} y^{\lambda \nu+1 / 2} D_{Y} Y^{-\lambda \nu-\lambda^{+1 / 2}}\left(y^{-\lambda^{k}} \int_{0}^{\infty}(x y)^{\lambda(\nu / 2-\mu / 2+11)-1 / 2}\right.
\end{aligned}
$$

$$
\left.J_{\frac{\nu+\mu}{2}}+k, \lambda\left(x^{\lambda \lambda}\right) \Psi(x) d x\right)
$$

$$
\text { where } \psi(x)=N_{\mu+k-1, \lambda} \ldots N_{\mu, \lambda} \phi(x)
$$

$$
\text { i.e. } N_{\nu, \lambda}\left\{\lambda^{k} h_{\nu, \mu, k, \lambda}(\phi(x))\right\}
$$

$$
=(-1)^{k} y^{\lambda \nu+1 / 2} \int_{0}^{\infty} D_{y}\left\{y^{-\lambda\left(\frac{\nu+\mu}{2}+k\right)} J_{\nu+\mu}^{2}+k\left(x^{\lambda} y^{\lambda}\right)\right\}
$$

$$
x_{x}^{\lambda(\nu / 2-\mu / 2+1)-1 / 2} \psi(x) d x
$$

$$
\begin{aligned}
& =-\lambda(-1)^{k-\lambda^{k}} \int_{0}^{\infty}\left\{(x y)^{\lambda(\nu / 2-\mu / 2+1)-1 / 2}\right. \\
& \left.J_{\frac{\nu+\mu}{2}+k+1}\left(x^{\lambda y^{\lambda}}\right)\left(\Psi(x) x^{\lambda}\right)\right\} d x \text { by (3.8.6) } \\
& =-\lambda(-1)^{k-\lambda^{k}} h_{\nu+k+1, \mu+k+1, \lambda}\left(x^{\lambda} \Psi(x)\right)
\end{aligned}
$$

Differentiation within the sign of integration may be justified. Thus, we have
$N_{\nu, \lambda}\left(\lambda^{k} h_{\nu, \mu, k, \lambda}(\phi)=-\lambda(-1)^{k} y^{-\lambda k} h_{\nu+k+1, \mu+k+1, \lambda}\left(x^{\lambda} \psi(x)\right)\right.$.
By similar procedure, we obtain

$$
\begin{align*}
& \left(N_{\nu+k-1, \lambda} \cdots N_{\nu+1, \lambda} N_{\nu, \lambda}\right)(-1)^{k} y^{-\lambda k} h_{\nu+k, \mu+k, \lambda}(\Psi(x)) \\
& \begin{array}{l}
=y^{k}-\lambda{ }^{k} h_{\nu+2 k, \mu+2 k, \lambda}\left(x^{\lambda k} \psi(x)\right)
\end{array} \\
& \text {.. (3.8.9) } \\
& \text { i. e. } \quad\left(N_{\nu+k-1, \lambda} \ldots N_{\nu, \lambda}\right)_{\lambda}^{\mathrm{k}} h_{\nu, \mu, k, \lambda}(\phi) \\
& =\lambda y^{k-\lambda k} h_{\nu+2 k}, \mu+2 k, \lambda\left(x^{\lambda^{k}} \psi(x)\right) \\
& =\lambda^{k} y^{-\lambda^{k}}{ }_{\nu+2 k, \mu+2 k, \lambda}\left(x^{\lambda^{k}}{ }_{N}{ }_{\mu+k-1, \lambda} \cdots \ldots N_{\mu, \lambda}\right. \\
& =\lambda y^{k} y^{-\lambda k}(-1)^{k} \lambda y^{k} h_{\nu+k, \mu+k, \lambda}\left(x^{\lambda k} \phi(x)\right) \\
& =(-1)^{k} \lambda^{2 k} h_{\nu+k, \mu+k, \lambda}\left(x^{\lambda^{k}} \phi(x)\right) \\
& \text { by repeated application of(3.7.2). }
\end{align*}
$$

Hence, the result follows. Similarly the result (3.8.8.) can be established.

Corollary : For $\nu+k \geqslant-1 / 2$ and $\lambda>0$. If $\emptyset \in H_{\mu, \lambda}$, then

$$
h_{\nu, k, \lambda}(\phi)=\bar{h}_{\nu, k, \lambda}(\phi)
$$

The proof of this follows by putting $\nu=\mu$ in above theorem.

* 3.8.1 : By Theorem 3.8.1, we can say that either (3.8.1) or (3.8.3) can be considered as the extension of the Theorem 3.5.1 for any pair of real numbers ν and μ such that $\nu+\mu+2 k \geqslant-1$ for any positive inceger k Inverse transform of this extension is given by either (3.8.2) or (3.8.4).

$$
\text { Now, we can define the transform } h_{\nu, \mu, \lambda} \text { for }
$$

$f \in H_{\nu, \lambda}^{\prime}$ by the relation

$$
\left\langle h_{\nu, \mu, \lambda}^{\prime}(\mathrm{f}), \phi\right\rangle=\left\langle\mathrm{f}, \mathrm{~h}_{\nu, \mu, \mathrm{k}, \lambda}(\phi)\right\rangle, \ldots(3.8 .10)
$$

for $\phi \in H_{\mu, \lambda}, f \in H_{\nu, \lambda}^{\prime}$ and $\nu+\mu+2 k \geqslant-1, \lambda>0$.
Since $\phi \rightarrow h_{\nu, \mu, k, \lambda}(\phi)$ is an isomorphism from $H_{\mu, \lambda}$ onto
$H_{\nu, \lambda}$. In view of the known result $[30, p .29]$ it follows that the transformation $h_{\nu, \mu, \lambda}$ defined by (3.8.10), is an isomorphism from $H_{\nu, \lambda}^{\prime}$ on to $H_{\mu, \lambda}$. Where as the corresponding inverse mapping -1 $h_{\nu, \mu, \lambda}$ is given by

$$
\begin{aligned}
\left\langle h_{\nu, \mu, \lambda}^{-1}(f), \phi\right\rangle & =\left\langle f, h_{\nu, \mu, k, \lambda}^{-1}(\phi)\right\rangle \\
& =\left\langle f, h_{\mu, \nu, k, \lambda}(\phi)\right\rangle \\
& =\left\langle h_{\mu, \nu, \lambda}^{\prime}(f), \phi\right\rangle, \phi \in H_{\nu, \lambda}
\end{aligned}
$$

Therefore,

$$
h_{\nu, \mu, \lambda}^{-1}(f) \quad=h_{\mu, \nu, \lambda}^{\prime}(f) .
$$

* 3.9 : On Self-Reciprocal Distribution :

In this section we shall prove a theorem on selfreciprocal distribution which is a generalization of theorem (2.2).

Theorem : 3.9: If f is a self-reciprocal generalized function $R_{\nu, \lambda}^{\prime}$, then $h_{\nu, \mu, \lambda}(f)$ is a self-reciprocal generalized function $R_{\mu, \lambda}^{0}$ for $\mu-2>\nu \geqslant-1 / 2$.

Proof : To prove the theorem, we have to show: that
$h_{\nu, \mu, \lambda}(f) \in H_{\mu, \lambda}^{\prime}$ and $h_{\mu, \lambda}\left(h_{\nu, \mu, \lambda}(f)=h_{\nu, \mu, \lambda}(f)\right.$ in $H_{\mu, \lambda}^{\prime}$ since the mapping $\varnothing \cdots h_{\nu, \mu, \lambda}(\varnothing)$ is an isomorphism from $H_{\mu, \lambda}$ onto $H_{\nu, \lambda}$ for $\nu+\mu \geqslant-1$ and by the consequence of [30, p-29], we have for $f \in H_{\nu, \lambda}^{\prime}$ implies that $h_{\nu, \mu, \lambda}(f) \in H_{\mu, \lambda}^{\prime}$.

Therefore, it remains to show that
$\left\langle h_{\mu, \lambda}^{\prime}\left(h_{\nu, \mu, \lambda}^{\prime}(f), \phi\right\rangle=\left\langle h_{\nu, \mu, \lambda}^{\prime}(f), \phi\right\rangle, \phi \in H_{\mu, \lambda}\right.$
The L.H.S. of (3.9.1) can be written as follows

$$
\begin{aligned}
\text { L.H.S. } & =\left\langle h_{\nu, \mu, \lambda}^{\prime}(f), h_{\mu, k, \lambda}(\varnothing)\right\rangle \text { for } \mu+k \geqslant-1 / 2 . \\
& =\left\langle f, h_{\nu, \mu, k, \lambda}\left(h_{\mu, k, \lambda}(\phi)\right)\right\rangle, \nu+\mu+2 k \geqslant-1 . \quad \ldots(3.9 .2)
\end{aligned}
$$

Now, the equation (3.9.1) can be written as follows -
$\left\langle f, h_{\nu, \mu, k, \lambda}\left(h_{\mu, k, \lambda}(\phi)\right)\right\rangle=\left\langle h_{\nu, \mu, \lambda}^{\prime}(f), \phi\right\rangle$ by (3.9.2) ..(3.9.3) Again, in order to prove (3.9 .3), it is sufficient to show that

$$
\begin{gathered}
\left\langle f, h_{\nu, \mu, k, \lambda}\left(h_{\mu, k, \lambda}(\phi)\right)\right\rangle=\left\langle f, h_{\nu, k, \lambda}\left(h_{\nu, \mu, k, \lambda}(\phi)\right)\right\rangle \quad \ldots(3.9 .4) \\
\text { for } \nu+\mu+2 k \geqslant-1, \phi \in H_{\mu, \lambda}
\end{gathered}
$$

For,

$$
\begin{aligned}
\left\langle f, h_{\nu, k, \lambda}\left(h_{\nu, \mu, k, \lambda}(\emptyset)\right)\right\rangle & =\left\langle h_{\nu, \lambda}^{\prime}(f), h_{\nu, \mu, k, \lambda}(\emptyset)\right\rangle \\
& =\left\langle f, h_{\nu, \mu, \lambda}(\emptyset)\right\rangle \\
& =\left\langle h_{\nu, \mu, \lambda}^{\prime}(f), \emptyset\right\rangle \\
& =\text { R.H.S. of (3.9.3). }
\end{aligned}
$$

We shall prove (3.9.4), by showing that

$$
\begin{equation*}
h_{\nu, \mu, k, \lambda}\left(h_{\mu, k, \lambda}(\phi)\right)=h_{\nu, k, \lambda}\left(h_{\pi, \mu, k, \lambda}(\phi)\right) \tag{3.9.5}
\end{equation*}
$$

For $\varnothing \in H_{\mu, \lambda}$ and considering both sides of (3.9.5) to be a function of variable z.

Now, R.H.S. of (3.9.5)

$$
\begin{aligned}
& =(-1)^{k-k} z^{-\lambda k} h_{\nu+k, \lambda} N_{\nu+k-1, \lambda} \ldots N_{\nu, \lambda} h_{\nu, \mu, k, \lambda}(\phi(x)) \\
& =z^{-\lambda k} h_{\nu+k, \lambda}\left(h_{\nu+k, \mu+k, \lambda}\left(x^{\lambda^{k}} \phi\right)\right) \text { by (3.8.1) and (3.8.9) }
\end{aligned}
$$

Similarly, L. H S. of (3.9.5)

$$
=z^{-\lambda k} h_{\nu+k, \mu+k, \lambda}\left(h_{\mu+k, \lambda}\left(x^{\lambda^{k}} \phi(x)\right)\right) \quad \text { by }(3.8 .9)
$$

Again the result $(3.9 .5)$ follows, if we can show that
$\left.h_{\nu+k, \mu+k, \lambda}\left(h_{\mu+k, \lambda^{\prime}} \cdot x^{\lambda k} \phi\right)\right)=h_{\nu+k, \lambda}\left(h_{\nu+k, \mu+k, \lambda}\left(x^{\lambda k} \phi\right)\right)$ and for this, we shall show that
$h_{\nu, \mu, \lambda}\left(h_{\mu, \lambda}\left(x^{\left.\lambda^{k} \phi\right)}\right)=h_{\nu, \lambda}\left(h_{\nu, \mu, \lambda}\left(x^{\lambda^{k}} \phi\right)\right)\right.$,

$$
\begin{equation*}
\text { where } \mu-2>\nu \geqslant 1 / 2 \tag{3.9.6}
\end{equation*}
$$

Now by the known result of Erdelyi (6, p. 48), for any variable $z>0$ and $\lambda>0$, we have

$$
\begin{aligned}
& =(-1)^{k-k-\lambda^{k}} h_{\nu+k, \mu+k, \lambda} \quad N_{\mu+k-1, \lambda} \cdots N_{\mu, \lambda}\left(h_{\mu, k, \lambda}(\phi(x))\right) \\
& \text { by (3.8.1) } \\
& =(-1)^{k-k} z^{-\lambda k} h_{\nu+k, \mu+k, \lambda^{N} \mu+k-1, \lambda \ldots N_{\mu, \lambda}\left\{(-1)^{k} \lambda^{k} y^{-\lambda k}\right\}} \\
& \left.h_{\mu+k, \lambda} N_{\mu+k-1, \lambda} \ldots N_{\mu, \lambda} \phi(x)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\infty}(z y)^{\lambda(\nu / 2-\mu / 2+1)-1 / 2} J_{\nu+\mu}^{2} \\
&\left(z^{\lambda} y^{\lambda}\right)\left((x y)^{\lambda-1 / 2} J_{\mu}\left(x^{\lambda} y^{\lambda}\right)\right) d y \\
&= \int_{0}^{\infty}(z y)^{\lambda-1 / 2}{ }_{\nu}\left(z^{\lambda} y^{\lambda}\right)(x y)^{\lambda(\nu / 2-\mu / 2+1)-1 / 2}{ }_{J_{\nu+\mu}^{2}}\left(x^{\lambda} y^{\lambda}\right) d y \\
& \ldots(3.9 .7)
\end{aligned}
$$

For $\mu>\nu \geqslant-1 / 2$ and in view of (3.9.7), we have

$$
\begin{gather*}
\int_{0}^{\infty} \varphi(x) d x \int_{0}^{\infty}(z y)^{\lambda(\nu / 2-\mu / 2+1)-1 / 2} J_{J_{\nu+\mu}^{2}}\left(z^{\lambda} y \hat{\lambda}\right)(x y)^{\lambda-1 / 2} \\
J_{\mu}\left(x^{\lambda} y^{\lambda}\right) d y \\
=\int_{0}^{\infty} \phi(x) d x \int_{0}^{\infty}(z y)^{\lambda-1 / 2} J_{\nu}\left(z^{\lambda} y^{\lambda}\right)(x y)^{\lambda(\nu / 2-\mu / 2+1)-1 / 2} \\
J_{\frac{\nu+\mu}{2}}\left(x^{\lambda} y^{\lambda}\right) d y \tag{3.9.8}
\end{gather*}
$$

Changing the order of integration in (3.9.8) by Fubin's theorem, we obtain

$$
\begin{gathered}
\int_{0}^{\infty}(z y)^{\lambda(\nu / 2-\mu / 2+1)-1 / 2}{ }_{J_{\frac{\nu+\mu}{2}}\left(z^{\lambda} y^{\lambda}\right) d y} \int_{0}^{\infty}(x y)^{\lambda-1 / 2} J_{\mu}\left(x^{\lambda} y^{\lambda}\right) \phi(x) d x \\
=\int_{0}^{\infty}(z y)^{\lambda-1 / 2} J_{\nu}\left(z^{\lambda} y^{\lambda}\right) d y \int_{0}^{\infty}(x y)^{\lambda(\nu / 2-\mu / 2+1)-1 / 2} \\
{ }_{J_{\frac{\nu+\mu}{2}}}\left(x^{\lambda} y^{\lambda}\right) \phi(x) d x .
\end{gathered}
$$

Therefore ,

$$
h_{\nu, \mu, \lambda}\left(h_{\mu, \lambda}(\phi)\right)=h_{\nu, \lambda}\left(h_{\nu, \mu, \lambda}(\phi)\right) .
$$

Hence, the theorem.

