CHAPTER=II
 SOME SUBS IITUTION TIEORENS FUR
 DISTHIBUTIONLL STIELTJES TRANSFORMAIION

2.1 Introauction :

In this chapter we shall extend a simple generalization of the Stieltjes transformation to certain class of distriautions. ive shall also prove some substitution theorems simılar to Buschman [l」for this distributional transformation.

The transformation defined by the equation
$s[j(\tau), \tau \neq y] \triangleq J(y) \triangleq \Gamma(\rho) y^{m}\left(-1 \int_{0}^{\infty} \frac{j(\tau)}{\left(y^{1 \pi}+\tau^{m}\right)} e^{d \tau,(m, \rho>0)}\right.$ \therefore (2.1.1)
(whenever the integral on the righthand side converges
for a complex y with Re. y$\rangle \mathrm{C}$)
is a simple generalization of the Stieltjes transform'of a function $J(t) \in L(0, \infty)$, which is defined by

$$
\begin{equation*}
F(y)=\int_{0}^{\infty} \frac{j(\tau)}{(y+\tau)} d T \tag{2.1.2}
\end{equation*}
$$

Throughout this chapter $D_{y}(I)$ will denote the space of all smooth functions with compact supports on I: ($0, \infty$) and with
the parameter y.
We first construct a testing function space $S_{a, b}$ by applying the change of variable $T=e^{t}$ to the definition of $\varepsilon_{a, b}$ and setting $\sqrt{T} \psi(T)=\phi(\log T)$ in Sect.3.2, Eq. (1) [6]. This yields the following definition : -
Given any two real numbers a and $b, S_{a, b}$ is the space of all smooth functions $\Psi(T)$ on $(0, \infty)$ such that
$L_{k}(\psi)=I_{a, b, k}(\psi)=\sup _{0<T<\infty}\left|\Sigma(\log T)\left(T \frac{d}{d T}\right)^{k} \sqrt{T} \psi(T)\right|<\infty \ldots \ldots(2.1 .3)$
for $k=0,1,2, \ldots$
where $\xi(\log T)= \begin{cases}T^{a} & \text { if } 1 \leqslant T<\infty \\ T^{b} & \text { if } 0<T<1 .\end{cases}$
The topology of $S_{a, b}$ is that generated by the multinorm $\left\{L_{d, b, k}\right\}_{k=0}^{\infty} . S_{a, b}$ is sequentially complete, Housdorff, locally convex, first countable, metrizable topological linear space. It is complete and therefore Frechet space [6]. For $a<m p-1 / 2$ and $b\rangle m p-1 / 2, \psi(T)=\left(y^{m}+T^{m}\right)^{-\rho} E S_{a, b}$. To. prove this it suffices to show that

$$
\phi(t)=e^{t / 2}\left(y^{m}+e^{m t}\right)^{-\rho} E \quad \&_{a, b} \quad \text { for } a<m Q-1 / 2 \text { and } .
$$

Now we have
$\gamma_{k}(\varnothing)=\sup _{-\infty<t<\infty}\left|K_{a, b}(t) D^{k}\left[e^{t / 2}\left(y^{m}+e^{m t}\right)-\rho\right]\right|$
where $K_{a, b}(t)$ is defined as in Sect. 3.2 [6]

$$
\begin{aligned}
& =\sup _{-\infty<t<\infty}\left|K_{a, b}(t) \quad \sum_{\nu=0}^{k}\binom{k}{\nu}\left[D^{k-\nu} e^{t / 2}\right]\left[D^{\nu}\left(y^{m}+e^{m t}\right)^{-\rho}\right]\right| \\
& =\sup _{-\infty \lll \infty}\left|K_{a, b}(t) . \sum_{\nu=0}^{k}\binom{k}{\nu}\left[\left(\frac{1}{2}\right)^{k-\nu} e^{t / 2}\right]\left[\sum_{I=1}^{\nu} \beta_{1} e^{1 m t}\left(y^{m}+e^{m t}\right)^{-\rho-i}\right]\right| \\
& \text { where } \beta_{I} \text { are suitable constants } \\
& \langle\infty \text { for } a>m p-1 / 2 \text { and } b\rangle m p-1 / 2 \text {. } \\
& \therefore \phi(t)=e^{t / 2}\left(y^{n}+e^{m t}\right)-\rho_{E} \quad x_{a, b} \text { for } a<m \rho-1 / 2 \text { and } \\
& \text { b) } m p-1 / 2 \text {. }
\end{aligned}
$$

As a consequence, $S_{a, b}$ is a complete countably multinormed space, $S_{a, b}^{\prime}$, the dual of $S_{a, b}$ is also complete [6].

We state the following useful results : "
(a) The mapping $\psi(T)=T^{-1 / 2} \phi(\log T) \rightarrow \phi(t)$
is an isomorphism from $\mathrm{S}_{\mathrm{a}, \mathrm{b}}$ onto $\mathrm{E}_{\mathrm{a}, \mathrm{b}}$ since
$L_{a, b, k}[\psi(\tau)]=r_{a, b, k}[\phi(t)]$.
(b) If $J(T) \in S_{a, b}^{\prime}$ for some $a<m p-1 / 2$ and $b>m e-1 / 2$, then the Stieltjes transform J of j is defined by $S[j(\tau), \tau \underset{\rightarrow}{ } y] \triangleq J(y) \triangleq\left\langle J(\tau), \frac{1}{\left(y^{m}+T^{\prime}\right) \rho}\right\rangle^{\prime}, 0\langle T<\infty$
where for each fixed y the right-hand side has a sense as the application of $J(T) \in s_{a, b}^{\prime}$ to $\left(y^{m}+T^{m}\right)^{-\rho} E S_{a, b}$

2.2 Substitution Theorems :

Theorem 2.2.1
If $S[J(T), T \neq y]=J(y), \quad 0<y<\infty$ and $\mu(y, u) E D_{y}(I)$, then

$$
\left\langle K(\tau) J[G(\tau)], \quad\left(y^{m}+\tau^{m}\right)^{-\rho}\right\rangle=\int_{c}^{\infty} J(u) \mu\left(y, u^{\prime} d u, \quad \ldots(2,2,1)\right.
$$

where K, G and $h=G^{-1}$ are single -valued analytic functions,
real on $(0, \infty)$ and such that $G(0)=0$ and $G(\infty)=\infty$
$(O R G(\infty)=0$ and $G(0)=\infty)$ and

$$
\begin{aligned}
S[\mu(y, u), u \rightarrow p] & =\bar{\mu}(y, p) \\
& =\left[\left(y^{m}+h^{m}(p)\right)^{-\rho}\right] K[h(p)]\left|h^{\prime}(p)\right|
\end{aligned}
$$

Proof : Let $\psi(T)$ be an arbitrary member of $S_{c, d}$, $c<m \rho-1 / 2$ and $d>m p-1 / 2$. By Sect. 2.1, result (a), the mapping $\psi(T) \rightarrow \phi(t)$ is an 1 isomorphism from $S_{c, d}$ onto $\varepsilon_{c, d}$

The mapping $\varnothing(t) \rightarrow K(t) \phi(t)$, where. K is analytic and real on $(0, \infty)$, is an 1 isomorphism from $\mathcal{E}_{c, d}$ onto $\mathscr{E}_{u, v}$ where $u<c$ and $v \geqslant d$ [4, Theorem 3.4.1]. Again by Sect.2.1, result (a), the mapping $K(T) \psi(T) \rightarrow K(t) \phi(t) \quad$ is an isomorphism from $S_{u, v}$ onto $\mathcal{E}_{u, v^{*}}$ Hence the mapping $\psi(T) \rightarrow K(T) \psi(T)$ is an isomorphism from $\mathrm{S}_{\mathrm{c}, \mathrm{d}}$ onto $\mathrm{S}_{\mathrm{u}, \mathrm{v}}$ where $\mathrm{u}<\mathrm{c}$ and v$\rangle \mathrm{d}$.

Furthermore, in accordance with Sect.2.5 [6], it now follows that $J(T) \rightarrow K(T) J(T)$ is an isomorphism from $S_{u, v}^{\prime}$ onto $S_{c, d}^{\prime}$ and we write

$$
\langle K(T) J(T), \psi(T)\rangle=\langle J(T), K(T) \psi(T)\rangle
$$

therefore if $S[j(T), T \rightarrow y]=J(y), \circ<y<\infty$, the equation

$$
\left\langle K(\tau) J(\tau), \quad\left(y^{m}+\tau^{m}\right)^{-p}\right\rangle=\left\langle J(\tau), K(\tau)\left(y^{m}+t^{m}\right)^{-Q}\right\rangle
$$

has sense. Indeed, we have
$j(T) E \quad S_{u, v}^{\prime}, K(T)\left(y^{m}+T^{m}\right)^{-\rho} E S_{u, v}, K(T) \jmath(T) E S_{c, d}^{\prime}$ and $\left(y^{m}+T^{m}\right)^{-\rho} \quad S_{c, d} \quad$.

If $\mathcal{X}(T)=J[G(T)] E \quad S_{u, v}^{\prime}$, then $\chi_{J}(T) \rightarrow K(T) \chi(\bar{U})$ is an isomorphism from $S_{u, v}^{\prime}$ onto $S_{c, d}^{\prime}$ and we can write $\left\langle K(T) J[G(T)],\left(y^{m}+T^{m}\right)^{-\rho}\right\rangle=\left\langle J[G(\tau)], K(\tau)\left(y^{m}+T^{m}\right)^{-\rho}\right\rangle$

Here

$$
\begin{aligned}
& j[G(T)] E S_{u, v}^{\prime}, K(T)\left(y^{m}+\tau^{m}\right)^{-Q} E S_{u, v} \\
& K(\tau) J[G(T)] E S_{c, d}^{\prime} \text { and }\left(y^{m}+\tau^{m}\right)^{-Q} G S_{c, d}
\end{aligned}
$$

Let $K(T) \psi(T)=\eta(T)$ be an arbitrary member of $S_{u, v}$. Choose real numbers a and $b, a<u$ and $v<b$ such that $\eta[h(T)]\left|h^{*}(T)\right| E \quad S_{a, b}$.

Let $K(t) \phi(t)=\eta(t) E \mathcal{L}_{u, v}$. By Sect. 2.1 , result (a), the mapping $\eta(T) \rightarrow \eta(t)$ is an isomorphism from $S_{u, v}$ onto $\varepsilon_{u, v^{*}}$ The mapping $\eta(t) \rightarrow \eta[h(t)]\left|h^{\prime}(t)\right|$ is an isomorphism from $\tilde{x}_{u, v}$ onto $\varepsilon_{a, b}[4$, Theorem 3.4.1]. Again by Sect. 2.1, result (a), the mapping

$$
\eta[h(\zeta)]\left|h^{\prime}(\tau)\right| \rightarrow \eta[h(t)]\left|n^{\prime}(t)\right| \text { is an isomorphism }
$$

from $S_{a, b}$ onto $\varepsilon_{a, b}$. Hence the mapping $\eta(\tau) \rightarrow \eta[h(\tau)]\left|h^{\prime}(\tau)\right|$ is an isomorphism from
$S_{u, v}$ onto $S_{a, b}$.
We denote the adjoint of the mapping $\eta(\tau) \rightarrow \eta[h(\tau)]\left|h^{\prime}(\tau)\right|$ by $j(\tau) \rightarrow J[G(\tau)]$, since this is what we would have if J were a conventional function, and we, write

$$
\langle j[G(\tau)], \eta(\tau)\rangle=\langle J(\tau), \eta[h(\tau)]| h^{\prime}(\tau)| \rangle .
$$

By Theorem l.10.2 [6], $j(T) \rightarrow j[G(T)]$ is an isomorphism from $S_{a, b}^{\prime}$ onto $S_{u, v}^{\prime}$. Therefore, if

$$
S[J(\tau), T \rightarrow y]=J(y), \quad 0<y<\infty, \text { the equation }
$$

$$
\left\langle J[G(T)], K(T)\left(y^{m}+\tau^{m}\right)^{-\varrho}\right\rangle=\left\langle J(\tau), K[h(\tau)]\left(y^{m}+h^{m}(\tau)\right)^{-\varrho}\right| h^{\prime}(\tau)| \rangle
$$

$$
\ldots(2.2 .3)
$$

has sense. Indeed, we have

$$
\begin{aligned}
& j(T) E S_{a, b}^{\prime}, K[h(T)]\left(y^{m}+h^{m}(T)\right)^{\rho}\left|h^{\prime}(T)\right| E S_{a, b} \\
& j[G(T)] E S_{u, v}^{\prime} \text { and } K(T)\left(y^{m}+T^{m},{ }^{-\rho} E \quad S_{u, v} .\right.
\end{aligned}
$$

From equation (2.2.2) and (2.2.3) we conclude that $\left.j(T) \rightarrow K_{i}^{\prime}(T)\right][G(T)]$ is an isomorphism from $\dot{S}_{a, b}^{\prime}$ onto $S_{c, d}^{\prime}$ where $a<c$ and $d<b$ and we write $\left.\langle k(\tau)][G(\tau)],\left(y^{m}+\tau^{m}\right)^{-\varrho}\right\rangle=\left\langle j(\tau), k[h(\tau)]\left(y^{m}+h^{m}(\tau)^{-\varrho}\left|h^{\prime \prime}(\tau)\right|\right\rangle\right.$...(2.2.4)

Indeed, we have
$J(T) E S_{a, b}^{\prime}, K[h(T)]\left(y^{m}+h^{m}(T)^{-g_{h}}(T) \mid E S_{a, b}\right.$, $K(T) J\left[G(T) E S_{c, d}^{\prime}\right.$ and $\left(y^{m}+T^{m}\right)^{-\rho_{E}} S_{c, d}$.

The equation (2.2.4) further can be written as

$$
\begin{aligned}
&\left\langle K(\tau) j[G(\tau)],\left(y^{m}+\tau^{m}\right)^{-\rho}\right\rangle=\left\langle J(\tau), K[h(\tau)]\left(y^{m}+h^{m}(\tau)\right)^{-\rho} \mid h^{\prime}(\tau)!\right\rangle \\
&=\langle J(\tau), \bar{\mu}(y, \tau)\rangle \\
&=\left\langle J(\tau), \int_{0}^{\infty} \mu(y, u)\left(\tau^{m}+u^{m}\right)^{-\rho} d u\right\rangle \\
&=\int_{0}^{\infty}\left\langle J(\tau),\left(T^{m}+u^{m}\right)^{-\rho}\right\rangle \mu(y, u) d u . \ldots \\
& \text { because of Lemma } \\
&=\int_{0}^{\infty} J(u) \mu(y, u) \text { du . }
\end{aligned}
$$

This completes the proof.

Theorem 2.2.2
Let $S[A(T) J(T), T \rightarrow Y]=J^{*}(y), 0<y \nless \infty \quad$ and $\mu^{*}(y, u) \in D_{Y}(I)$, then
$\left\langle\dot{K}(T) j[\sigma(T)],\left(y^{m}+T^{m}\right)^{-\rho}\right\rangle=\int_{0}^{\infty} J^{*}(u) \mu^{*}(y, u) d u, \ldots$ (2.2.5)
where A, K, G and $h=G^{-1}$ are single valued analytic functions, real on $(0, \infty)$ and such that $G(0)=0$ and $G(\infty)=\infty$ $(O R G(0)=\infty$ and $G(\infty)=0)$ and

$$
\begin{aligned}
S\left[\mu^{*}(y, u), u \rightarrow p\right] & =\bar{\mu}^{*}(y ; p) \\
& =\left[\left(y^{m}+h^{m}(p)\right)^{-p}\right] K[h(p)]\left|h^{\prime}(p)\right|[A(p)]^{-1}
\end{aligned}
$$

Proof : Let $\psi(T)$ be an arbitrary member of $S_{c, d}$,
$c<m p-1 / 2$ and $d>m p-1 / 2$. By Sect. 2.1 , result (a), the mapping $\|(T) \rightarrow \phi(t)$ is an isomorphism from $S_{c, d}$ onto $\mathcal{E}_{c, d}$. The mapping $\varnothing(t) \rightarrow K(t) \notin(t)$, where K is analytic and real on $(0, \infty)$, is an 1 isomorphism from ${\underset{c}{c, d}}$ onto $\AA_{u, v}$, where $u<c$ and $d<v$ [4, Theorem 3.4.1]. Again by Sect.2.1, result (a), the mapping
$K(T) \Psi(T) \rightarrow K(t) \varnothing(t)$ is an isomorphism from $S_{u, v}$ onto $f_{u, v^{*}}$ Hence the mapping $\psi(\tau) \rightarrow K(T) \psi(T)$ is an isomorphism from $S_{c, d}$ onto $S_{u, v}$, where $u<c$ and $d<v$. Further-. more in accordance with Sect. 2.5 [6], it now follows that $J(T) \rightarrow K(T) j(T)$ is an isomorphism from $S_{u, v}^{\prime}$ onto $S_{C, d}^{\prime}$ and we write
$\langle K(T) J(T), \Psi(T)\rangle=\langle j(T), K(T) \Psi(T)\rangle$
Therefore' if

$$
\begin{aligned}
& S[A(T) j(T), T \rightarrow y]=J^{*}(y), 0<y<\infty, \text { the equation } \\
& \left\langle K(\tau) J(T),\left(y^{m}+T^{m}\right)-\rho\right\rangle=\left\langle y(T), K(\tau)\left(y^{m}+T^{m}\right)^{-\rho}\right\rangle
\end{aligned}
$$

has sense. Indeed, we have

$$
J(T) E s_{u, v}^{\prime}, \quad K(T)\left(y^{m}+T^{m}\right)^{-\rho} E S_{u, v}, K(T) J(T) E s_{c, d}^{\prime}
$$

$$
\text { and } \quad\left(y^{m}+T^{m}\right)^{-Q^{\prime}} E s_{c, d}
$$

$$
\text { If } \mathcal{G}(T)=J\left[\dot{u}(T) j \in s_{u, v}^{\prime} \text { then } \chi(T)=K(T) \chi_{G}(T)\right. \text { is an }
$$

isomorphism from $S_{u, v}^{\prime}$ onto $S_{c, d}^{\prime}$ and we can write $\left\langle K(\tau) \jmath[G(\tau)],\left(y^{m}+\tau^{m}\right)^{-\rho}\right\rangle=\left\langle\jmath[G(\tau)], \kappa(\tau)\left(y^{m} \tau \tau^{m}\right)^{-\rho}\right\rangle$

Here $\quad J[G(T)] \in S_{u, v}^{\prime}, K(T)\left(y^{m}+T^{m_{y}}\right)^{-P_{G}} S_{u, v}$,
$K(T) j[G(T)] E S_{c, d}^{\prime}$ and $\left(y^{m}+T^{m}\right)^{-P} E S_{c, d}$.
Let $K(T) \Psi(T)=\eta(T)$ be an arbitrary member of $S_{u, v^{*}}$ Choose real numbers a and $b, a<u$ and $v<b$ such that
$\eta[h(T)] \ln ^{\prime}(T) \mid E E \quad S_{a, b}$.
Let $K(t) \phi(t)=\eta(t) E \varepsilon_{u, v}$. By Sect. 2.1, result (a), the mapping $\eta(T) \rightarrow \eta(t)$ is an isomorphism from $S_{u, v}$ onto $\varepsilon_{u, v}$. The mapping $\eta(t) \rightarrow \eta[h(t)]|\hat{h}(t)|$ is an 1 isomorphism from $\dot{\&}_{u, v}$ onto $\varepsilon_{a, b}$ [4, Theorem 3.4.1].

Again by Sect. 2.1, result (a), the mapping $\eta[h(T)]\left|h^{\prime}(T)\right| \rightarrow \eta[h(t)]\left|h^{\prime}(t)\right|$ is an isomorphism from $S_{a, b}$ onto $\mathcal{L}_{a, b}$. Hence the mapping $\left.\eta(\tau) \rightarrow \eta[h(\tau)] \mid h^{\prime}(\tau)\right]$ is an isomorphism from $s_{u, v}$ onto $S_{a, b}$. We denote the adjoint of the mapping $\eta(T) \rightarrow \eta[h(T)]|\dot{h}(T)|$ by $j(T) \rightarrow j[G(T)]$, since this is what we would have if $J(T)$ were a conventional function, and we write

$$
\langle J[G(T)], \quad \eta(T)\rangle=\langle\jmath(T), \eta[h(T)]| h^{\prime}(T)| \rangle
$$

By Theorem 1.10.2 [6], $J(T) \rightarrow J[G(T)]$ is an isomorphism from $S_{a, b}^{\prime}$ onto $S_{u, v^{*}}^{\prime}$ Therefore if

$$
S[A(T) j(T), T \rightarrow y]=J^{\star}(y), \quad 0<Y<\infty, \text { the }
$$

- equation

$$
\begin{aligned}
& \left\langle j[G(T)], K(T)\left(y^{m}+T^{m}\right)^{-P_{A}} A[(T)][A[G(T)]]^{-1}\right\rangle \\
& =\left\langle j(T), K[h(T)]\left(y^{m}+h^{m}(T)\right)^{\left.-P_{A(T)}[A(T)]^{-1}\left|h^{\prime}(T)\right|\right\rangle \ldots(2.2 .7)}\right.
\end{aligned}
$$

has sense. Indeed, we have
$J(T) E S_{a, b}^{\prime}, K[h(T)]\left(y^{m}+h^{m}(T)\right)^{-P_{A(T)}[A(T)]^{-1}\left|h^{\prime}(T)\right| E S_{a, b}, ~}$ $J[G(T)] E S_{u, v}^{\prime}$ and $K(T)\left(y^{m}+T^{m}\right)^{-p} p_{A}[G(T)][A[G(T)]]^{-1} E S_{u, v}$.

From equation (2.2.6) and (2.2.7) we conclude that
$J(T) \rightarrow K(T) J[G(T)]$ is an isomorphism from $S_{a, b}^{\prime}$ onto $S_{c, d}^{\prime}$, where $a<c$ and $d<b$ and we wirite

$$
\begin{aligned}
& \left.\langle K(T)][G(T)],\left(y^{m}+T^{m}\right)^{\left.-P_{A[G(T)][A[G(T)]}\right]^{-1}}\right\rangle \\
& =\left\langle j(T), K[h(T)]\left(y^{m}+h^{m}(\tau)\right)^{\left.-P_{A(T)[A(T)]^{-I}}\left|h^{\prime}(T)\right|\right\rangle}\right. \\
& \ldots(2.2 .8)
\end{aligned}
$$

Indeed, we have

$$
\begin{aligned}
& J(T) E S_{a, b}^{\prime}, K[h(T)]\left(y^{m}+h^{m}(T)\right)^{-\rho_{A}(T)[A(T)]^{-1}\left|h^{\prime}(T)\right| E S_{a, b},} \\
& K(T) J[G(T)] E S_{c, d}^{\prime} \text { and }\left(y^{m}+T^{m}\right)^{-\rho} A[G(T)][A[G(T)]]^{-1} E S_{c, d}
\end{aligned}
$$

The equation (2.2.8) further can be written as

$$
\begin{aligned}
\left\langle K(T) J[G(T)],\left(y^{m}+T^{m}\right)^{-\rho}\right\rangle & =\left\langle j(T), K[h(T)]\left(y^{m}+h^{m}(T)\right)^{-\rho}\right| h^{\prime}(T) \mid \\
& =\left\langle J(T), \bar{\mu}^{*}(y, T) A(T)\right\rangle \\
& =\left\langle A(T) j(T), \bar{\mu}^{*}(y, T)\right\rangle \\
& =\left\langle A(T) j(T), \int_{0}^{\infty} \mu^{*}(y, u)\left(u^{m}+T^{m}\right)^{-\rho} d u\right\rangle \\
& =\int_{0}^{\infty}\left\langle A(T) j(T),\left(u^{m}+T^{m}\right)^{-\rho}\right\rangle \mu^{*}(y, u) d u \\
& =\int_{0}^{\infty} J^{*}(u) \mu^{*}(y, u) d u .
\end{aligned}
$$

This completes the proof.

Theorem 2.2.3:
Let $S[J(T), T \rightarrow y]=J(y), \quad 0<y<\infty \quad$ and $\Theta(T, u) E \operatorname{Dy}(I)$, then

$$
\begin{equation*}
S^{-1}[K(y) J[G(y)]]=\langle J(u), \theta(T, u)\rangle \tag{2.2.9}
\end{equation*}
$$

where

$$
\begin{aligned}
S[\Theta(T, u), T \rightarrow y] & =K(y)\left[(G(y))^{m}+u^{m}\right]^{-\rho} \\
& =K(y) \Phi[G(y), u]
\end{aligned}
$$

and K, G are analytic functions.

$$
\begin{aligned}
& \text { Proof : know } J(p)=\left\langle j(u),\left(p^{m}+u^{m}\right)^{-\rho}\right\rangle \\
& =\langle j(u), \phi(\rho, u)\rangle \\
& \therefore J[G(y)]=\langle j(u), \Phi[G(y), u]\rangle \\
& \therefore K(y) J[G(y)]=\langle j(u), K(y) \Phi[(i(y), u]\rangle \\
& =\left\langle J(u), \int_{0}^{\infty} \theta(T, u)\left(y^{m}+T^{m}\right)^{-\rho} d T\right\rangle . \\
& =\left\langle\int_{0}^{\infty} J(u) \theta(T, u) d u,\left(y^{m}+T^{m}\right)^{-\rho}\right\rangle \ldots((2.2,10) \\
& =S\left[\int_{0}^{\infty} j(u) \theta(T, u) d u\right] \\
& \therefore S^{-1}[K(y) J[G(y)]]=\int_{0}^{\infty} J(u) \theta((, u) d u \\
& =\langle J(u), \quad \Theta(T, u)\rangle
\end{aligned}
$$

The right side of $(2 ; 2,10)$ can be justified,
This completes the proof.
Remarks :

1) By substituting $m=' p=1$ in the above theorems, we get the same results obtained by Sonavane [4].
2) Our distributional transformation (2.1.1) is not a particular case of any other fitieltjes transformation considered by Goose [2], Pathak. [3] and Tiwari [5].

REFERENCES

