25

CHAPTER-I1

-

SQVE__ SUBSIITUTION  THEORSMS _FOR

DISTRIBUTIONAL STIELTJES TRANSFORMATION

E— e 8« - —tawwe > . W L A T Evee At

2,1 Introduction :

In thais chapter we shall extend a simple generalization of
the Stieltjes transformation to certain class of distrinsutions.
wWie shall also prove some substitution theorems similar to

duschman [1; for this distributional transformation.,

The transformation defined by the equation

a
me-1 (D)
S[j(()ﬂ Tay 3 e J(y) & r'(Q)yQ ) (‘;}!ﬂtﬁ-’ﬂrj’&dt'(m’q> o)

) ‘ :oo (201-1)

(whenever the integral on the righthand side converges
for a complex y with Re.y>c )

1s a simple generalization of the Stieltjes transform'of a

function j(({) 6 L(o,m), which is defined by

8 3
F(y) = 2T at eee (2.1.2)
5/ (y+{)

Throughout this chapter Dy(I) will denote the space of all

smooth functions with compact suppcrts on I: (o,m) and with
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the parametzr vy .

We first construct a testing function space Sa b by
?

t to the definition of

applying the change of variable T{=e
£a,b and setting v T ¥(7) = #(log T) in Sect.3,2, Eq.{(1) [6].

This yields the following definition :

Given any two real numbers a and b, S, p 1s the space of all
’

smooth functions ¥(T) on (o,®) such that

ko
o 0Kl ! ce. (2.1.3)

‘ a i .
where §(log 1) = T if 14T @
™ 1f 04T ¢ .

The topology of S, , is that generated by the multinorm
?
m L3
{La,b,k} K=o sa,b is sequentially complete, Housdorff,

locally convex, first ccuntable, metrizable topological linear

space. It is complete and therefore Frechet space [€]. N

For aqmg - 1/2 and b mQ - 1/2, ¥(T) = (Y" + -(m)"g E S;p,

"To. prove this it suffices to show that

-

#g(t) = et/z(yrn + emt)_qﬁ £a,b for a{mQ - 1/2 and
b)m{-— 1/2

Now we have



t/2

Y (@) = (t) K ey
k -o::F;,(co*Ka’b )D[e (v" + e )Q]‘

where K, b<t) 1s cdefined as in Sect.3.2 [6]
?

= () 5 (% )[ k- -

- _:Zi;(lea,b ) o (,[p ”et/z][D”(ym-i-emt) ]!

= sup (t) kK x 1 k-v t/2_ v imt ot 'Q"i
i LS A S-S1(E SRECH LR |

where Bl are suitable constants

{ o for a}m{- 1/2 and b}mQ— 1/2

..."¢(t) = et/’z(yrl + emt)-ﬁ e £‘a,b for a¢me - 1/2 and
by mQ - 1/2

As a consequence, S is a complete countably
a,b

multinormed space, S' , the dual of S is also complete [6].
a,b a,b -

We state the followl'ng useful results : '

~1/2
(a) The mapping () = T #(leg T) -3 @(t)

is an isomorphism from Sa,b onto £’a,b since

La’b,k[‘l‘(r)] = Ta,b,K[¢(t)} .
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(b) If 3(T) 8 S;,b for some a £ mQ_~ 1/2 and b} mg - 1/2,

then the Stieltjes transform J of j is defined by

Ly

s[3(T), THyl = J(y) 2{3(D), , 0{T¢ @

1 ,
(Ym+f)Q>
' vee(2.1,4)

where for each fixed y +the right-hand side has a sense

as the application of 3(() € S; p to (y™ + ™) € e sa,b
. .

2.2 Substitution Theorems

Theorem 2.2.1

If s[3(V), T=ay] = Jy), o¢ygo and uy,u) B DY(I),

then -

(x(D3feD ], "+ T Q) = fJ(u)p(y,ukdu, vee (242.1)
¢
where K, G and h = G"l are single-valued analytic functions,

real on (o, @) and such that G(¢) =0 and G(m) =

(OR G‘(cc) =0 and G(O) = @) and

B (y,p) .
[Y™ + B™p)) 87 K[h(p) ] {1 (p) ]

S [Kly,u), u2p ]

Proof : Let ¥(T) be an arbitrary member of S_ 4 ,

c { mg - 1/2 and d)mg- 1/2. By Sect.2.1l, result (a), the
mapping ¥(1) & @(t) is an 1somorphism from S_ 4 onto £c,d‘
?

-
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The mapping @#(t) - K(t)@(t), wherer K is analytic and
real on (o,©), is an isomorphism from ‘£c,d onto £u,v
where u ¢ ¢ and v »d [4, Theorem 3,4.1]. Again by
Sect.2,1, result (a), the mapping

K(TV(T) =2 K(t)@(t) is an isomcrphism from S onto &,

u,v e

Hence the mapping ¥(7) = K(T)¥(T) is an isomorphism from

Sc,d onto Su,v where u {c and v > d.,

Furthermore, in acccrdance with Sect.2.5 [6], it now
follows that 3(T) -+ K(T)3(T) is an isomorphism from

| 4 1
Su,v onto Sc,d and we write

{RMD, 1Oy = D, kO WO >

thexefore if S[i(T), T = y ] = J(y), oyoa the

equation

{xM30, 6P+ ) D= {30, KOG+

has sense, Inde;ad, we have
HO B s, KOG+ T S8 s, KD 3(0) B s, and
(Y + B s 4

£ Y, (0 = 3[6(D] & s, , » then %, (1) » KON is

1 !
an isomorphism from Su v onto SC d and we can write
?

CROIEMT, (P + T e GIEDT, kOGP + T )
...(2.2.2)
Atk LIBRALY
s

AR
unv‘i.u UsivEESITY. &
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Here

’

ENT8 5,y KOG T N85,

sV

KBTI BS, 4 and (Y + 1™ & s, 4.

Let K(T)¥(T) = n(7) be an arbitrary member of Su.v

Choose real numbers a and b, afu and v¢b such that

n (DI | & s, .

Let K(t)@g(t) = n(t) B £,y + By Sect.2,1, result (a), the
, :

mapping 7{({) - n(t) is an isomorphism from S onto £/

u,v '
The mapping 7(t) -+ n[h(t)] ,h'(t)l is an isomorphism from
£, v onto &, [4, Theorem 3.4.1]. Again by Sect.2.1,

result (a), the mappang

n[h(T)] { h'(T)! - n[h(t)}] n'(t)l is an isomorphism

from S, onto &£ . Hence the mapping
a,b

o]
2T —~ n[h(T) 7] h'(()[ is an 1somorphism From

Su,v onto Sa,b .

We denote the adjoint of the mapping
(T = (D] | WD} by 3(T) ~ 1[6(T)], since this 1s

what we would have if 3 were a conventional function, and

we write

(361, 10y = LD, 1D ')y .
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By Theorem 1.10,2 [6], 3(7) —» j[G(T)] 1s an 1somorphism

] !
from Sa,b onto Su,v . Therefore, if

S[3(V, T3y J= Jy), oy o , the equation

(BN 1, KO (P T V)= {3 (0 Kn(T) 1PN Sne (D] hS

eee (2.2,3)

has sense, Indeed, we have
3T) B sg b K[R(D I + mOIN ' (] B Sap *
&V 68, , and KDY + ™ Vg S,y -
From equation (2.2.2) and (2.2,3) we conclude that

* 1
J(U) - K{T)3 [6(T)] 4is an isomorphism from S;,b onto S, 4

where a €c and d ¢ b and we write
(DD T, P+ T ) = GO0 KO 1P S )
...(2.2,4)

Indeed, we have
30 B L, KD IG™ + 650 S (Dl 8 s,

K(T3[G(T) BT, 4 and (" + T B s, 4.

The equation (2.2.4) further can be written as
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RN T, 6P+ TS ) = ¢ (T KM P N (1)

0 My DY
®

(00, July,n) (™ Vau )
0

@

‘}(<Q;CT), (Tm+um)-§>p(y,u)du...

[s}

because of Lemma
<@ 3.2.1 [4]

=[ J(u)u(y,u)du .

o
This completes the proof,

Theorem 2.2.2

Let S[A(THT), T »y ] =J3%(y), o¢ygo and

W*(y,u) 6 Dy(I) , then

: _ @
(KOO0, (P ™ 0D =/ PAlu) ¥y.u)du, ... (2.2.5)

)
where A, X, G and h = ¢t are single valued analytic functions,

real on (0, ®) and such that G(o) = 0o and G(») = ©

(OR G(O) = @ and G(ax) = 0) and

s[#*(y,u), u spl= F(y:p)

- , -1
[(® + B(p)) SK[h(p) ih’ ()] [AlP) ]
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Proof : Let ¥({) be an arbitrary member of Sc .4°
L
c{mQ— 1/2 and d ) mQ - 1/2. By Sect.2.1, result (a), the

manping ¥ (T) - @(t) is an isomorphism from Sc,d onto "Ec,d‘

The mapping @(t) - K(t)d(t), where K 4is analytic and real
on (o, @), is an isomorphism from & 4 oOnto &£, ., where

. ’ ’
u<c and d {v [4, Theorem 3.4.1], Again by Sect.2.1l,
result (a), .the mapping

K(T) ¥(T) — K(t) # (t) is an isomorphism from S,., onto

£U,v'

from Sc,d onto S

Hence the mapping %(T7) — K(T)¥(T) 1s an isomorphism

v’ where u ¢ c¢c and d £ v, Further-
9

more 1n accordance with Sect,2,5 [6], it now follows that

3(T) = K(T) j ({) 1s an 1somorphism from Sl: onto S;’d
9

v
and we arite

LKDD, WD) = GO, KOHKDD

1 . f
- P

Therefore if
S[ACT)3(T), T—= vy 1 = *(y), o (Y {®, the equation

=<
DD, (P + T U= a0 kM T

has sense, Indeed, we have

v u,v '’

O BS L, KOGT T Ses, L, (D0 B s,

and (ym + '('m)-.g E Sc,d .
1% (0 =3[0 €5, , then L (T =KDB(T) is an

L]
- - + -
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[

~ , .
isomorphism from S

u,v

(K03, 6P+ ™Y = GEm, kO ™ 1)

t
onto Sc 4 and we can write
}

ees(2.2.6)
Here J[B(0]B 3, , . KOG+ T Ves,
KDIGM]BS, 4 md (P +TH Ves, 4.
Let K(T)¥(T) = n(T) be an arbitrary member of Sy,y+ Choose

real numbers a and b, a £ u and v¢b such that
- t
n 03 ') B s, . .

Let K(t) g(t) = n(t) B £, v+ BY Sect.2.1, result (a), the
' H

mapping 7(7) - n(t) 1s an 1isomorphism from S,.y onto 'Eu,v .

The mapping 1(t) = n[h(t)] ' ﬁ(t)i 1s an isomorphism from

£,,v onto &£, [4,Theorem 3.4.17.

Again by Sect.2.l, result (a), th= mapping
n[h(T) ] ih'('('){ -3 n[h(t)] ’r;(t)l is an isomorphism from
Sa,b onto £a,b . Hence the mapping n(7) - n[h(7)] [1;('(')}

is an isomorphism from onto Sap *

Su,v .
We denote the adjoint of the mapping
'
2(T) =» a[R(DUR(T] by (1) — 3[6(T1)], since this is
what we would have if 3j({) were a conventional function,

and we write

, . 7% ONIL
(O] A0S = 0, O] v () %
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By Theorem 1,10.2 [6], 3(T) -» 3[G(T)] is an isomorphism

! 1
from Sa,b onto Su’v. Therefore if

SIA(DHT), Ty ] = J*y), o¢y¢o , the

* equation
- -1
BT, KOG + ™V A0 Bem] ]

- -1,
= {300 KIn(O IR0 MDA T 18"y .e(2.2.7)
has sense. Indeed, we have

' - -1 '
30 B s,y 4 K[RD JEPHO) A AT B B'S,
' - -1
JEMTE S, , and KOy ™ AN A6 B, , .

From equation (2.2.6) and (2.2.7) we conclude that
| | 1
3(T) = K(T)3[6(T)] 1s an isomorphism from S, p onto S_ 4,

where a{c and d{b and we write

3

_ -1
K367, (P + T AGQOIALOT T Y

- -1,
= (3T, K[h(T) J(¥™ + B™(T)) (JA('()[A(T)] [h (T)i)

o s 0 (2-2-8}
Indeed, we have

1 -~ -1 ,
2D B8, L KIR(D 1G™E0) MO AT 8 (0] 85, 4,

[ - -l
K(T)3[G(T)] B 5, 4 and (y™+ T7) ?A[G(T)][A[G('()]] IS
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The equation (2,2.8) further can be written as

CREIBIN T, (P TS = 5T KD IO U n' (1]

ATHD)LAMDD
={3(D), ¥y, D A

= {AM(D, By, DD
(AT, j’u*(y,unum-'- ™ o

o

f LA ID, (™ ™ Hp¥(y,u)dy

o
QQ

f I%(u) w¥(y,u)du .

O

il

This completes the proof.

Theorem 2.2.3

Let S[3(T), T3>y 1=J(y), o<y¢® and 8 (T, u) B Dy(I),
then

sTHK(y) I[6(n] 1= (atw), e (T, cer (£22.9)
where '

S [O(T,u), T oy = K(y)[(G(y))™ + u® T

= K(y) § [6(y), u ]

and K, G are analytic functions,



37

Proof : WNow J(p) = <:](U) , (P + um)mQ >
= {3, Ppau))

{3, § [étn), ul )

. J[G(y)} ]

e K(Y)I[G(Y) ]

(3tu), Kiy) § [6(y), vl
/ F m~¢
3t [ aTu (™ T Y aT |

(o)

H

N m ——
<J j(w)e( T,u)du, (Y™ ™ Q> ... (2.2,10)
®

= s fj(u)e(r,u)duJ

[s] s
m .

sk I[sn 13 [ 3(u) © ( (, u)du

Q
= <J(u), o (T, u) >

The right side of (2:2.10) can be justified,
This completes the proof.

Remarks :

-

1) By substituting’ m —'Q\= 1 1in the above theorems,

we get the same results obtained by Sonavane [4].

2) Our distributional transfommation (2.1.,1) is not a
particular case of any other ftieltjes transformation

considered by Gnose [2], Pathak.[3] and Tiwari [5].
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