
CHAPTER-1

CHAPTER-I

PRELIMINARIES

In this chapter we give some basic definitions and results which will be used in subsequent chapters.

1.1 DEFINITIONS

Def.1.1.1 Partially ordered set or Poset [5]: Let p be a nonvoid set. Define a relation \leq on p satisfying the following for all $a, b, c \in p$.

- i) $a \leq a$ (reflexivity)
- ii) $a \leq b$ and $b \leq a == a=b$ (antisymmetry)
- iii) $a \leq b$ and $b \leq c == a \leq c$ (transitivity)

The ordered pair (P, \leq) is called a partially ordered set or a poset.

A poset (P, \leq) is called as chain (or totally ordered set or linearly ordered set) if it satisfies following condition : iv) $a \leq b$ or $b \leq a$ for all $a, b, \in P$ (linearity).

Def.1.1.2 Zero element and unit element of poset [5] : A zero of a poset P is an element $\mathbf{O} \in \mathbf{P}$ with $\mathbf{O} \leq \mathbf{x}$ for $\mathbf{x} \in \mathbf{P}$. A unit element of a poset P is an element $1 \in \mathbf{P}$ with $\mathbf{x} \leq 1$ for all $\mathbf{x} \in \mathbf{P}$. Def.1.1.3 Lattice as poset [5] : A poset (L, \leq) is a lattice if sup { a,b }(or a y b) and inf { a,b } (or a A b) exists in L for all a,b \in L. **Def.1.1.4 Lattice as an algebra [5]** : An algebra $< L; \Lambda \lor >$ is called a lattice if L is a nonvoid set with two binary operations Λ and \lor satisfying following properties for all a,b,c \in L :

- i) $a_{\Lambda}a = a$, $a_{V}a = a$ (idempotency)
- ii) $a \wedge b = b \wedge a$, $a \vee b = b \vee a$ (commutativity)
- iii) $(a \wedge b) \wedge c = a \wedge (b \wedge c)$, (associativity)
- (a y b) y c = a y (b y c)
- iv) $a \wedge (a \vee b) = a$, (absorption identities) $a \vee (a \wedge b) = a$

Def.1.1.5 Distributive lattice [5] : A lattice < L; Λ , \vee > is said to be distributive if, for all a,b,c ϵ L, a Λ (b \vee c)=(a Λ b) \vee (a Λ c).

Def.1.1.6 Modular lattice [5] : A lattice < L; Λ, V > is said to be modular if a, b \in L and a $\leq b = \Rightarrow$ a γ (b Λ c)=b Λ (a γ c) for all c \in L.

Def.1.1.7 Bounded lattice [5] : A lattice $\langle L; \Lambda, V \rangle$ is said to be bounded if both the least and the greatest elements, denoted by **0** and 1 respectively, are in L.

Def. 1.1.8 Complemented lattice [5] : A bounded lattice < L; Λ , V > is called complemented if, for every a in L, there exists b in L such that $a \Lambda b = O$ and $a \vee b = 1$.

2

Def.1.1.9 Boolean algebra [5] : A Boolean algebra is an algebra : < L; Λ , V, ', 0, 1 > , where < L; Λ , V > is a distributive lattice, the complementation ',' is a unary operation and 0, 1 are nullary operations.

Def.1.1.11 Quasicomplemented lattice [5] : A lattice L with 1 is called quasicomplemented lattice if a^{\pm} exists for every a ϵ L, where a^{\pm} is the quasicomplement of a in L, which is the smallest element satisfying the condition a v a^{\pm} =1.

Def.1.1.12 Ideal in a lattice [5] : A nonvoid subset I of a lattice L is said to be an ideal in L if

i) $a, b \in I \Rightarrow a \lor b \in I$ and

ii) $a \in I$, $b \in L$, $b \leq a == b \in I$.

Def.1.1.13 Filter in a lattice [5] : A nonvoid subset F of a lattice L is said to be filter in L if

i) $a, b \in F = a \wedge b \in F$ and

 $\boldsymbol{\mathcal{Y}}$

ii) $a \in F$, $b \in L$, $a \leq b \Rightarrow b \in F$.

Def.1.1.14 Prime ideal in a lattice [5] : A proper ideal I of L is said to be prime if $a, b \in L$ and $a \land b \in I$ imply that $a \in I$ or $b \in I$. Def.1.1.15 Prime filter in a lattice [5] : A proper filter F of L is said to be prime if $a, b \in L$ and $a_V b \in F$ imply that $a \in F$ or $b \in F$.

4

Def.1.1.16 Ideal generated by H [5] : The ideal generated by a nonempty subset H of L is the smallest ideal in L containing H and is denoted by (H].

Def.1.1.17 Filter generated by H [5] : The filter generated by a nonempty subset H of L is the smallest filter in L containing H and is denoted by [H].

Def.1.1.18 Principal ideal in a lattice [5] : Given an ϵ lement a in L the ideal generated by {a}, denoted by (a](={x ϵ L/x \leq a}), is called a principal ideal of L.

Def.1.1.19 Principal filter in a lattice [5] : Given an element a in L the filter generated by $\{a\}$, denoted by $[a] = \{x \in L/x \ge a\}$, is called a principal filter of L.

Def.1.1.20 Maximal ideal in a lattice [5] : A proper ideal of a lattice L is called maximal if it is not contained in any other proper ideal of L.

Def.1.1.21 Maximal filter in a lattice [5] : A proper filter of a lattice L is called maximal if it is not contained in any other proper filter of L.

1.2 RESULTS :

Result 1.2.1 [4] : In a distributive lattice L with $\mathbf{0}, \{\mathbf{a}\}^{\mathsf{T}}$ (={ $\mathbf{x} \in L/x \land a = \mathbf{0}$ }) is an ideal for every a in L.

队

Result 1.2.2 [5] : The intersection of any number of ideals is an ideal.

Result 1.2.3 [5] : The set of all ideals in L, denoted by I(L), forms a lattice under the operations $\overline{\Lambda}$ and \underline{Y} where $i = I_1^{\overline{\Lambda}} I_2^{=}$ $I_1 \cap I_2$ and (ii) $I_1 \underline{Y} I_2 = (I \cup I_1^{-2})$ for $I_1, I_2 \in I(L)$.

Result 1.2.4 [5] : For a, b \in L, (a) fl (b] = (a \land b] and (a) χ (b] = (a \vee b].

Result 1.2.5 [5] : For $a, b \in L$, $(a] = (b] \Leftrightarrow a=b$.

Result 1.2.6[12] : Any proper ideal (filter) of a lattice L with 1(0) is contained in a maximal ideal (filter).

Result 1.2.7 [1] : Let L be a lattice with 1(0). A proper ideal (filter) M in L is maximal if and only if for any element $a \notin M$, ($a \in L$), there exists an element $b \notin M$ such $a \lor b=1$ ($a \land b = 0$).

Result 1.2.8 [5] :Stone's Theorem : Let L be a distributive lattice, let I be an ideal and D be a filter of L such that $InD=\emptyset$. Then there exists a prime ideal P of L such that $P \ge I$ and $P \cap D = \emptyset$.

Result 1.2.9 [5] : Every ideal I of a distributive lattice is the interesection of all prime ideals containing it.

Result 1.2.10 [5] : Let L be a distributive lattice, $a, b \in L$, $a \neq b$. Then there is a prime ideal containing exactly one of a and b.

Result 1.2.11 [5] : An ideal P is a prime ideal of L if and only if L-P is a prime filter.

5