

1-DISTRIBUTIVE LATTICES

.

CHAPTER-III

1-DISTRIBUTIVE LATTICES

3.1 INTRODUCTION

m?

The concept of 1-distributivity follows dually that of O-distributivity. So far nobody has paid attention to 1-distributive lattices. On the same line of O-distributivity we have studied 1-distributivity delightfully.

The definition of a 1-distributive lattice alongwith a five element lattice N_5 as an illustration is given in Article 2. How 1-distributivity generalizes the distributivity and quasicomplementedness is also demonstrated.

Article 3 deals with the important result which contains characterizations of a 1-distributive lattice.

It is easy to observe that the set of all dual dense elements of L is an ideal in L. Also a sufficient condition for an ideal topology on a 1-distributive lattice to be Hausdorff can be proved as

Result : Let L be a 1-distributive lattice. If L is dual atomic and dually weakly complemented, then the ideal topology on L is Hausdorff.

33

3.2.1 Definition : A lattice L with 1 is said to be 1-distributive if a V b = 1 and a V c = 1 imply that a V (b Λ c)=1 for all a,b,c \in L.

3.2.2 Example : The lattice N_5 sketched in the following diagram is a 1-distributive lattice.

3.2.3 Example : Every lattice need not be 1-distributive.

The lattice M_5 sketched in the following diagram is not 1-distributive.

 $a_{\mathcal{V}}$

From the figure it collows that a V b = 1 and a V c = 1 but a V(b \wedge c) = a V 0 = a \neq 1 and hence M_5 is not 1-distributive.

As M_5 is a modular lattice it follows that

3.2.4 Remark : A modular lattice with 1 need not be 1-distributive.

In the following results we prove that the class of all 1-distributive lattices contains the class of all distributive lattices with 1 and the class of all quasicomplemented lattices (see Def.1.1.11).

3.2.5 Result : Every distributive lattice with 1 is 1-distributive. **Proof :** Let L be a distributive lattice with 1.

> For x,y,a in L let x V a = 1 and y V a = 1. consider $(x \land y)$ V a

> > = $(x \ V \ a) \land (y \ V \ a)$ (since L is distributive) = $1 \land 1$ = 1

Thus x V a = 1 and y V a = 1 imply that $(x \land y)$ V a = 1. Hence L is 1-distributive.

3.2.6 Remark : Converse of Result 3.2.5 need not be true.

The lattice sketched in the following diagram is a 1-distributive lattice which is not distributive.

.17

From the figure it is observed that

b Λ (a V c) \neq (b Λ a)V(b Λ c) and hence the lattice of Fig.7 is not distributive. 3.2.7 Result : Any quasicomplemented lattice is 1-distributive .

Proof : Let L be a quasicomplemented lattice. Then a^{\perp} exists for each element a in L (see Def.1.1.11).

Let $a, b, c \in L$ such that $a \vee b = 1$ and $a \vee c = 1$. Then $b \ge a^{\perp}$ and $c \ge a^{\perp}$. This imply that $b \wedge c \ge a^{\perp}$. i.e; $a \vee (b \wedge c) = 1$.

Thus a V b = 1 and a V c = 1 imply that a V(b \mathbf{A} c) = 1 for all a,b,c \in L.

Hence L is 1-distributive.

2,6

3.2.8 Remark : Converse of Result 3.2.7 need not be true.

The lattice \overline{N} = dual lattice of < N, Λ , V > (see Remark 2.2.8) is a 1-distributive lattice, which is not quasicomplemented.

Since a lattice L is quasicomplemented if and only if $\{a\}^{\perp} = \{x \in L/x \ \forall \ a = 1\}$ is a principal filter for each $a \in L$, a sufficient condition for a 1-distributive lattice to be quasicomplemented can be stated as

3.2.9 Result : A 1-distributive lattice L is quasicomplemented if $\{a\}^{\perp}$ is a principal filter for every a in L.

* * *

3.3 CHARACTERIZATIONS

3.3.1 Definition : Let L be a lattice with 1 and A be any nonempty subset of L. Then the set A^{\perp} is defined as $A^{\perp} = \{x \ge L/xVa=1, \forall a \in A\}$.

Dualizing the results in Article 2.3 we get the following characterizations for a 1-distributive lattice.

3.3.2 Result : Let L be a lattice with 1. Then following are equivalent.

- 1) L is 1-distributive.
- 2) $\{a\}$ is a filter for every a in L.

3) $\stackrel{1}{A}$ is a filter for every nonempty subset A of L.

4) The set of all filters D(L) of L is pseudocomplemented.

5) D(L) is O-distributive.

- 6) Every maximal ideal in L is prime.
- 7) $n\{F/F \in F(L)\} = \{1\}$, where F(L) is the set of all prime filters in L.
- 8) For $a \neq 1$ there exists a prime filter in L not containing a.
- 9) For any ideal I disjoint with $\{a\}^{\perp}$, $(a \in L)$, there exists a prime ideal in L containing I and disjoint with $\{a\}^{\perp}$.

* * * * *