

CHAPTER-111

1-DISTRIBUTIVE LATTICES

CHAPTER-111

1-DISTRIBUTIVE LATTICES

3.1 INTRODUCTION

The concept of 1 -distributivity follows dually that of O-distributivity. So far nobody has paid attention to 1-distributive lattices. On the same line of O-distributivity we have studied 1-distributivity delightfully.

The definition of a 1-distributive lattice alongwith a five element lattice N_{5} as an illustration is given in Article \approx. How 1-distributivity generalizes the distributivity and quasicomplementedness is also demonstrated.

Article 3 deals with the important result which contains characterizations of a 1-distributive lattice.

It is easy to observe that the set of all dual dense elements of L is an ideal in L. Also a sufficient condition tor an ideal topology on a 1-distributive lattice to be Hausdorff can be proved as

Result : Let L be a 1-distributive lattice. If L is dual atomic and dually weakly complemented, then the ideal topology on L is Hausdor 1 f .

3.2 DEFINITION AND EXAMPLES

3.2.1 Deiinition : A lattice L with 1 is said to be 1-distributive if $a V b=1$ and $a V c=1$ imply that $a V(b \Lambda c)=1$ for all $a, b, c \in L$.
3.2.2 Example: The lattice N_{5} sketched in the following diagram is a 1-distributive lattice.

Fig. 5
3.2.3 Example : Every lattice need not be 1-distributive.

The lattice M_{5} sketched in the following diagram is not 1-distributive.

From the figure it jollows that $a \vee b=1$ and $a V c=1$ but $a V(b \wedge c)=a V 0=a \neq 1$ and hence M_{5} is not 1-distributive.

Fig. 6

As M_{5} is a modular lattice it follows that
3.2.4 Remark : A modular lattice with 1 need not be 1-distributive. In the following results we prove that the class of all 1-distributive lattices contains the class of all distributive lattices with 1 and the class of all quasicomplemented lattices (see Def.1.1.11).
3.2.5 Result : Every distributive latice with 1 is 1-dist-ibutive. Proof : Let L be a distributive lattice with 1.

For x, y, a in L let $x \vee a=1$ and $y \vee a=1$.
consider ($\mathrm{x} \wedge \mathrm{y}$) V a
$=(x \vee a) \wedge(y \vee a)$ (since L is distributive)
$=1 \wedge 1$.
$=1$
Thus $x \vee a=1$ and $y \vee a=1$ imply that $(x \wedge y) V a=1$. Hence L is 1 -distributive.
3.2.6 Remark : Converse of Result 3.2 .5 need not be true. The lattice sketched in the following diagram is a 1-distributive lattice which is not distributive.

0
Fig. 7

From the figure it is observed that
$b \Lambda\left(\begin{array}{lll}a & V\end{array}\right) \neq\left(\begin{array}{lll}b & \Lambda\end{array}\right) V\left(\begin{array}{lll}b & \wedge & c\end{array}\right)$ and hence the latiice of Hig. 7 is not distributive.
3.2.7 Result : Any quasicomplemented lattice is 1 -distributive .

Proof : Let L be a quasicomplemented lattice. Then a^{\perp} exists for each element a in L (see Def.1.1.11).

Let $a, b, c \varepsilon L$ such that $a \operatorname{b}=1$ and $a \mathrm{~V} c=1$.
Then $b \geqslant a^{\perp}$ and $c \geqslant a^{\perp}$.
This imply that $b \wedge c \geqslant a^{\perp}$.
i.e; $a \operatorname{lb}(b c)=1$.

Thus $a \mathrm{~V} b=1$ and $a \mathrm{~V}=1$ imply that $\mathrm{a} V(\mathrm{~b}, \mathrm{c})=1$ for all $a, b, c \in L$.

Hence L is 1-distributive.
3.2.8 Remark : Converse of Result 3.2.7 need not be true.

The lattice $\bar{N}=$ dual lattice of $\langle N, \Lambda, V\rangle$ (see Remark 2.2.8) is a 1-distributive lattice, which is not quasicomplemented.

Since a lattice L is quasicomplemented if and only if $\{a\}^{\mathcal{L}}=\{x \varepsilon L / x \vee a=1\}$ is a principal filter for each a εL, a sufficient condition for a 1-distributive lattice to be quasicomplemented can be stated as
3.2.9 Result : A 1-distributive lattice L is quasicomplemented if $\{a\}^{\ell}$ is a principal filter for every a in L.

3.3 CHARACTERIZATIONS

3.3.1 Definition : Let L be a lattice with 1 and A be any nonempty subset of L. Then the set A^{\perp} is defined as $A^{\perp}=\{x \equiv L / x V a=1$, $\forall a \in A\}$.

Dualizing the results in Article 2.3 we get the following characterizations for a 1-distributive lattice.
3.3.2 Result : Let L be a lattice with 1. Then following are equivalent.

1) L is 1-distributive.
2) $\{a\}^{\perp}$ is a filter for every a in L.
3) $\quad \dot{A}$ is a filter for every nonempty subset A of L.
4) The set of all filters $D(L)$ of L is pseudocomplemented.
5) $\quad D(L)$ is O-distributive.
6) Every maximal ideal in L is prime.
7) $\quad \cap\{H / F \in F(L)\}=\{1\}$, where $F(L)$ is the set of all prime filters in L .
8) For $a \neq 1$ there exists a prime filter in L not containing a.
9) For any ideal 1 disjoint with $\{a\}^{\frac{1}{2}},(a \varepsilon L\}$, there exists a prime ideal in L containing 1 and disjoint with $\left\{a_{f}^{\perp}\right.$.
