
CHAPTER-IV

O-1 DISTRIBUTIVE LATTICES

CHAPTER-IV

O-1 DISTRIBUTIVE LATTICES

4.1 INTRODUCTION

A O-1 distributive lattice is a lattice which is both O-distributive and 1-distributive. A suitable example of a O-1 distributive lattice is a lattice N_5 sketched in the following diagram.

This lattice N_5 is pseudocomplemented as well as cuasicomplemented but not distributive.

In this chapter mainly we will characterize complementedness in O-1 distributive lattices.

Ramana Murty [9] has proved the following

Result : Let L be a distributive lattice with O and 1. Then the following statements are equivalent.

1) L is a Boolean algebra.

3%

2) Complement of every ultrafilter in L is a maximal ideal.

3) Complement of every maximal ideal is an ultrafilter.

4) Every prime filter is an ultrafilter.

5) Every prime ideal is a maximal ideal.

Adams [1] has proved

λ

Result : Let L be a lattice with greatest element 1 and least element O in which an ideal, or dual ideal, is maximal if and only if it is prime. Then L is complemented.

These results are generalized in Article 2 to characterize the complementedness in a O-1 distributive lattice.

A very special result that "A O-1 distributive lattice is distributive if it is weakly complemented" has been proved.

The lattice N_5 (see Fig.8) is a O-1 distributive lattice but not weakly complemented. Hence it is remarked that it is not distributive.

Article 3 deals with a diagram which exhibits the total outline of our study.

4.2 **PROPERTIES**

It is well-known that in a Boolean algebra the set-theoretic complement of a maximal ideal is a maximal filter and vice versa. Ramana Murty [9] has proved that this is a characteristic property of the Boolean algebra by proving that a distributive lattice with 0 and 1 is a Boolean algebra if and only if the complement of every maximal ideal is a maximal filter. But it can be observed that the conditions given in [9, Theorem 1] characterizes complementedness in a bounded distributive lattice. The following result generalizes the result of Ramana Murty for a 0-1 distributive lattice.

4.2.1 Result : Let L be a 0-1 distributive lattice. Then the following conditions are equivalent.

1) L is complemented.

2) Every prime ideal is maximal.

3) Every prime filter is maximal.

4) Complement of a maximal filter is a maximal ideal.

5) Complement of a maximal ideal is a maximal filter.

Proof : Claim : $(1) \Rightarrow (2)$

Let P be a prime ideal of L.

Let $x \in L$ such that $x \notin P$.

As L is complemented, there exists an element $y \in L$ such that $x \wedge y = 0$ and $x \vee y = 1$.

But $0 \in P$ (since P is an ideal) implies that $x \wedge y \in P$.

As $x \notin P$ we get $y \in P$ by primeness of P.

Thus for any $x \notin P$, there exists an element $y \in P$ such that $x \vee y = 1$.

Hence by Result 1.2.7, P is a maximal ideal proving (2).

Claim : (2) =⇒ (4)

Let F be a maximal filter.

As L is O-distributive, F is a prime filter (see Result 2.3.10).

Then L-F is a prime ideal (see Result 1.2.11).

By assumption L-F is a maximal ideal proving (4).

Claim : (4) =⇒ (1)

Assume that complement of a maximal filter is a maximal ideal.

We show that L is complemented.

Let $x \in L$ and let $\{x\}^* = \{y \in L/x \land y = 0\}$ and $\{x\}^{\perp} = \{y \in L/x \lor y = 1\}$.

As L is O-distributive and 1-distributive, $\{x\}^*$ is an ideal in L and $\{x\}^{\perp}$ is a filter in L (see Result 2.3.4 and Result 3.3.2). If $\{x\}^{n}\{x\}^{\perp} \neq \emptyset$, then we are through. Suppose $\{x\}^{n}\{x\}^{\perp} = \emptyset$. Let $F = \{D/D$ is a filter in L such that $D \supseteq \{x\}^{\perp}$ and $D \cap \{x\}^* = \emptyset$. Clearly as $\{x\}^{\perp} \in F, F \neq \phi$.

> A 12021

Applying Zorn's lemma we get a maximal element, say F, in F.

Claim 1 : $x \in F$.

It $x \notin F$, then $[F \lor \{x\}] \cap \{x\} \neq \emptyset$.

Hence there exists an element $y_{\varepsilon} \{x\}^*$ such that $y \ge : \Lambda x$ for some $f \in F$.

Now $f \wedge x \leq y \wedge x = 0$ implies that $f \in \{x\}^*$, which is impossible since $F \cap \{x\}^* = \emptyset$.

Hence we get $x \in F$ proving the claim.

Claim 2 : F is a maximal filter .

Let $z \in L$ such that $z \notin F$.

Then $[F V \{z\}] n \{x\}^* \neq \emptyset$.

Hence there exists an element $y_{\varepsilon} \{x\}^*$ such that

 $y \ge f \wedge z$ for some $f \in F$.

Now $i \wedge z \wedge x \leq y \wedge x = 0$ implies that $i \wedge z \wedge x = 0$.

As $x \in F$ and $i \in F$ we have $x \wedge i \in F$ (since F is a filter).

Thus for $z \notin F$ there exists $x \wedge f \in F$ such that $z \wedge x \wedge f = 0$.

Hence F is a maximal filter (see Result 1.2.7) which proves the claim 2.

By assumption L-F is a maximal ideal and $x \notin L-F$.

Hence there exists an element $y \in L-F$ such that $x \vee y=1$ (see Result 1.2.7), which is a contradiction since $\{x\} \notin F$.

> Hence $\{x\}_{\Pi}^{\dagger}\{x\}^{\perp} \neq \emptyset$ proving that L is complemented. Similarly we can show that $(1)=\Rightarrow(3)=\Rightarrow(5)=\Rightarrow(1)$.

Adams [1] has proved the following result "Let L be a lattice with greatest element 1 and least element 0 in which an ideal, or dual ideal, is maximal if and only if it is prime. Then L is complemented." But when every maximal ideal, or filter, is prime then L will become a 0-1 distributive lattice. We generalize the result of Adams as

4.2.2 Result : Let L be a 0-1 distributive lattice. If every prime filter in L is maximal, then L is complemented.

Proof : Let $a \in L$ be any element such that it has no complement in L. Consider $\{a\}^* = \{x \in L/a \land x = 0\}$. As L is O-distributive, $\{a\}^*$ is an ideal in L (see Result 2.3.4). As a has no complement in L we have a V x \neq 1 for any x $\in \{a\}$ Define $\mathbf{T} = \{ \mathbf{t} \in \mathbf{L} / \mathbf{t} \leq \mathbf{a} \vee \mathbf{x}, \mathbf{x} \in \{\mathbf{a}\}^{*} \}$ $T \neq \emptyset$ (since a \in 1) 1. 1¢T (since a V x \neq 1 for any x ϵ {a}^{*}) 2. $t_1 \leq t_2 \in T \implies t_1 \in T$ (since $t_2 \leq a \lor x$ and $t_1 \leq t_2$ implies that $t_1 \leq a \lor x$) 3. Let $t_1, t_2 \in T$. 4. Then $t_1 \le a \lor x_1$ and $t_2 \le a \lor x_2$ for some $x_1, x_2 \in \{a\}^*$. As $\{a\}^*$ is an ideal, $x_1 \vee x_2 \in \{a\}^*$. Then $t_1 \leq a \vee x_1 \vee x_2$ and $t_2 \leq a \vee x_1 \vee x_2$ gives that $t_1 V t_2 \leq a V x_1 V x_2$.

Therefore $t_1 V t_2^{\varepsilon} T$.

1.3

1-4= T is a proper ideal in L.

As $1 \in L$, T is contained in some maximal ideal, say M, in L (see Result 1.2.6).

43

As L is 1-distributive, M is a prime ideal (see Result 3.3.2). Hence L-M is a prime filter in L (see Result 1.2.11). By data L-M is a maximal filter and as a ϵ T \leq M,a ϵ L-M.

Then there exists an element $z \in L-M$ such that a $\Lambda z=0$ (see Result 1.2.7).

This implies that $z \in \{a\}^{T}$.

As $\{a\}^{\mathbf{v}} M$, $z \in M$.

Thus $z \in (L-M) \cap M = \emptyset$, a contradiction.

Hence a must have complement in L proving that L is complemented.

It is observed that every O-distributive/1-distributive lattice need not be distributive (see Remark 2.2.6 and Remark 3.2.6). O-distributivity and 1-distributivity put together will not sufficient to prove that the lattice is distributive. A sufficient condition for a O-1 distributive lattice to be distributive is established in the following result for which we need the **4.2.3 Lemma :** Let L be a O-distributive weakly complemented

lattice. Then if $x, y \in L$ $(x, y \neq 1)$ and if

(*) $x \in P \notin y \in P$ for all prime ideals P then x=y.

Proof : Suppose that x and y satisfy the conditions of the lemma.

If $y < x \vee y$, then there exists an element c such that c $\Lambda y = 0$ and c $\Lambda (x \vee y) \neq 0$ since by hypothesis L is weakly complemented (see Def. 2.4.8). Then there exists a maximal filter F in L such that $c \wedge (x \vee y)_{\varepsilon} F$ (see Result 1.2.6).

As L is O-distributive, F is prime (see Result 2.3.10).

Therefore M=L-F is a prime ideal in L (see Result 1.2.11).

As $C\Lambda(x \vee y) \in F$ we get $C\Lambda(x \vee y) \notin M$.

As $c \wedge y = 0$ we have $c \wedge y_{\varepsilon} M$.

This implies that $c \in M$ or $y \in M$ as M is a prime ideal.

But $c \in M$ implies that $c_A(x \vee y) \in M$, which is not possible.

Thus $c \notin M$ and hence $y \in M$.

If $x \in M$, then $x \vee y \in M$ and hence $c\Lambda(x \vee y) \leq x \vee y$ implies that $c_{\Lambda}(x \vee y) \in M$, which is not possible.

Thus x∉ M.

Hence we get that M is a prime ideal which contains y but not x. This contradicts the assumption (*) of the lemma. Therefore y = x V y.

Similarly we can show that x = x V y, and then we have x = y.

4.2.4 Result : Every O-1 distributive lattice is distributive if it is weakly complemented.

Proof : Let a,x,y be arbitrary elements in L.

Let $s = a\Lambda(x \vee y)$ and $t = (a\Lambda x) \vee (a \wedge y)$. We shall show that s = t. Obviously $s \ge t$.

HARR. BALASANTO ZHARDEKAR LIBRART

If t = 1, $s \ge t$, then s=t=1 and we are through.

Suppose t#1. Then there exists a maximal ideal P such that $t \in P$ (see Result 1.2.6).

As L is 1-distributive, P is a prime ideal (see Result 3.3.2).

Now $(a \Lambda x) V(a \Lambda y) \in P$ implies that $a \Lambda x \in P$ and $a \Lambda y \in P$ (see Def.1.1.12).

Then either a ϵ P or if it doesn't, x and y both belong to P, by primeness of P.

Thus either $a \in P$ or $x \in V$ $y \in P$.

Hence in either the case $a \land (x \lor y) \in P$ i.e.; $s \in P$.

Thus we have shown that s belongs to a prime ideal that t does.

As $s \ge t$, t belongs to a prime ideal containing s.

Thus we get s ϵ P if and only if t ϵ P for any prime ideal P in L.

Then by Lemma 4.2.3 we get s=t.

i.e; $a \wedge (x \vee y) = (a \wedge x) \vee (a \wedge y)$ for all $a, x, y \in L$.

Hence L is distributive.

As a conclusion we get the following

4.2.5 Remark : A lattice L is a Boolean algebra if and only if

1) L is O-1distributive;

Ín

2) Every prime filter in L is maximal filter and

3) L is weakly complemented.

* * *

4.3 A DIAGRAM

v

.

* * * * *