CHAPTER-3

ON ORERATIONS OG GUREY SETS

AESTRACT : Tho oporations, m - union m^{\prime} and $m-$ intersection $\frac{n}{m}$ on the set of all fuzzy subsets of 7 (where m belongs to valuation set v) are dexinfted In the last chapter. Note to continues a notion of m-membership of an clement x in a Eusay subset A is. deained for every m $\in V$. Complement \bar{A} or che fuzzy subset $A: U \rightarrow V$ is also deEined. To see that these notations are eppropriate, some propositions are proved which show how usual theosyt of (ordinary) sets can be renllcated for each ma $\overline{\mathrm{v}}$. Furtinor we see that these definitions proposed by Zenzo are weaker that classhcal one (proposed by Zacen).

A definition of muh mitiple Boohaan algobra
Ls given.

TKRRODUCTION:

According to classical definition due to Zadeh a funzy set in a universe U (or fuzzy subset of U) is a map A: $u \rightarrow[0,1]$. Insted of $[0,1]$, Zenzo choses a finite valuation set.

$$
\mathrm{V}=\left\{0, \frac{1}{p-1}, \frac{2}{p-1}, \operatorname{eot} \frac{\hat{p}-2}{p-1} ; 1\right\}
$$

Zaden derines. subset relation, union and intersection as follows $:$ Fior any two fuzzy subsets,A and B of U.
$A \subset B \quad$ iff $A(x) \leqslant B(x)$ for all $x \in U$.
$(A \cup B) x=\max (A(x), B(x))$ for all $x \in U$
$(A \cap B) x=\min (A(x), \quad B(x))$ for all $x \in U$.
Complement \bar{A} is defined by
$\bar{A}(x)=1-A(x)$

By taking the finite valuation set V. Zenzo defines for everym \quad V, tho rolations : m - memberships $\underset{m}{\epsilon} \underset{\mathrm{~m}}{\epsilon}$ m - inclusion $\underset{m}{C}$ and m equality ${ }^{\prime}$ (. additional to the already defined u and $\quad n$. In a sense, this is a reverse process, that ie we try to build a model of ordinary set thoory for every truth value m. The results proved show that the above defincd relations, really behave like the corresponding operations in tho ordinary set theory. for a fixed m.
. 67 ..

Morcoven, for every m \in V. Zadeh's inclusion Implies m - inclision and Zadeh's equality frplies m- equaltiy. Like sub- Boolcan algebra, sub - multiple Boolean algebra can be dofined. But here also we see that we have to assume some ralation between absoching elements and identity elements to achleve the requirea accuracy.

1. Relations on Fuzzy sets :

Let F be the set of all the fuzzy sets with unlive se U and truth set V where

$$
V=\left\{0, \frac{1}{p-1} \frac{2}{p-1}, \ldots \ldots \frac{p-2}{p-1}, 0\right\}
$$

Definition 3.1. : tor any $m \in V, x \in U, A \in F$, we write $x \in \mathfrak{m} \in \operatorname{iff} A(x) \geqslant m$.

Definition 3.2: for any m $\in v, \quad x \in U \quad A \in F$ Ferrite $x \bar{\epsilon}_{\mathrm{m}}^{\bar{\epsilon}}$ a $\operatorname{sif} \mathrm{A}(\mathrm{x}) \leqslant 1-m$ We shall study the properties of the new operations. 2heorera 3.1 $\times \underset{m}{\bar{\epsilon}} A$ tiff $x \quad \epsilon \quad \bar{m}$ Proof : Let $x \underset{\mathrm{~m}}{\epsilon} \quad \mathrm{~A}$

$$
\begin{aligned}
& \Rightarrow \quad A(x) \leqslant 1-m \\
& \Rightarrow \quad 1-A(x) \geqslant m \\
& \Rightarrow \quad \mathbb{A}(x) \quad(\because \bar{A}(x)=1-A(x)) \\
& \Rightarrow \quad x \in A
\end{aligned}
$$

Similarly *is part can be proved.
 Proof: Let is $\underset{m}{E} A$

$$
\Rightarrow \quad A(x) \geqslant m_{.}
$$

Now ether $3(x) \geqslant m$ or $B(x)<m$ If $\mathrm{B}(\mathrm{x}) \geqslant \mathrm{m}$ then.
$(A \cup B) x=\min (A(x), g(x))$ as $A(x)$
$g(x) \geqslant m$

$$
\begin{aligned}
& \text { i.e. }(A \underset{m}{ } B) x \geqslant m \text { m } \\
& \Rightarrow x \underset{m}{\in}(A \underset{m}{U} B)
\end{aligned}
$$

Conversly, Let $x \in(A \underset{m}{G} \quad B)$
$\Rightarrow \quad(A \underset{m}{\mathrm{~m}} \mathrm{~B}) \underset{\mathrm{m}}{\mathrm{m}} \geqslant \mathrm{m}$
In view of definition of $A U_{n} B$. in $(A \cup P) x=\min (A x, B x)$
then $A(x), B(x) \geqslant m$ m
inc. $x \underset{m}{\in} \quad$ and $x \underset{m}{E} B$

If ($\left.A U_{m} B\right) x=\max (A(x), B(x))$ then by 1 either $A(x) \geqslant m$ or $E(x) \geqslant m$
1.e. either $x \in A$ or $x \in B$

This result is analogous to the result
$x \in(A \cup B) \Leftrightarrow x \in A \quad$ or $\quad x \in B$
in ordinary set theory.

Mhcoren 3.3.: $x \in(A \underset{m}{n} B)$ ifs $x \in A$ and $x \in B$ Proof : (a) Assume that both $x \underset{m}{\in}$ A and $x \in \mathbb{m}$ hold. Then. $A(x) \geqslant m$ and $B(x) \geqslant m$ Hence
$(A \cap B) x=m a s e(A(x), B(x)) \geqslant m$
i.e. $x \in(A \underset{m}{n} B)$
(b) $\operatorname{set} \pi \underset{m}{f}(A \cap B)$
$\Rightarrow \quad(A \stackrel{\cap}{m} B) x \geqslant m$

We must prove that $A(x) \geqslant m$ and $B(x) \geqslant m$. Lot on contrary $A(x)<m$. Then either $B(x) \geqslant m$ or $B(x)<m$.
$I E B(x) \geqslant m_{\rho}$
$(A \underset{m}{n} B) x=\min (A(x), B(x))<m a c o n t r u d i=$ action and is $3(x)<m$ then.
$(A n B) x=\max (A(x), B(x))<m a g a i n$
contradicting to (2) i.e. we must have both $A(x), B(x) \geqslant m$ so. $x \underset{m}{\in} A$ and $x \in B$
Definition 3.3.: Lot $A, B, \in F$ and $m \in V$ Then we write $A \subset B$ ifs $\forall x \in U, \quad x \in \underset{m}{C} A \Rightarrow \operatorname{cin}_{m} B$ Definition 3.4. : FOr $A, B, \in F, \quad m \in V$, vel wite $A \bar{m} B$ inf $A \subset B$ and $B C A$

Then clearly c is reflexive.

Theorem 3.3. : For every A. $B_{E} \in B_{0}$
i.0 $\frac{c}{m}$ is transitive.
gros: Let $A \underset{m}{C} B \quad \& \quad B \underset{m}{C} C$ Then for $x \in U$,
$x \underset{m}{\epsilon} \lambda \Rightarrow x \underset{m}{\in} B \quad \& \quad x \underset{m}{\in} B \Rightarrow x \underset{m}{\in} C$

Hence $x \underset{m}{\in} A \Rightarrow x \underset{m}{\in} C$
ie. $\quad \Lambda \underset{m}{C} C$
Theorem 3.5: $A, B \underset{m}{C}(A \cup B) \&\left(A n_{m}\right) \subset A, B$.
Proof : tet $x \in A$ Then by theorem 3.2.
$x \underset{m}{ } \in(A \underset{m}{U} \quad B)$
Hence $A \underset{m}{C}(A \cup B)$ Analogously B $\underset{m}{C}(A \cup M)$
 $x \underset{m}{\epsilon} \quad B$. toe.

Hence ($A \underset{m}{n} B) \underset{m}{C} A$ and $(A \underset{m}{n} B) C_{m} D_{m}$

$$
C \underset{m}{C} A \quad C \underset{m}{C} B \Rightarrow{ }_{m} C C_{m}(A \underset{m}{n})
$$

Proof L Lit A C and $B C$

Then, $x \underset{m}{\in}(A \underset{m}{U} \quad B)$
$x \underset{m}{\epsilon} A$ or $x \in B \quad$ by the 3.2
or both
But since $A \underset{m}{C} C$ and $B \underset{m}{C} C$
$x \underset{\mathrm{~m}}{\epsilon} \quad C \quad$ Hence the conclusion.
second part can be analogusly proved.
Theorem 3.7 : $A \underset{m}{C} B$ vf $\bar{B} \underset{1-m}{C} \bar{A}$
Proof : We have $\operatorname{it} \underset{i v i}{ } X$
$\Leftrightarrow x \underset{1-m}{\in} \bar{B} \quad \Rightarrow \quad x \underset{1-m}{\in} \bar{A}$
$\Leftrightarrow \quad \bar{B}(x) \geqslant 1-m \quad \bar{A}(x) \geqslant 1-m$
$\Leftrightarrow 1-B(x) \geqslant 1-m \Rightarrow 1-A(x) \geqslant 1-m$
$\Leftrightarrow B x \leqslant m \quad \Rightarrow A(x) \leqslant m \Leftrightarrow A(x)>m \quad \Rightarrow B(x)>m$
$\Leftrightarrow x \in \underset{m}{\in} A \quad \Leftrightarrow A \in \underset{m}{\in} B$

Hence proof
\#

Thus a full theory of m - membership can be constructed for each grade m.

Further zenzo clarifies that zadeh's definitions of inclusion and equality of two fuzzy sets are connected with two -valued logic only. The
definition of m-inclusion and m - equality given by him are weaker than those of $\frac{Z}{\text { fadeh. as can be }}$ seen in the following thoorem. Here the notation $\frac{C}{Z}$ indicates zadeh's inclusion and \& "m \quad zadeh's equality.

Theorem 3.8: Zadeh's Anclusion implies ra-inclusion and aadeh's equality inplios m-eciality.
i.e. $A \underset{Z}{C} B \Rightarrow A \subset B \quad$ for any $m \in V$
and $\quad A \overline{\bar{z}} B \quad \Rightarrow \quad A \overline{\bar{m}} \quad B \quad$ for any $m \in V$

Broof : iet $A \underset{Z}{C}$
$\Rightarrow A(x) \leqslant B(x) \quad \forall x \in U$.
Now let $x \in A$ Then A $A x) \geqslant$ an, gut as A $(x) \geqslant$ $B(x)$, this irpises $E(x) \geqslant$ m. Thas $x \in B$

Now let A $\overline{\bar{Z}} \quad \mathrm{~B}$
According to zadeh's definition this implies $A(x)=a$ $B(x)$ for all x Now we have to prove that $A C B$ f
B $\underset{m}{c} A$ for every $m \in V$
Lot $x \in A \Rightarrow A(x) \geqslant m$ $\Rightarrow \quad E(x) \geqslant m($ as $A(x)=B(x))$

$$
\begin{aligned}
& 0 \cdot 74 \\
= & \times \quad \mathrm{E} \quad \mathrm{~B}
\end{aligned}
$$

Thus $A \quad \underset{m}{C} \quad$ similarly $B \underset{m}{C} A$ can be proved. Hence A 縕 B

Remark : Converse of above theorem is not true. That is, if cardinality of V is greater than 2 , for no m does m - equality reduce to zadeh*s equality, or m - juclusion reduce to gealy zacen's inclusion. Thus Zento"g aerinitions ere more geneval "

2. SUE MEGMTPLE BOOLBAN ALGEBRN:

In any new concept, the sub structure play an important role One reason behind this may be that they "seep' the ' identity of the originas structure. Here te have tried to define the submultiple Boolean algebra in the usual maner, andiogous to owismoolean algebra.

Definition 3.5. : Let E be a multipie joolean algebra of oxder p with u as the fundamental isomorphism, Q. 1 $\frac{p-1}{}$ as the orvarations $\theta_{0} \theta_{1}, \ldots \theta_{p-1}$ identities. A non empty aubset s_{0} of it wasd to be a sub multiple Boclean algebsa of E provide Bo is closed under each ogoration m and the bijection q and it preserves identitien in E. That is, if
(a) For all $x, y \in E O \quad x \mathrm{~m} y \in \mathbb{E}$ For each $m=0,1,2, \ldots \ldots, p-1$
(b) For all $x \in E O, u(x) \in E O$ E
(c) $e_{m} \in$ Eo for each m_{0}

Thus each sub miltiple Boolean algebra Eo of E is also a multiple Booloan algebra unaer the operatio -ns of E and the isomorphism u restricted to EO.

Remaric 1. Each suo algobra centains all the absoriong eloments of E . gor, let $x \in$ Eo then $x \not \operatorname{mu}(x) m^{2}(x) \ldots \operatorname{man}^{p-1}(x)$ EO for oach m.
$=a_{m} \in$ Eo for each m. (by MBA 3).

Hence $1 \pm$ the set os identities and that of absorbing elements are equal (as in Boolean algebra). then avery sub raitiple Boolean algebra will automaticaly preserve the identities and honce, chen the condition (c) in the definition (3.5) may be deleted. In this respeci our desinition of multiple Boolean algebra viz def. 2. 3 seems more justifted in which $a_{m}=e_{m+1}$ is assumed.

Remaris 2 : Niso the condition (a) ean be reduced for ' any one m ' bocause $1 f$

[^0]then $x \underline{m}+1 \quad y=u\left(u^{p-1}(x)\right.$ m $\left.u^{p-1}(y)\right)$ as $u^{p}(x)=x$, and as $u^{p-1}(x)$ and $u^{p-1}(y)$ are tempers of EO (by b) we have.
$$
\left(u^{p-1}(x) x^{m} u^{\operatorname{pol}}(y)\right) \in \mathbb{E}
$$
and hence $u\left(u^{p-1}(x)\right.$ gu p $\left.^{p-1}(y)\right) \in$ no

[^0]: x m $y \in$ Eo for some in and for all $x, y \in E O$

