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CHAPTER « 3

ON QPIRATIONS OH FUZZY SETS

ADSTRACGT @ Two oparations, m - union g. and m e
intersection Q on the set of all fuzzy subsets of
U (where m belongs to valuation set V) ave defiﬁggéd
in the last chapter. Now, to continue, a netion of

m-membarship of an clement x in a fuzzy subget A is .
defined for every m € V. Complement A of cthe fuzzy
subgset A &t U—V 15 also defined. %o see that these
notations are sppropriate, some proposilions are
proved which show how usual theorvi of {(ordinary) sets
can be replicated for cach mm Ve Furthcr we sce

that these definitions proposed by Zengo are weaker

that classical one (pronosed by Zaden).

A definiticon of sub rltiple Boolean algebra
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IN-RODUCTION 3

According to classical definition due to Zadeh
a flugzy set in a universe U ( or fuzmzy subset of U )
is a map A ¢t U—> [0,1] . Insted of [0,1] , Zenzo
choses a finite valuation set.

1 P B2
vV = {-On d r eabs PR )
p~1 p-1 p~1

Zafeh defines, subsst relation, union and intersection

as follows ¢ for any two fuzzy subsets , A and B of U.

A & B iffFA(x) € B(x) forall x ev,
(AUB )xx = max (& (), B {x)) forallx e U

(AanB)x=min (A (x), B({x)) forallx ¢ U,
Complement: A is defined by

A({x) =1=2a (x) for all x € U .

By taking the finite wvaluation set ¥, Zenzo defines for

———

every m V, tho relations : wm ~ memberships €, €
m -~ inclusion CIZQ and m - eqgquality ° B t , additional

to the already defined rLr’a and g « In a sense, this
is a reverse process, that is we try to build a model
of ordinary set theoory for every truth value m. The
results proved show that the above defincd relations,
really ° behave ¥ like the corresponding opcrations in

the ordinary set theory, for a fixed m.
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Morcover, for cverxvy m € V, Zadeh's inclusion
implies m ~ Incl.usion and Zadeh's equality implies
m~ equaltiy. Like sub- Bonlcan algebra, sub -~ multiple
Boolean algebra can be dofined., But here also we
see that we have to assume some relation between abao-
riing elements and identity slements to achizve the ree

gquired accuracy.
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i, Relations on Fuzay sets

et F be the set of all the fuzzy sets with
unive se U and truch set V where
i 2 p=2

V = GQ 2 Weag

Bl p~1 Pl

¢« O

Definibion 3.3, ¢ for anym € V, xeU , A€ F, we

write:é% AiffF A (x) Y m

Definition 3.2 = for anym € v, X € U , AE€EF
we writs x g a 4Ff Al ) £ lem

Wa shall study the properties of the new coperations,

Theorem 3¢1 & xé A i€ x €& A
Broof ¢ Let x; A
m
=5 A(x) & lem
> l=a{=x) 2 n
= R {x) > m (2 (%) = 1-a(x) )

> x€ A
Similarly * if£f' part can be proved.
Theorem 3.2 & b4

U
amB 1€£E£ b4 A or xréﬂ‘B

am

e
m
Proof : Let 3t xea A

= A{x) 27 m
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Now eithor B{x) Y morB{x) {mnm

If B { 2 ) » m then.

(AU B) x=min (A (x),,B(X)Yasa (=),
m 1
B(x) Y m

Similarly x & B implies x & (A v B)

Conversly, let x an (& xtn, B)

> (R%B):ﬁ»m seew (1)

In view of definition of AU B, if (AL B)x=min(axky)
m

thenA{x),B(x)} Tile

lece %® A and % B

€ &
m m

IfE( AUB) x =max (A (%) ,B{x) ) then by 1
eicher A (x )Y morB 4 x)> m

l.0: elther xﬁ A or :{.,% B

This result is analogous to the result

xe(AUBS e or xe€8B

in ordinary set theory.
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Theorem 3:3, ¢+ x & (Ar? B) iffx & Aand X € B

Proof s (2) Assume that both x € A4 and x € B hold.
m m

Then, A (x) >mand B (%) > me Hence

(AQB)xummCA(x),B{x))ém

i.ee x €E(A 0 B)
(b) Let x & (.-a o B)
:? ( A QB)sz sée (2)

We must prove that A (x ) > mand B () > m.
Lot on contrary A ( x ) ¢ me Then either B (x) 2 m

or B {x) ¢ m.

I=B(x) 2 m

(AanNB)x =min (A&, B{(x) ) ma contrudi~

etion and if B (x) { m then,

(AQB)x=max(A(x},E(x))(magairx

) >
contrudicting to (2} i.e. we must havggth Afx),Blx) > m

:‘;'100. - é_ H
X n A and x & 3 {

t

Definition 3e3. & Lot A, B, € T and m €\

ve write A G B iff ¥ xe U, =x€r =

N
Definition 3.4. ¢ For A, B, € F, mev, wel\ write

= C4f . X
AmBizf AmBanﬁB%A

Then clearly % . is reflexive.
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Theorem 3.4, : For every Hy, B, € F,

c C
A S B & B% C = A 5 o4
i.e g; is transitrive.
Proof 3 Let A a% B & B ;?; Ce Then for x € U,
€ 3
2 o A xE B & ®x £ 3 >xf C

Hence = £ A = x§& C
c
i.c. A = C P

Theorem 3.6 3 A, B %(A B ) & A{“\B):%AeB.

Proof § et x g A Then by theorem 3.2,
x&(aly B)

Hence A& ( A Y B ) aAnalogously B :% ( a B)

U
m m

Also if =x ( a {& B ) then by theorem 3.3. X r% A&

€
m

X e B, I.ce

m
, 14
Hence ( a 0 B)%éand(ﬁ\ﬂf}\ 1*3)9“13. #
- U C_ «
Theorem 3.6. ¢ A § C & BS C = (aY¥ B)C

<
c A&cmgénc%(a

<
m

£ o v [l
Proof 3 Lt A % C and B S C
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?

o € W)
Then, x €& ( a Y B )
€ &
x &€ Aor xEB by thm 3.2
or both
ad C [ad
But since A o C and B S C.

x € C Hence the conclusion.

m
Second part can be analogusly proved.

Theorem 3.7 ¢ A < B iff B .< A

m l-m
Proof ¢ We have 8 iC
&) x 4 fm B 59 x 4,5, A
& B(x) » 1-m = AX) > 1i-m

& 1-B(x) > 1-m =2 1-A(x) > 1-m

& Bx ¢m 2> AlxIgm © AxX)>m

€ €
& XmA > Xm

Hence proof

B <=>A%B

= B{X)>m

#

Thus a full theory of m = membership can be

constructed for each grade m.

Further Zenzo c17érifies that Zadeh's defi-

nitiong of inclusion and equality of two fuzzy sets

are connected with two-valued logic only.

The
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definition of m = inclusion and m « aqguality given by
him are weaker than those of /gédeh, as can be

seen in the following theorem. Here the notation CZ-'-

indicates zadeh'’®s inclusion and R ¢ = . ' zadeh's

equality.

Thnorem 3.8 ¢ Zadeh's inclusion implies m - inclusion

and zadeh's equality lmplice m-eguality.

i.2¢e A % B = A % B foranym € V
and A:g B = A = B ifcr anym € V
Broof ¢ Let A & B

2 A(=x) £ B((x) ¥x € U,

Now et x € A Then A $X)} > m Setasa (x)>

3

B{x), thic impiles B I %) > me Thus x £ B

&
Thug x & A x ;2;‘-1 B
Hence A ;{—l B {m e V)

Now let A = B

According to zadeh's definition this implies A (x ) =
B (x) forall x Now we have to prove that A & B X

B oA for every m € V

ot % € 4 = al{x) >

£ m
2 B(x) 2 m {(asal{x) =3B (x
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= K B

€
m

Thus A % B Similarly B % A can be proved,

Hence A B

-~
m
Remark : Converse of above theorem is not true.

That is, if cardinality of V is greater than 2, for no
m does m -~ equality reduce to zadeh&s equality, or

m « inclusion reduce to seds zadeh's inclusion. Thus

Zenwc's definitions are more 'general Y.

2. SUB MULTIPLD BOOLEAN ALCEBRA ¢

In any new coneept, the sub structure play an
important role. One reason behind this may be that they
‘keep' the ' identity * of ihe original structure.

Here we have tried to define tne subemultiple Boolean
algebra in the usual mannesr, analogous to sub=-Boolean

algzbras

Definition 3.5, ¢ Let E be 2 multipie Boolean algebra
of order p with u as the fundamental isomorphism,

9‘4 1, vense p~1 as the operations; egg 31 ¢ esp © -1

- b

identitics. A non empty gubset 2, of B diu said to be a
subk multiple Boclesan algebra of £ provide Eo is closed
under sach operation m and the biiection u, and it

A
preserves identities in Bs That is, if ‘
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(a) Tror all X, ¥ € Eo, XxXmy € Eo
foreach m =0, 1, 2, cees p~i

(b) Forall =x € Bo, uif{x) e Ro.

(c) en € Eo for each me

Thus each sub multiple Boolean algebra Eo of
E is also a multiple Boolecan algebra under the operatio

-ns of B and the isomdrphism n restricted 10 Eo.

Remarlk 1 3 Bach sub algebra centains all the

absorbing eloments of K. For, let x € Bo then

xmu (x) _xr,;uz(x).hgup"l (=) Bo for
cach me
= a, € BEo for each m, ( by MBA 2),

Hence i1f the set of identities and that of
absorbing elements are oqual { as in Boolean algebra),
then every sub multiple Boolean algebra will automatie
caly preserve the jdentities and nence, then the con~
éition (e} in the definition (3,5) may be deleted. In
this respact our definitlon of multiple Boolecan algebra

viz decf, 1.3 peems more justifisd in which 8 = @pa

is assumed,

Remark 2 3 Also the condition {2) can be reduced for
Y any one m ' , begause 1f

X m ¥ € Eo £or some w and for all x, y € Eo
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then x m+ 1 ¥y su (w5 (=x) m u P2 (y 1))

S e Y

as uP (x) =x and as 2% (x ) and WP ( vy ) are

mewiders of Eo ( by b) we have,

(P (x) ume®™* (y) ) € mo

-1 -
and hence u { w2~ (x)g,gupi (y)) € Bo

Thus , * R+ Iy € Bo for all x, v € Eo




