CHAPTER 0

DEPINITIONS AND TERMINOLOGE

In this intorudotory chapter we present some defiuitions concerning Boolean algebra and Fuzzy set theory. and aIso some, temmology which we are going to use in this context. It also contains statements of soms results which we need in the course os fnvestigation.

Definition $0_{0} 1$: Let U be a set. A fuazy set in U (or fuzey subset of U) is a function A from U in to the unit interval $[0,1]$.

Many times the membership function is denoted by μ and different fuczy subsets are specified as μ_{A}, μ_{B}

Definition 0.2: If A and B are two fuzzy subsets of U. their union and intersection are defined by the following fuzzy subsets of U :

$$
\begin{aligned}
& (A \cup B) x=\max (A(x), B(x)) \text { for all } x \in U \\
& (A \cap B) x=\min (A(x) \cap B(x)) \text { for all } x \in \cdot U .
\end{aligned}
$$

Remarks : The unit interval $[0,1]$ here, is called valuation set. Noie that an ordinary subset A of a set
U can be expressed as a characteristic function.

$$
x_{A}: u \longrightarrow\{0,1\}
$$

where $X_{A}(x)=1$ if $x \in A$

$$
=0 \quad j f \quad \text { in } \& A
$$

Thus a fuzzy subset of U is generalised subset where it is allowed to assume intermediate values.

Definition $0_{0} 3$: If A is fuacy subset of U, the complement \vec{A} of A is a fuzzy subset of u given by

$$
\bar{A}(x)=1-A(x) \quad \forall x \in U
$$

Definition 0.4 : A set E closed under two binary operations U and n is called a lattice is the two operations are commutative, associative idempotent and, satssey
$a u(a n b)=a$
$a n(a \cup b)=a$ for $a, b \in E$
Eefinition 0.5 : A set E closed under a binary operation * is called Semilatcice if * is associative, commutative and iderpotent.

Dejinition 0.6: An element 0 of a lattice E is called zero element of the lattice if

$$
a \cup 0=a \quad \text { for all } a \in \mathbb{E}
$$

An element 1 of a lattice E is called unit element of the lattice if
ara an $1=$ a for all a $\in E$
A lattice may or may not have zero or unit elements.

If it has, it is called ' Lattice with 0 and 1 '.

Definition 0.7 : A lattice E with 0 and 1 is said to be complemented if for every element $a \in$ there exists an element a^{\prime} in E called complemenent of a, such that, a $u a^{\prime}=1$ and $a n a^{2}=0$

Definition 0.8: Boolean algebra :

A set E closed under two inary operations U and n. is celled a Boolean algebra jit the following axioms are satisxied

For all $a_{a} b_{e} G \in E$.
$I(a): a u b=b \cup a . \quad I(b): a \cap b=b \cap a$.

That'is, the two operations are commitative.

II (a): $a \cup(b \cap c)=(a \cup b) n(a \cup c)$
II (b) : $a \cap(b \cup c)=(a \cap b) \cup(a \cap c)$
That is, either of the two operations is aistributive over the other.

III (a) : There is an element 0 (called a zero element) having the property that

$$
a \cup 0=0 u a=a
$$

III (b) : There is an elett elementi (called unit element) in E having the property that

$$
a n 1=1 n a=a
$$

Thus 0 is identity for the U operation and t is identidy for n operation.

IE : Corresponding to every element a there is an element a^{\prime} in E such that $a \quad u a^{\prime}=1$ and a $n a^{\prime}=0$ We call a' complement of a.
V. : $0 \neq 1$. That is 0 and 1 are distrinct. Now lethe revise some known results.

Theorem 0.1 : The two operations u and n in the Boolean algebra are idempotent. That is

$$
\begin{aligned}
a \quad u \quad a=a & \text { and } a n a \quad \text { for } a l l \\
& a \in E
\end{aligned}
$$

Theorem 0.2: Laws of absorption.

$$
\text { For } a l l a, b \in E
$$

$a \cup(a n b)=a$ and $a n(a u b)=a$.
Remarks : From above two results it is clear that (E, U) \& (E, n) are semi-latitices, Moreover, E is a distributive complemended lattice with 0 and 1.

Theorem 0.3 : In a Boolean algebra the identity elements 0 and 1 are unique.

Theorem 0.4 : For all elements'a' of a Boolean algebra,

$$
\text { a } \cup 1=1 \text { and a } \cap 0=0
$$

In other words, 1 and 0 are the 'absorbing element' of u and n respectively.

Theorem 0.5 : The two operations u and n of a Boolean algebra E are associative. Ghat is.

$$
\begin{aligned}
& a \cup(b \cup c)=(a \cup b) \cup c \\
& a n(b n c)=(a n b) n c \quad a, b, c \in E
\end{aligned}
$$

Theorem 0.6 : For each element a of a Boolean algebra, the complement a^{*} is uniquely defined.

Theorem 0.7: Involution. For all a in a Boolean algebra,

$$
\left(a^{\prime}\right)^{\prime}=a
$$

Theorem 0.B: De Morgan's Laws.

For all elements ac in a Boolean algebra.

$$
(a \cup b)^{\prime}=a^{\prime} n b^{\prime} \text { and }(a n b)^{\prime}=a^{\prime} \cup b^{\prime}
$$

Theorem 0.9: In a Boolean algebra

$$
0^{\prime}=1 \text { and } 1^{\prime}=0
$$

Example 0.1 : The smallest Boolean algiobra consists of two elements 0 and 1 where the two operations u and n are given by

```
aub= max (a,b)
    anb=min (a,b) where a,b f { {0,1}
```

This smallest Boolean algebra is of paramount importance in Boolean algebra theory. It is denoted usually by B_{2} *

Theorem $0.11:$ For any set X, the power set of X, $P(x)$ is a Boolean algebra under usual operations of union and intersection, in which zero element is empty set β and unit is whole set k .

Note : Theorem 0.10 is a consequence of theorem 0.11. Indeed, if X is a finite set of cardinality n then its power set $\rho(x)$ has $2^{\text {n }}$ elamentifin it. In fact P($\left.x\right)$ is the set of all characteristic functions on X.

Theorem C. 12 : The cross product of two (or finitely many (Ecolean algebras is also a boolean algebra. (The two operations in the product algebra are induced by the corresponding operations in the factor algebras).

Mote: $\left(\mathrm{B}_{2}\right)^{\mathrm{n}}=\mathrm{B}_{2} \quad \mathrm{x} \mathrm{B}_{2} \quad \mathrm{x} \ldots \mathrm{x} \mathrm{B}_{2} \mathrm{n}$ times is a Boolean algebra of cardinality 2^{n}.

Definition 0.9 : Two Boolean algebras $\left.\left\langle E_{1}, U_{1}, n_{1}, \quad 0_{1}, 1_{1},\right\rangle\right\rangle \quad$ and $\left.\left\langle E_{2}, U_{2}, n_{2}, 0_{2}, 1_{2},\right\rangle\right\rangle$ are said to be isomorphic, if there is a bijection

$$
\varnothing: E_{1} \longrightarrow E_{2} \quad \text { satisfying }
$$

$$
\text { I. } \begin{aligned}
\varnothing\left(a u_{1} b\right) & =\varnothing(a) U_{2} \rho(b) \\
\eta\left(a n_{2} b\right) & =\varnothing(a) n_{2} \varnothing(b) \quad a, b \in E_{1}
\end{aligned}
$$

IIo $\varnothing\left(a^{*}\right)=\varnothing(a) \quad a \in Z_{1}$

Note : Identities 0 and 1 are preserved by any Lsonorphism between E_{1} and E_{2}. For

Theorem 0.13 : Every Einite Booloan algebra is isomorphic to the Boolean algebra $\left(B_{2}\right)^{n}$ for some ineeger $n \geqslant 1$.

Renars : The above theorem shows that any finite Doolean al \%ebra has carainality $2^{\text {n }}$ for some n. Hence tro Einite Boolsan algebras of equal cardinality are isom morphic. (Since both are isomorphic to B_{2}). Notations : If $E A \rightarrow B$ is a map the image $f(x)$ of an element x in A is denoted by x et some places. After a proof ends, the symbol $\#$ is put.

