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At present, Einstein — Cartan theory of space time 
has attracted a wide, attention in which the intrinsic spin 
of matter is incorporated as the source of the torsion of the 
space-time mainfold. Mass and spin are two basic characters 
of an elementary particle system according to relativistic 
quantum mechanies.

In Einstein theory of general relativity mass plays 
an important role but not the spin. Here the density of 
energy momentum is the source of curvature, one can obtain an 
intersting link between theory of gravitation and theory of 
special relativity by introducing torsion and relating it to 
spin. The Einstein - Cartan theory, by introducing torsion 
with the density of angular momentum restores, the analogy 
between mass and spin.

This analogy between mass and spin leads to the 
principle of equivalance at least in its weak form.

According to this principle of equivalance the 
world line of the test particle without spin, moving under 
the influence of gravitational fields, depends only on its 
initial position and velocity but not on its mass and also 
the motion of spin depends on the initial data instead of 
magnitude of the spin of the particle.
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Eddington (1921) while discussing the possible 
extensions of general relativity mentioned casually the 
notion of an affine connection. He remarked that the 
applications in microphysics are conceivable but didnot 
develop his idea.

Elie Cartan (1922, 1923, 1924) introduced torsion 
as the axisymmetric part of an symmtric affine connection. He 
stated a simple generalisation of Einstein's theory of 
gravitation and proposed to consider a model of space—time. 
This model is a four dimensional differentiable manifold with 
a metric tensor and linear connection compatible with the 
metric but not a symmetric in general. In Cartan theory 
torsion tensor of the space time is related to the density of 
intrinsic angular momentum of matter and it would vanish in 
matter free regions. This Cartan's generalization is only a 
slight departure form the Einstein's theory.
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Recently there has been a growing interest in the 
foundation of Einstein's theory of general relativity. A 
number of relativistic theories on gravitation were putforth. 
The theories put up by, Brans and Dicke (1961), Bergaman 
(1968), Wagoner (1970), Nordtvedt (1920), Sen and Dunn (1971) 
are note worthy.
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Their predictions obtained with the available 
experimental results and the observational data are compared 
with those of older theories. Also the question of singularity 
is much worried problem in general relativity. Penrose 
(1965), Hawking (1966) and Geroch (1966) have established 
that the occurence of space-time singularties is a general 
prediction of the theory and not just the consequence of the 
symmetry of the models.

It was suggested by the Trautman (1973) that the 
spin and torsion in Einstein—Cartan theory may avert 
gravitational singularities for a Friedman type of universe 
with a minimum radius, Ro at t = O. In Trautman's view 
Einstein-Cartan theory is the simplest and the most natural 
modification of the original theory of gravitation.

According to Hehl, Einstein-Cartan theory is an 
even more beautiful theory than Einstein's general 
relativity.
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Einstein-Cartan theory ( E—C theory ) begins with 
Scima (1961, 1964) and Kibble (1964). Further it was
developed by Trautman (1972, a, b, c, 1973a, 1975),Kerlic 
(1973), Kuchowicz (1975a, 1976), Hehl (1973, 1974),Tafel
(1975), Steward and Hajicek (1973), Kupezynsk,(972, 1973),
Raychaudhri (1975), Prasanna (1974, 1975, a, b, c) etc. The
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important field of application is for Einstein-Cartan theory 
is relativistic astrophysics which deals with the interiors 
of stellar objects like neutron stars with constituent 
particles having same aligment of spins and under the 
conditions when torsion may produce some observable effects. 
Therefore it is desirable to understand the implications in 
full for finite distributions, like fluid spheres with non 
zero presure in Einstein-Cartan theory. Considering this 
point the problem of static fluid spheres in Einstein-Cartan 
theory was considered by Prasanna (1975a). Adopting Hehl's 
approach (1973, 1974), he obsered that the solutions of the 
static fluid spheres in Einstein-Cartan theory are analogus 
to the solutions of Tolman (1939) in general relativity. It 
was found by him that, a space time metric simillar to 
SchwarzschiId interior solutions, would no longer represent a 
homogeneous fluid sphere in the presence of spin density.

Raychaudhuri and Banerji (1977) constructed a 
specific solution corresponding to a collapsing sphere and 
they showed that it bounces at a radius greater than 
SchwarzschiId redius.

Banerji (1978) pointed out that Einstein-Cartan 
sphere must bounce out side SchwarzschiId redius, if it 
bounces at all. Singh and Yadav (1979) studied the static 
fluid sphere in Einstein-Cartan theory and obtained the 
solution by the method of quadrature in an analytic form.
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Naduka <1977) by considering static charged fluid sphere in 
Einstein—Cartan theory generalized the Prasanna's work. 
Spatially homogeneous cosmological models of Binchi types VI 
and VII based on Einstein-Cartan theory were studied by 
Tsoubelis <1979). A class of solutions representing a static 
in coherent spherical dust distribution in equilibrium under 
the influence of spin and torsion were obtained by Som and 
Bedran <1981). A singularity free solutions of a static 
charged fluid sphere in Einstein-Cartan theory were given by 
Krori et al <1981). Einstein-Cartan field . equations for a 
static spherically symmetric fluid spheres were studied by 
Panday et at <1982), by a suitable assumption in the metric 
potential g^ Component.

Kalyanshetti and Waghmode <1982) considered a 
static cosmological model in Einstein-Cartan theory based 
on modified Riemannian geometry. A class of conformally flat 
solutions for a charged spheres were obtained by Wang 
Xingxiang <1987).

4. TIME STIRtUCTHHRE E<O&¥0€HNS <DF ED INSTEP tN-C&CT&IN TIHEOIR^. s

Let g be a Lorntz metric defined on a four
dimensional differential manifold H. The metric g and
connectifU W are expressed with respect to the co—frame 6V

chosen by the metric components g. . by a set of one forms W*.
ij J
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Here we have

ds2 = g. . e1 ® ei i J (4.1)

where W. are given by

w* = r\ ek4 4k (4.2)

The torsion and curvature two—forms are given by

©v = Dav

dev + w1: a
4

-L. Ql e* A &k 
2 4k (4.3)

QV * d». + W,V A wk 
J J k 4

-1— rv ek a e1
2 jkl (4.4)

Where D denotes the exterior covarient derivative and Q., and4k
Rl, , are the torsion Sc the curvature tensors respectively, jkl

Now here we introduce the completely antisymmetric

pseudo-tensor 7}. .,, where i4kl,
,1/2

7)1234 det g. . *•4

The zero—form 7)..,, with the formsvjkl

r>.= e Y>. , .14k L4kl ’ 1.4 er a ni)k

7). = S’* A T). .

X.
7) = -4- ^ A 7); (4.5)
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We obtain the Einstein Cartan field equations from the
veritional principle

6 | ( S * KL , - 0

Where L is the material Lagrangian four—form and is given by 

L = L [ VV DVa, e\ g, . ].

Lagrangian L is locally depending on the spinor or tensor
fields y/ , their covarient derivatives Dy/ , and the metric KA A
is the gravitational constant and S is the Ricci four—form 
defined globally as

S = 1/2 7?^ A = 1/2 R n ... ... (4.7)

where R = gln 6® r!? and r? is the volume four-form.^ k lmn '

Varing the total action with respect to the metric, 
the connection Wv and the fields y. indepedently we obtain

J n

the following equations

<5L

where

O , e = kt. .
V 1

e. 1
2 fh a a c?

t.i
<5L
se1

g j 
1 JL2

6L
6w*

J

(4.8)

(4.9)
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From the equations C4.8) and (4.9), using equations (4.3) and

(4.4) we get Einstein — cartan equations.

RJ - 1/2 R 63 = - K tv 
*• v J

(4.10)

Qk . - 6k Ql . - 6k Ql = - KSk ... (4.11)
X J llj )tl IJ

where sj is the spin density and V is the energy momentum
J kvector valued 3-form, t and S. . are defined by the relationst, \ j

t. = Y). t* , S. . = » Sk. ... (4.1Z)
x j x X j k

For classical description of spin

S\ = uv S, with uk S_ = 0 ... (4.13)
jk jk jk

where o'" is the velocity four vector.

5. €€>SM[P&[R0 SD <DtN WOTTtH EDSNSTEOtN'S TtHEQgg'if.

Torsion is only found inside spinning matter. In 

some vacuume we have the usual Riemann space— time geometry 

where the Einstein tensor vanishes. As torson is tied to 

matter it cannot propadate in vacuum. Accordingly propagation 

of gravity is the same as in Einstein's theory in the vaccum. 

The difference springs for the metric dependent part of 

gravity from redefined sources.
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The metric energy momentum tensor of General 
Relativity in this view is replaced by the combined 
momentum tensor of Einstein - Cartan theory. The soureces 
look different but the field is the same.

The long distance behaviour of Einstein - Cartan 
theory is the same as in General Relativity but the short 
distance behaviour is distinctly different.

In General Relativity, the test particles which are 
neutral and and point like fall along geodesics of the 
Riemannian Space—time of General Relativity. This
behaviour can be derived from the field equations or from the 
law of Reneral Relativity. In Einstein - Cartan theory a 
typical massive test mass carries spin and therefore falls 
neither along a shortest line < "geodesic” ) nor along a 
straightest line < "auto parallel" ).

6. IB1RDEF SMRWE't? OF OQJCR 0 £NWES¥0 <S&TP QOS .

In our present work, we consider a static charged 
and uncharged fluid spheres and obtain the non singular 
solutions by different techniques. Also we study the 
properties of the solutions.

In chapter I, we have discussed Einstein - Cartan 
theory with equations of structure and have given the field 
equations following Trautman <1973).
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In chapter II, we consider a static fluid sphere in 
Einstein - Cartan theory and present the field equations. 
Follwing Prasanna, by Hehl's (1773, 1974) approach, we solve 
these field equations with the equation of state P - p 

(Zeldovich—fluid). For specific values of an arbitrary 
constants, our model will reduce to static Einstein—Universe.

In chapter III, we deal with a static charged 
conformally flat perfect fluid distribution in Einstein - 
Catran theory and obtain the field equations and these field 
equations are solved with the assumption that the charge

3Q = Ar , whare A is an arbitrary constant and spins of 
particles are all aligned in the radial direction only.

The solutions obtained are regular at all points 
even at the origin r = 0, leading to the satisfactory model 
for the point charge. Also the properties of our solutions 
are discussed.

Chapter IV deals with a static conformally flat 
perfect fluid distribution in Einstein — Cartan theory. Here 
we obtain the field equations and they are solved with the 
assumption that the metric coeficient,

— n __ 2 3e H = < A + Br + cr )

Also the properties of solution are discussed. It is 
interesting to note that in the absence of charge our 
solution will reduce to solutions of S.B. Kylanshetti and
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Waghamode (19B2) for conformally flat perfect fluid
distribution.

It is worth to note that if the charge is absent
then density p = 12AB as seen by Son and Bedran <1981). The
arbitrary constants appearing in the solutions can be
evaluated by comparing the metric with the Reissnei—Nordstrom
metric for a mass m , redius r and charge Q . The constanto o 3 o
Aj appearing in the solution can be evaluated in terms of 
central density p^.

Here we see that our solutions are free from 
singularities.
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