CHAPTER-IV

CARTER-QUINTANA'S TRANSPORT

1. INTRODUCTION :

In classical Continuum mechanics Oldroyd (1950) has invented the convective derivative as generalization of material derivative through the formula
where
with $v^{k}=\frac{d x^{k}}{d t}$ and $\frac{\delta}{\delta t}$ is the material derivative (also called as intrinsic derivative). For the query, what is the physical significance of the operation of convective differentiation with respect to time, applied to a tensor intrinsically associated with a material of a moving continuum, Oldroyd's answer is that it is a kind of total differentiation following a material element which introduces no dependence on a fixed frame of reference or on the way the material is moving in space (vide p.42, Fredrickson 1964).

In relativistic continuum mechanics, the time has no absolute significance and hence the convective differentiation with respect to time
has to be suitably modified. This extension was accomplished by Oldroyd in 1970. However, this extension had a limitation in the sense that the relativistic convective derivative was, confined to material tensor, i.e., tensors orthogonal to the flow vector.

Through the convective operator C_{u}^{*} with respect to the timelike flow vector u^{a} of a mixed tensor field A_{b}^{a} :

$$
\begin{equation*}
C_{u}^{*} A_{b}^{a}=A_{b ; k}^{a} u^{k}+A_{k}^{a} u_{; b}^{k}-A_{b}^{k}\left(u_{; k}^{a}-u^{a} u_{k}\right) \tag{4.1}
\end{equation*}
$$

where $\quad A_{b}^{a} u_{a}=0, \quad A_{b}^{a}{ }^{b}=0$,
we refer A_{b}^{a} as convective transported iff $C_{u}^{*} A_{b}^{a}=0$.
This concept has been generalized to arbitrary (non-material) tensors by Carter and Quintana in 1972 in the following pattern :

$$
\begin{equation*}
c_{u} x_{b}^{a}=x_{b ; c}^{a} u^{c}+x_{c}^{b}\left(u_{; a}^{c}-u^{c} \dot{u}_{a}\right)-x_{a}^{c}\left(u_{; c}^{b}-u^{b} \dot{u}_{c}\right) \tag{4.2}
\end{equation*}
$$

We observe that (4.2) reduces to (4.1) when $X_{c}^{b} u^{c}=0$. Also $c_{u} X_{b}^{a}=\dot{f}_{u_{u}} X_{b}^{a}$ in the case of geodesic flow i.e. $\dot{u}_{a}=0$.

In this chapter we propose the idea of Carter-Quintana transport of a tensor field by means of the following characterization :

Definition : Carter-Quintana transport :

A tensor field X...a. $\left(x^{i}\right)$ is said to be transported in the sense of Carter and Quintana, if and only if

$$
\begin{aligned}
c_{u} X_{. . .}^{b .} & =X_{. . a ; c}^{. b . .} u^{c}+X_{. . c_{.}}^{b_{. .}}\left(u_{; a}^{c}-u^{c} \dot{u}_{a}\right) \\
& -X_{. . . . a_{0}}^{. c}\left(u_{; c}^{b}-u^{b} u_{c}\right)=0
\end{aligned}
$$

52

Some special cases : For ready reference we record the CarterQuintana's convective derivative of the vector field A_{a} as

$$
\begin{equation*}
c_{u} A_{a}=\dot{A}_{a}+A_{c}\left(u_{; a}-u^{c} \dot{u}_{a}\right) \tag{4.3}
\end{equation*}
$$

Similarly, for the contravariant vector field B^{b}, we have,

$$
\begin{equation*}
c_{u} B^{b}=\dot{B}^{b}-B^{c}\left(u_{; c}^{b}-u^{b} \dot{u}_{c}\right) \tag{4.4}
\end{equation*}
$$

i) Putting $A_{a}=u_{a}$ in (4.3), we get,

$$
c_{u} u_{a}=0
$$

ii) When $B^{b}=u^{b}$, we have,

$$
c_{u} u^{b}=0, \quad \text { identically. }
$$

iii) Covariant Material Vector Fields : When A_{a} is a material vector, we have, $A_{a} u^{a}=0$ and formula (4.3) gives us

$$
C_{u} A_{a}=f_{u} A_{a}
$$

Note: If $A_{a}=\dot{u}_{a}$. the acceleration vector field, we get

$$
c_{u} \dot{u}_{a}=f_{u} \dot{u}_{a}=\ddot{u}_{a}+\dot{u}_{k}{ }^{\prime \prime}{ }_{; a}^{k}
$$

2. CARTER-QUINTANA TRANSPORT OF THE GRAVITATIONAL

POTENTIALS :

For brevity we use CQ-transport in place of Carter-Quintana's transport in this chapter henceforth.

We examine the CQ-transport of the gravitational potentials $g_{a b}$, a significant tensor in general relativity.

Theorem 1 : $\quad C_{u} g_{a b}=0$ iff $\theta=0, \quad \sigma_{a b}=0$.
Proof: We have the notation

$$
\begin{align*}
& \gamma_{a b}=g_{a b}-u_{a} u_{b} \text { or } \gamma_{a}^{b}=\delta_{a}^{b}-u_{a} u^{b} \tag{4.5}\\
& A_{a}^{b} \frac{1}{b}=\gamma_{a}^{c} \gamma_{b}^{d} A_{c ; d} . \tag{4.6}
\end{align*}
$$

We consider,

$$
\begin{aligned}
& u_{a ; b}=\delta_{a}^{c} \delta_{b}^{d} u_{c ; d} \\
& =\left(\gamma_{a}^{c}+u^{c} u_{a}\right)\left(\gamma_{b}^{d}+u^{d} u_{b}\right) u_{c ; d}, \text { by (4.5) } \\
& =\gamma_{a}^{c} \gamma_{b}^{d} u_{c ; d}+\gamma_{a}^{c} u_{u_{b} u_{c ; d}} \quad \text { since } u^{c} u_{c ; d}=0 \\
& =u \frac{1}{a ; b}+\gamma_{a}^{c} \dot{u}_{c} \dot{u}_{b} \\
& =\frac{u}{a} \frac{1}{a} ; \frac{1}{b}+\left(\delta_{a}^{c}-u^{c} u_{a}\right) \dot{u}_{c} u_{b} \quad \text { by }(4.6) \\
& =u \frac{1}{a} ; \frac{1}{b}+\dot{u}_{a} u_{b}, \quad \text { since } \quad u^{c} \dot{u}_{c}=0
\end{aligned}
$$

Hence, we get,

$$
u_{a ; b}-\dot{u}_{a} u_{b}=u_{a}^{1} ; \frac{1}{b}
$$

The decomposition of flow gradient is

$$
\begin{equation*}
u_{a ; b}=\sigma_{a b}+\omega_{a b}+\frac{1}{3} \theta_{\gamma} a b+\dot{u}_{a} u_{b} \tag{4.7}
\end{equation*}
$$

and accordingly

$$
\begin{equation*}
u_{a ; b}-\dot{u}_{a} u_{b}=u_{\frac{1}{a} ; \frac{1}{b}}=\sigma_{a b}+w_{a b}+\frac{1}{3} \theta_{r} \tag{4.8}
\end{equation*}
$$

Now, the formula for the CQ-derivative with respect to flow of a rank covariant tensor gives

$$
\begin{align*}
& c_{u} g_{a b}=g_{a b ; k} u^{k}+g_{k b}\left(u_{; a}^{k}-u^{k} \dot{u}_{a}\right)+g_{a k}\left(u_{; b}^{k}-u^{k} \dot{u}_{b}\right) \\
& =u_{b ; a}-\dot{u}_{a} u_{b}+u_{a ; b}-\dot{u}_{b} u_{a}, \text { since } g_{a b} \text { are covariant constant. } \\
& =u \frac{1}{a} ; \frac{1}{b}+u \frac{1}{b} ; \frac{1}{a} \text {. by (4.6) } \\
& =\sigma_{a b}+\omega_{a b}+\frac{1}{3} \theta \gamma_{a b}+\sigma_{b a}+\omega_{b a}+\frac{1}{3} \theta \gamma_{b a} \text { by (4.8) } \\
& c_{u} g_{a b}=2\left(\sigma_{a b}+\frac{1}{3} \theta_{\gamma}{ }_{a b}\right) \text {, since } \omega_{a b}=-\omega_{b a} \tag{4.9}\\
& \text { Now, we consider, } \\
& g^{a b} c_{u} g_{a b}=2 g^{a b}\left(\sigma_{a b}+\frac{1}{3} \theta_{a b}\right) \\
& =2 g^{a b} \sigma_{a b}+2\left(g^{a b} \gamma_{a b}\right) \stackrel{\theta}{3}
\end{align*}
$$

Thus, we have

$$
g^{a b} C_{u} g_{a b}=2 \theta, \text { since } \sigma_{a}^{a}=0, \gamma_{a}^{a}=3
$$

Consequently ,

$$
c_{u} g_{a b}=0 \text { implies } \cdot \theta=0 \text { which implies }
$$

$$
\sigma_{a b}=0 \quad \text { by (4.5) }
$$

Conversely, when $\theta=0, \sigma_{a b}=0$, we get

$$
c_{u} g_{a b}=0 .
$$

This completes the proof of the theorem.

Interpretation : The physical significance of the theorem is that the gravitational potentials are CQ-transported iff the flow of the continuum is expansion-free and shearfree (i.e. rigid).

3. CQ-TRANSPORT OF THE RELATIVISTIC SERRET-FRENET FRAME :

We observe that,
i) $\quad C_{u} u^{a}=0$, identically.
ii) $\quad C_{u} P^{a}=\dot{p}^{a}-P^{k}\left(u_{; k}^{a}-u^{a} \dot{u}_{k}\right)$, by definition of CQ-transport.

$$
\begin{array}{r}
=K_{1} u^{a}+K_{2} Q^{a}+\gamma_{122} p^{a}+\gamma_{132} Q^{a}+\gamma_{142} R^{a}-K_{1} u^{a}, \\
\text { by(RSF }-2) .
\end{array}
$$

$$
c_{u} P^{a}=Y_{122} P^{a}+\left(K_{2}+\gamma_{132}\right) Q^{a}+\gamma_{142} R^{a} .
$$

$$
C_{u} P^{a}=0 \quad \text { iff } \quad \gamma_{122}=\gamma_{142}=0, \quad K_{2}=-\gamma_{132}
$$

iii) Similarly by using (RSF-3), we get the relation

$$
\begin{aligned}
& C_{u} Q^{a}=-\left(K_{2}+\gamma_{123}\right) P^{a}-\gamma_{133} Q^{a}+\left(K_{3}-\gamma_{143}\right) R^{a} . \\
& \text { and so } C_{u} Q^{a}=0 \text { are equivalent to } K_{2}=\gamma_{123} ; \gamma_{133}=0, K_{3}=\gamma_{143} .
\end{aligned}
$$

iv) Adopting (RSF-4) in the expression for $C_{u} R^{a}$, we get,

$$
C_{u} R^{a}=-\gamma_{124} P^{a}-\left(K_{3}+\gamma_{134}\right) Q^{a}-\gamma_{144} R^{a}
$$

Accordingly, $C_{u} R^{a}=0$ implies and is implied by

$$
\gamma_{124}=0, \quad K_{3}=-\gamma_{134} ; \quad \gamma_{144}=0
$$

We have now proved the

Theorem 2 : The necessary and sufficient conditions that the relativistic
Serret-Frenet tetrad $\left\{\mathrm{U}^{\mathrm{a}}, \mathrm{P}^{\mathrm{a}}, \mathrm{Q}^{\mathrm{a}}, \mathrm{R}^{\mathrm{a}}\right\}$ is $C Q$-transported are

$$
\begin{aligned}
& \gamma_{122}=\gamma_{133}=\gamma_{144}=\gamma_{142}=\gamma_{124}=0 \\
& K_{2}=\gamma_{123}=\gamma_{312} \\
& K_{3}=\gamma_{143}=\gamma_{314} .
\end{aligned}
$$

4. CQ-TRANSPORT OF THE - 2 DIMENSIONAL PROJECTION OPERATOR

There is no interest in the CQ-transport of the 3-dimensional projection operator,

$$
\gamma_{a b}=g_{a b}-u_{a} u_{b}
$$

since $C_{u} u_{a}=0$ and $C_{u} g_{a b}$ is already discussed. Now we turn our attention to the 2-dimensional projection operator

$$
P_{a b}=g_{a b}-u_{a} u_{b}+P_{a} P_{b}
$$

(Note : $P_{a}^{a}=2, P_{a b} P^{b} \cdot c=P{ }_{a c}$); Since $\left\{u^{a}, P^{a}, Q^{a}, R^{a}\right\}$ is an orthonormal tetrad, we get a more convenient expression for $P_{a b}$ by adopting the completeness relation

$$
g_{a b}=u_{a} u_{b}-P_{a} P_{b}-Q_{a} Q_{b}-R_{a} R_{b}
$$

Therefore, we have,

$$
P_{a b}=g_{a b}-u_{a} u_{b}+P_{a} P_{b}=-\left(Q_{a} Q_{b}+R_{a} R_{b}\right)
$$

We now obtain a theorem on the CQ-transport of $P_{a b}$.

Theorem 3: TFAE

1) $C_{u} P_{a b}=0$
2) $K_{2}=-\gamma_{132}, \gamma_{134}=-\gamma_{143}, \gamma_{133}=\gamma_{144}=0$.

Proof : Consider the two dimensional projejction operator

$$
\begin{aligned}
& P_{a b}=-\left(Q_{a} Q_{b}+R_{a} R_{b}\right) \\
& C_{u} P_{a b}=-C_{u}\left(Q_{a} Q_{b}+R_{a} R_{b}\right)
\end{aligned}
$$

$$
\begin{aligned}
&=-\left\{Q_{b}\left[\dot{Q}_{a}+Q_{c}\left(u_{; a}^{c}-u^{c} \dot{u}_{a}\right)\right]+Q_{a}\left[\dot{Q}_{b}+Q_{c}\left(u_{; b}^{c}-u^{c} \dot{u}_{b}\right)\right]\right. \\
&\left.+R_{b}\left[\dot{R}_{a}+R_{c}\left(u_{; a}^{c}-u^{c} \dot{u}_{a}\right)\right]+R_{a}\left[\dot{R}_{b}+R_{c}\left(u_{; b}^{c}-u^{c} \dot{u}_{b}\right)\right]\right\}
\end{aligned}
$$

, by definition of C_{u}.

$$
\begin{aligned}
&=-\left[Q_{b}\left(-K_{2} P_{a}+K_{3} R_{a}\right)+Q_{a}\left(-K_{2} P_{b}+K_{3} R_{b}\right)+R_{b}\left(-K_{3} Q_{a}\right)+R_{a}\left(-K_{3} Q_{b}\right)\right. \\
&\left.+Q_{c} U_{; a}^{c} Q_{b}+u_{; b}^{c} Q_{c} Q_{a}+u_{; a}^{c} R_{c} R_{b}+u_{; b}^{c} R_{c} R_{a}\right] \\
& b y\left(R S F-(1) \text { and (2)), } Q_{c} u^{c}=R_{c} u^{c}=0\right.
\end{aligned}
$$

$$
=K_{2}\left(Q_{b} P_{a}+Q_{a} P_{b}\right)-\left(U_{; a}^{c} Q_{c} Q_{b}+u_{; b}^{c} Q_{c} Q_{a}+u_{; a}^{c} R_{c} R_{b}+u_{; b}^{c} R_{c} R_{a}\right)
$$

$$
=K_{2}\left(Q_{a} P_{b}+Q_{b} P_{a}\right)+\left(\gamma_{132} P_{a}+\gamma_{133} Q_{a}+\gamma_{134} R_{a}\right) Q_{b}
$$

$$
+\left(\gamma_{132} P_{b}+\gamma_{133} Q_{b}+\gamma_{134} R_{b}\right) Q_{a}+\left(\gamma_{142} P_{a}+\gamma_{143} Q_{a}+\gamma_{144} R_{a}\right) R_{b}
$$

$+\left(\gamma_{142} P_{b}+\gamma_{143} Q_{b}+\gamma_{144} R_{b}\right) R_{a}$, by computational aids, chapter-1.

$$
\begin{aligned}
c_{u} P_{a b}= & \left(K_{2}+\gamma_{132}\right)\left(P_{a} Q_{b}+P_{b} Q_{a}\right)+2 \gamma_{133} Q_{a} Q_{b}+2 \gamma_{144} R_{a} R_{b} \\
& +\left(\gamma_{134}+\gamma_{143}\right)\left(R_{a} Q_{b}+R_{b} Q_{a}\right)
\end{aligned}
$$

Hence, we have,

$$
\begin{aligned}
& c_{u} P_{a b}=0 \text { if and only if } K_{2}+\gamma_{132}=0 \\
& \gamma_{133}=\gamma_{144}=\gamma_{134}+\gamma_{143}=0
\end{aligned}
$$

5. NON-COMMUTATIVITY OF C_{u} WITH RAISING/LOWERING INDEX :

We note that ∇_{u} commutes with raising and lowering of indices, if ∇_{u} represents covariant derivative with respect to u, since

$$
\begin{aligned}
\nabla_{u}\left(g_{a b} A^{b}\right)= & \left(\nabla_{u} g_{a b}\right) A^{b}+g_{a b}\left(\nabla_{u} A^{b}\right) \\
= & g_{a b} \nabla_{u} A^{b}, \text { because } g_{a b ; c}=0 \text { and } \\
& \nabla_{u} g_{a b}=g_{a b ; c} u^{c}=0 .
\end{aligned}
$$

Thus,
$\left(\nabla_{u} g_{a b}\right) A^{b}=\left(g_{a b} \nabla_{u}\right) A^{b}$,
which shows that ∇_{u} commutes with raising and lowering of indices. Also, we note

$$
\nabla_{u} A^{a}=0 \quad \text { iff } \nabla_{u} A_{a}=0
$$

We investigate whether such nice property is shared by CQ-transport.

We consider the following question :
If A^{a} is CQ-transported, then under what circumstances is A_{a}

CQ - transported ?

We have,

$$
\begin{aligned}
A_{a} & =g_{a b} A^{b} \\
C_{u} A_{a} & =C_{u}\left(g_{a b} A^{b}\right) \\
& =\left(C_{u} g_{a b}\right) A^{b}+g_{a b}\left(C_{u} A^{b}\right), \text { by Leibnitz rule. } \\
& =2 \theta_{a b} A^{b}, \text { since } A^{b} \text { is CQ-transported. }
\end{aligned}
$$

Thus, $C_{u} A_{a} \neq 0$ in general. Also $\theta_{a b} A^{b}=0$ need not imply that $\theta_{a b}=0$. Obviously $u^{a} c_{u} A_{a}=0$, since $\theta_{a b} u^{a}=0$.

Special case : When the continuous medium is rigid, then, $\theta_{a b}=0$
and $C_{u} g_{a b}=0$ and consequently $C_{u} A_{a}=0$.
Thus, in general $\left(C_{u} g_{a b}\right) A^{b} \neq g_{a b}\left(C_{u} A^{b}\right)$ which implies that C_{u} does not commute with raising or lowering of indices.

REFERENCES

CARTER, B. and QUINTANA, H. (1972) Foundations of General Relativistic high-pressure eleasticity, Proc. Roy. Soc. Lond., A221, 57-83.

FREDRICKSON, A.G. (1964). Principles and Applications of Rheology, Englewood Cliffs Prentice Hall.

OLDROYD, J.G. (1950). On the formulation of Rheological equations of State, Proc. Roy. Soc. Lond., A200, 253-54.

OLDRỌD, J.G. (1970). Proc. R. Soc. Lond. A 316, 1.

