CHAPTER-V

A NEW TRANSPORT OPERATOR D u

1 - MOTIVATION FOR DEFINING THE NEW TRANSPORT OPERATOR Du

The decomposition of the tensor gradient of the flow field :

The condition

$$
u^{a} u_{a}=1
$$

on $u^{a},(a=1,2,3,4)$, implies that there are only 3 independent components of u^{a}. Hence $u_{a ; b}$ are $3 \times 4=12$ independent components, Thus the tensor gradient of the timelike flow vector field $u_{a ; b}$ has 12 independent components which have been decomposed into
i) 5 independent components of the shear tensor field $\sigma_{a b}$
ii) 3 independent components of the rotation tensor field $\omega \mathrm{ab}$
iii) 3 independent components of the acceleration field \dot{u}_{a}
iv) 1 independent component of the expansion scalar field θ.
due to the relations

$$
\begin{aligned}
& \sigma_{a}^{a}=0, \sigma_{a}^{b} u_{b}=0, \omega_{a b}=-\omega_{b a} \\
& \omega_{b}^{a} u^{b}=0, \quad \dot{u}_{a} u^{a}=0, \quad \theta=u_{; a}^{a}, \sigma_{a b}=\sigma_{b a} .
\end{aligned}
$$

The flow gradient is partitioned as follows

$$
u_{a ; b}=\sigma_{a b}+\omega_{a b}+\frac{1}{3} h_{a b}^{\theta+} \dot{u}_{a} u_{b}, \quad h_{a b}=g_{a b}-u_{a} u_{b} .
$$

The new operator which we propose is general in the sense that it will be a combination of all these kinematical parameters ${ }^{0}{ }_{a b},{ }^{\omega} a b$ θ, \dot{u}_{a}, and also it reduces to known operatos under some conditions.

THE NEW TRANSPORT OPERATOR :
We introduce a new transport in relativistic continuum mechanics as follows :

$$
D_{u} x^{a}=f \dot{x}^{a}-\left(\alpha \alpha_{c}^{a}+\beta \omega_{c}^{\cdot a}+\gamma \delta_{c}^{a} \theta+\gamma_{2} u^{a} u_{c}^{\theta}+\chi \dot{u}^{a} u_{c}+\psi u^{a} \dot{u}_{c}\right) x^{c}
$$

where $f_{1} \alpha, \beta, \gamma_{1}, \gamma_{2}, X, \psi$ are seven arbitrary scalar fields.
The negative sign is chosen for convenience. Here "transport" is used in the sense that the derivative operator is chosen along the time-like flow vector. It is a generalization of many famous transports in relativistic continuum mechanics, like

1) the materlal transport : (Radhakrishna, 1976; Katkar, 1982;

Gumaste, 1984).
2) the Jaumarn transport: (Rahdkrishna; Katkar and Date, 1981).
3) the Fermi transport : (Synge, 1962; Radhakrishna and Bhosale, 1975-76).
4) The Oldroyd (convective) transport : (Carter and Quintana, 1972).
5) the Truesdell transport : (Radhakrishna and Walwadkar, 1982).
6) the Lie transport : (Narlikar, 1978; Stephani, 1982; Van Dantzig, 1932).

To appreciate the operator D as a general transport, we cite below the conditioins on the 7 scalar fields to correspond to the well known operators.

1) the Material transport :

The material transport of the contravariant vector field x^{a} is defined by

$$
\begin{aligned}
\frac{\delta x^{a}}{\delta s} & =\left(x^{a}\right) ; b^{u^{b}}, \quad u^{b}=\frac{d x^{b}}{d s} \\
& =\dot{x}^{a}
\end{aligned}
$$

comparing this with the definition of $D_{u} x^{a}$, we find that D reduces to $\frac{\delta}{\delta s}$ when

$$
f=1, \alpha=\beta=\gamma_{1}=\gamma_{2}=\chi=\psi=0
$$

Here $\frac{\delta}{\delta s}$ represents covariant derivative along the flow of the material continuum.
2) the Jaumann transport :

The Jaumann transport of the contravariant vector field x^{a} is defined by

$$
J_{u} x^{a}=\dot{x}^{a}+x^{k} w_{0}^{a}
$$

since $\omega_{k a}$ is a skew symmetric tensor.
Comparing this with the definition of $D_{u} x^{a}$, we find that D reduces to J when

$$
f=1, \beta=+1, \alpha=\gamma_{1}=\gamma_{2}=\chi=\psi=0
$$

3) the Fermi transport :

The Fermi transport of the contravariant vector field x^{a} is defined by

$$
F_{u} x^{a}=\dot{x}^{a}+x^{k}\left(\dot{u}^{a} u_{k}-\dot{u}_{k} u^{a}\right)
$$

Comparing this with the definition of $D_{u} x^{a}$ we find that, D reduces to F when

$$
\begin{aligned}
& f=1, X=-1, \psi=1 \\
& \alpha=\beta=\gamma_{1}=\gamma_{2}=0 .
\end{aligned}
$$

4) the Oldroyd (convective) transport :

The Oldroyd derivative developed by Carter and Quintana for the contravariant vector field x^{a} is given by

$$
\begin{aligned}
c_{u} x^{a} & =\dot{x}^{a}-x^{k}\left(u_{i k}^{a}-u^{a} \dot{u}_{k}\right) \\
& =\dot{x}^{a}-x^{k}\left(\sigma_{k}^{a}+\omega_{k}^{a}+\frac{3}{3} 0 \gamma_{k}^{a}+\dot{u}^{a} u_{k}-u^{a} \dot{u}_{k}\right)
\end{aligned}
$$

Comparing this with the definition of $D_{u} x^{a}$, we find that D reduces to c when

$$
f=1, \quad \psi=-1, \alpha=1, \quad \beta=1, \quad \gamma_{1}=\frac{1}{3}, \quad \gamma_{2}=0, \quad X=+1
$$

5) the Truesdell transport :

The Truesdell transport of the contravariant vector field x^{a} is defined as

$$
\begin{aligned}
T_{u} x^{a} & =\dot{x}^{a}-x^{k} u_{i k}^{a}+\frac{1}{2} x^{a} \theta \\
& \left.=\dot{x}^{a}-x^{k} / \sigma_{k}^{a}+\omega_{k}^{a}+\frac{1}{3} \delta_{k}^{a} \theta-\frac{1}{3} u^{a} u_{k} \theta+\dot{u}^{a} u_{k}\right)+\frac{1}{2} x^{a} \theta \\
& =\dot{x}^{a}-x^{k}\left(\sigma_{k}^{a}+\omega_{k}^{\cdot a}-\frac{1}{3} u^{a} u_{k} \theta+\dot{u}^{a} u_{k}\right)-\frac{1}{3} x^{a} \theta+\frac{1}{2} x^{a} \theta .
\end{aligned}
$$

comparing this with the definition of $D_{u} x^{a}$, we find that D reduces to T^{-}when

$$
f=1, \quad \alpha=1, \quad \beta=1, \quad \gamma_{1}=-\frac{1}{6}, \gamma_{2}=\frac{-1}{3}, \chi=1, \psi=0
$$

6) the Lie transport :

The Lie transport of the contravariant vector field x^{a} is defined by

$$
\begin{aligned}
\dot{f}_{u} x^{a} & =\dot{x}^{a}-x^{k} u_{i k}^{a} \\
& =\dot{x}^{a}-x^{k}\left(\sigma_{k}^{a}+\omega_{\cdot k}^{a}+\frac{1}{3} h_{k}^{a} \theta+\dot{u}^{a} u_{k}\right) \\
& =\dot{x}^{a}-x^{k}\left(\sigma_{k}^{a}+\omega_{\cdot k}^{a}+\frac{1}{3} \delta_{k}^{a} \theta-\frac{1}{3} \theta u^{a} u_{k}+\dot{u}^{a} u_{k}\right), \\
\text { since } & h_{k}^{a}=\delta_{k}^{a}-u^{a} u_{k} .
\end{aligned}
$$

Comparing this with the definition of $D_{u} x^{a}$, we find that, D reduces to £ when

$$
f=1, \alpha=1, \quad \beta=1, \gamma_{1}=\frac{1}{3}, \gamma_{2}=-\frac{1}{3}, x=1, \psi=0 .
$$

The general transport of a covariant vector field :

Till now we have studied the general transport for a contravariant vector field. We now develop the theory for a covariant vector field.

We tentatively propose the relation

$$
D_{u} x_{a}=f^{\prime} \dot{x}_{a}+\Omega_{a}^{\prime c} \dot{x}_{c}
$$

with $f_{,}^{\prime} \alpha^{\prime}, \beta^{\prime}, \gamma_{1}, \gamma_{2} \psi^{\prime} \psi^{\prime}, X^{\prime}$ are arbitrary scalars.
iI) In the next section we will determine the relationship between $f, f^{\prime}, \alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma^{\prime}, \gamma$, etc. so that certain standard properties for any operator (derivative along flow) are valid.

2. SPECIAL LEIBNITZ PROPERTY :

The general transport of a scalar function must be the material transport of the same scalar function (Eringen, 1962). This will be true when $D_{u} h=\dot{h}$ for every $h\left(x^{k}\right)$. It follows that we should have

$$
D_{u}\left(x^{a} y_{a}\right)=\left(x^{a} y_{a}\right)
$$

which is referred here as Special Leibnitz Property.
For instance

$$
D_{u}\left(x^{a} y_{b}\right)=\left(D_{u} x^{a}\right) y_{b}+x^{a}\left(D_{u} y_{b}\right)
$$

is the well-known Lelbnitz property .
We establish the following.
CLAIM : $D_{u}\left(x^{a} y_{a}\right)=\left(x^{a^{\prime}} y_{a}\right)^{\cdot}$ implies $f=f^{\prime}=1$,

$$
\alpha+\alpha^{\prime}=\beta+\beta^{\prime}=\gamma_{1}+\gamma_{1}^{\prime}=\gamma_{2}+Y_{2}^{\prime}=X+X^{\prime}=\psi+\psi^{\prime}=0 .
$$

Proof : Suppose

$$
\begin{align*}
& D_{u} x^{a}=f \dot{x}^{a}+\Omega_{c}^{a} x^{c} \tag{2.1}\\
& D_{u} x_{a}=f^{\prime} \dot{x}_{a}+\Omega_{a}^{\prime c} x_{c} \tag{2.2}
\end{align*}
$$

where

$$
\begin{gathered}
\Omega_{c}^{a}=-\left(\alpha \sigma_{c}^{a}+\beta \omega_{c}^{\cdot a}+\gamma_{1} \delta_{c}^{a} \theta+\gamma_{2} u^{a} u_{c} \theta+\chi^{\prime} u^{a} u_{c}\right) \\
\Omega_{a}^{\prime c}=-\left(\alpha^{\prime} \sigma_{a}^{c}+\beta^{\prime} \omega_{\cdot a}^{c}+\gamma_{1}^{\prime} \delta_{a}^{c} \theta+\gamma_{2}^{\prime} u^{\prime} u^{c} \theta+\chi^{\prime} \dot{u}_{a} u^{c}\right)
\end{gathered}
$$

The special Leibnitz property

$$
\left(D x^{a}\right) y_{a}+x a\left(D y_{a}\right)=\left(x^{\prime} y_{a}\right)^{\prime}
$$

implies on using (2.1) and (2.2)
$f \dot{x}^{a} y_{a}+f^{\prime} x^{a} \dot{y}_{a}+\Omega_{c}^{a} x^{c} y_{a}+\Omega_{a}^{\prime c} y_{c} x^{a}=\dot{x}^{a} y_{a}+x^{a} \dot{y}_{a}$.
Comparing the co-efficients of like terms, we have,
$f=1, f^{\prime}=1, \Omega_{c}^{a} x^{c} y_{a}+\Omega_{a}{ }^{c} y_{c} x^{a}=0$
or
or
$\Omega_{c}^{a} x^{c} y_{a}+\Omega_{c}^{\prime a} y_{a} x^{c}=0$
changing dummies in second term, we get

$$
\left(\Omega_{c}^{a}+\Omega_{c}^{a}\right) x^{c} y_{a}=0 \text {. Hence } \Omega_{c}^{a}+\Omega_{c}^{\prime a}=0
$$

since $\quad x^{a}, y^{a}$ are arbitrary independent vector fields.
This implies that $\alpha+\alpha^{\prime}=0, \beta+\beta^{\prime}=0, \gamma_{1}+\gamma_{1}^{\prime}=0$,

$$
\gamma_{2}+\gamma_{2}^{\prime}=0, x+x^{\prime}=0, \psi+\psi^{\prime}=0
$$

since the kinematical parameters $\sigma_{a b}, \omega a b, \theta, \quad \dot{u}_{a}$ are independent. We infer that

$$
\begin{align*}
& D_{u} x^{a}=\dot{x}^{a}+\Omega_{c}^{a} x^{c} \tag{2.3}\\
& D_{u} x_{a}=\dot{x}_{a}^{-}-\Omega_{a}^{c} x_{c} \tag{2.4}
\end{align*}
$$

This establishes the formulae for the D-transport of contravariant vector field (vide 2.3) and D-transport of the covariant vector fields (vide 2.4).

3. THE FORMULA FOR $D_{u} A_{b}^{a}$:

We consider the outer product of x^{a} and y_{b} and impose the condition that the Leibnitz property should be satisfied.

$$
D_{u}\left(x^{a} y_{b}\right)=\left(D_{u} x^{a}\right) y_{b}+x^{a}\left(D_{u} Y_{b}\right)
$$

Proof : By the definition of the general transport, we have

$$
\begin{aligned}
& D_{u} x^{a}=\dot{x}^{a}+\left(\alpha \sigma_{c}^{a}+\beta \omega_{c}^{\cdot a}+\gamma_{1} \delta_{c}^{a} \theta+\gamma_{2} u^{a} u_{c} \theta+x \dot{u}^{a^{u_{c}}}+\psi u^{a_{\dot{u}}}\right) x_{c}^{c} \\
& D_{u} y_{b}=\dot{y}_{b}-\left(\alpha \sigma_{b}^{c}+\beta \omega_{b}^{c}+\gamma_{1} \delta_{b}^{c} \theta+\gamma_{2} u_{b} u^{c} \theta+x \dot{u}_{b} u^{c}+\psi u_{b} \dot{u}^{c}\right) y_{c}
\end{aligned}
$$

We know that the Leibnitz product rule is given by

$$
\begin{aligned}
& D_{u}\left(x^{a} y_{b}\right)=\left(D_{u} x^{2}\right) y_{b}+x^{a}\left(D_{u} y_{b}\right) . \\
& \text { R.H.S. }=\left[\dot{x}^{a}+\left(\alpha \sigma_{c}^{a}+\beta \omega_{c}^{a}+\gamma_{1} \delta_{c}^{a} \theta+\gamma_{2} u^{a} u_{c} \theta+x \dot{u}^{a} u_{c}+\psi u^{a} \dot{u}_{c}\right) x^{c}\right] y_{b} \\
& +x^{a}\left[\dot{y}_{b}+\left(\alpha q_{b}^{c}+\beta \omega_{b}^{c}+\gamma_{1} \delta_{b}^{c} \theta+\gamma_{2} u_{b} u^{c} \Theta+x \dot{u}_{b} u^{c}+\psi u_{b} \dot{u}^{c}\right) y_{c}\right] \\
& =\dot{x}^{a} y_{b}+x^{a} \dot{y}_{b}+\alpha \sigma_{c}^{a} y_{b} x^{c}-\alpha \sigma_{b}^{c} y_{c} x^{a}+\beta \omega{ }_{c}^{\cdot a} y_{b} x^{c}-\beta \omega{ }_{b}^{\cdot}{ }^{c} y_{c} x^{a} \\
& +\gamma_{1} \delta_{c}^{a} \theta y_{b} x^{c}-\gamma_{1} \delta_{b}^{c} \theta y_{c} x^{a}+\gamma_{2} u^{a} u_{c} \theta y_{b} x^{c}-\gamma_{2} u_{b} u^{c} \theta y_{c} x^{a} \\
& +x \dot{u}^{a} u_{c} y_{b} x^{c}-x \dot{u}_{b} u^{c} x^{a} y_{c}+\psi u^{a} \dot{u}_{c} x^{c} y_{b}-\psi u_{b} \dot{u}^{c} x^{a} y_{c} . \\
& =\dot{x}^{a} y_{b}+x^{a} \dot{y}_{b}+\alpha \sigma_{c}^{a} y_{b} x^{c}-\alpha \sigma_{b}^{c} y_{c} x^{a}+\beta \omega_{c}^{\cdot a} y_{b} x^{c}-\beta \omega_{b}^{\cdot c} y_{c} x^{a} \\
& +\gamma_{2} u^{a} u_{c} \theta y_{b} x^{c}-\gamma_{2} u_{b} u^{c} \theta y_{c} x^{a}+x \dot{u}^{a} u_{c} y_{b} x^{c}-x \dot{u}_{b} u^{c} x^{a} y_{c} \\
& +\psi u^{a} \dot{u}_{c} x^{c} y_{b}-\psi_{u_{b}} \dot{u}^{c} x^{a} y_{c}, \\
& \text { since, } \\
& \text { - } \gamma_{1} \delta_{c}^{a} \theta y_{b} x^{c}-\gamma_{1} \delta_{b}^{c} \theta y_{c} x^{a}=\quad \gamma_{1} \theta y_{b} x^{a}-\gamma_{1} \theta y_{b} x^{a}=0 .
\end{aligned}
$$

Put: $x^{a} y_{b}=A_{\cdot b}^{a}, x^{c} y_{b}=A_{b}^{c}, y_{c} x^{a}=A_{\cdot c}^{a}$
$D A_{\cdot b}^{a}=\left(A_{\cdot b}^{a}\right)^{\bullet}+\alpha \sigma_{c}^{a} A_{\cdot b}^{c}-\alpha \sigma_{b}^{c} A_{\cdot c}^{a}+\beta \omega_{c}^{\cdot a} A^{c}{ }_{b}-\beta \omega_{b}{ }^{c} A^{a} \cdot{ }_{c}^{a}$ $+\gamma_{2} \theta u^{a} u_{c} A_{\cdot b}^{c}-\gamma_{2} \theta u_{b} u^{c} A \cdot c+x \dot{u}^{a} u_{c} A^{c} \cdot b-x \dot{u}_{b} u^{c} A^{a} \cdot c^{+} \cdot \psi u^{-c}\left(u^{a} A_{c b}-u_{b} A_{\cdot c}^{a}\right.$

$$
\begin{align*}
D_{u} A_{\cdot b}^{a}= & \left(A_{\cdot b}^{a}\right)^{-}+\alpha\left(\sigma_{c}^{a} A_{\cdot b}^{c}-\sigma_{b}^{c} A_{\cdot c}^{a}\right)+\beta\left(\omega_{c}^{\cdot a} A_{\cdot b}^{c} w_{b}^{\cdot} A_{\cdot c}^{a}\right) \\
& +\gamma_{2} \theta\left(u^{a} u_{c} A^{c}{ }_{b}-u_{b} u^{c} A^{a}{ }_{c}\right)+x\left(\dot{u}^{a} u_{c} A^{c} \cdot b-\dot{u}_{b} u^{c} A_{\cdot c}^{a}\right) \tag{3.1}\\
& +\psi u^{c}\left(u^{a} A_{c b}-u_{b} A_{\cdot c}^{a}\right)
\end{align*}
$$

We can analogously write the formulae for the general transport of an arbitriary tensor.

4. D - TRANSPORT OF MATERIAL CONTRAVARIANT VECTOR FIELDS :

Introduction :

In this dissertation we have studied several material vector fields, viz. P^{a}, Q^{a}, R^{a} (i.e. $u_{a} P^{a}=0, u_{a} Q^{a}=0, u_{a} R^{a}=0$). In relativistic magneto hydrodynamics the magnetic field vector is a material vector field,

$$
u_{a} H^{a}=0 \quad \text { (vide Lichnerowicz, 1967) }
$$

The vorticity vector field ω^{a}, the poynting vector field Ω^{a} are all material vector fields. It is shown in Chapter III that the Lie transport of a material contravariant vector is not in general a material vector but the OLDROYD transport of a material vector is again a material vector.

Hence it is necessary to investigate the properties of D-transport of material vector fields. We observe that, in general, the D-transport of a material vector does not produce a material vector.

Theorem : 1. Let x^{a} be a material vector field.
The following are equivalent (TFAE).
i) $\quad D_{u} x^{a}$ is a material vector field.
ii) $1+\Psi=0$.

Proof : The definition of the D operator gives
$D_{u} x^{a}=\dot{x}^{a}-\left[\alpha \sigma_{c}^{a}+\beta \omega_{c}^{a}+\gamma_{1} \delta_{c}^{a} \theta+\gamma_{2} u^{a} u_{c} \theta+x \dot{u}^{a} u_{c}+\psi_{u}^{a} \dot{u}_{c}\right] x^{c}$
Consider, the inner product of $D_{u} x^{a}$ with u_{a} *

$$
\begin{aligned}
& u_{a} D_{u} x^{a}= u_{a}\left[\dot{x}^{a}-\left(\alpha \sigma_{c}^{a}+\beta \omega{ }_{c}^{a}+\gamma_{1} \delta_{c}^{a} \theta+\gamma_{2} u^{a} u_{c} \theta+x \dot{u}^{a} u_{c}+\psi u^{a} \dot{u}_{c}\right) x^{c}\right] \\
&= u_{a} \dot{x}^{a}-\alpha \sigma_{c}^{a} u_{a} x^{c}-\beta \omega_{c}^{a} u_{a} x^{c}-\gamma_{1} \delta_{c}^{a} \theta u_{a} x^{c}-\gamma_{2} u^{a} u_{c} \theta u_{a} x^{c} \\
&-x \dot{u}^{a} u_{c} u_{a} x^{c}-\psi u^{a} \dot{u}_{c} u_{a} x^{c}, \quad \text { on expansion. } \\
&= u_{a} \dot{x}^{a}-\psi \dot{u}_{c} x^{c}, \quad \text { since } x^{a}, \sigma_{a}^{b} \omega^{a b} \text { are all Material tensors. } \\
&=-\dot{u}_{a^{\prime}} x^{a}-\psi \dot{u}_{a} x^{a}, \text { since } u_{a} \dot{x}^{a}=-\dot{u}_{a} x^{a} . \\
& u_{a} D x^{a}=-(1+\psi) \dot{u}_{a} x^{a} \\
& \text { since, } x^{a} \text { is an arbitrary Material tensor } \dot{u}_{a^{\prime}} x^{a} \neq 0, \\
& \text { we get, } u_{a} D x^{a}=0 \text { iff } 1+\psi=0 .
\end{aligned}
$$

The new transport D_{u} shares with Oldroyd transport C_{u} the property of producing material tensors from material tensors only when $1+\psi=0$.
5. NON-COMMUTATIVITY OF D_{4} WITH RAISING/LOWERING OF SUFFIXES:

We evaluate the general transport of the gravitational potentials as follows :

$$
\begin{aligned}
& D_{u} g_{a b}= \dot{g}_{a b}-\alpha \sigma_{a} g_{c b}-\alpha \sigma_{b}{ }^{c} g_{a c}-\beta \omega \dot{a}^{c} g_{c b}-\beta \omega_{b} \dot{c}^{c} g_{a c}+\gamma 2^{\theta\left(-u_{a} u^{c} g_{c b}\right)-2 \gamma_{1} \Theta g_{a b}} \\
&+\gamma_{2}\left(-u_{b} u^{c} g_{a c}\right)-x\left(\dot{u}_{a} u^{c} g_{c b}\right)-x\left(\dot{u}_{b} u^{c} g_{a c}\right)-\psi \dot{u}^{c} u_{a} g_{c b}-\psi \dot{u}^{c} u_{b} g_{a c} \\
&=-2\left(\alpha \sigma_{a b}+\gamma_{2} \theta u_{a} u_{b}\right)-\left(\dot{u}_{a} u_{b}+\dot{u}_{b} u_{a}\right)(x+\psi)-2 \gamma_{1} \Theta g_{a b} \\
& \quad \text { Since } \dot{g}_{a b}=0, \omega a b+\omega b a=0, u^{a_{u}}=0
\end{aligned}
$$

$$
\begin{aligned}
u^{a} D_{u} g_{a b} & =-2 \gamma_{2} \theta u_{b}-(x+\psi) \dot{u}_{b}-2 \gamma_{1} \theta u_{b} \text {, since } u^{a} \sigma_{a b}=0 . \\
u^{a} u_{u}^{b} D_{u} g_{a b} & =-\left(\dot{u}^{b} \dot{u}_{b}\right)[x+\psi] \\
& =k_{1}^{2}(x+\psi) \\
u^{a} u^{b} D_{u} g_{a b} & =-2 \theta\left(\gamma_{1}+\gamma_{2}\right)
\end{aligned}
$$

It follows that
$D_{u} g_{a b}=0$ implies $\gamma_{1}+\gamma_{2}=0, \alpha=0, X+Y=0$
We observe that $\mathrm{D}_{\mathrm{u}} \mathrm{g}_{\mathrm{ab}} \neq 0$ in general.
We also note that

$$
D_{u} g_{a b} x^{a} \neq g_{a b} D_{u} x^{a}
$$

and so the D-operator does not commute with raising and lowering of indices.
6. ON THE D-TRANSPORT OF THE RELATIVISTIC SFRRET-FRENET TETRAD:
i) $D_{u} u^{a}=\dot{u}^{a}-\left[\alpha \sigma_{c}^{a}+\beta \omega_{c}^{\cdot}{ }^{a}+\gamma_{1} \delta_{c}^{{ }^{a}} \theta+\gamma_{2} u^{a} u_{c} \theta+\chi_{u}{ }^{a} u_{c}+\psi u^{a} \dot{u}_{c}\right] u^{c}$, by definition.

$$
D_{u} u^{a}=-\left(\gamma_{1}+\gamma_{2}\right) u^{a} \theta+(1-x) k_{1} p^{a} \text {, on simplification. }
$$

We conclude that,

$$
D_{u} u^{a}=0 \text { iff } \gamma_{1}+\gamma_{2}=0, \quad 1-x=0, \text { since } \theta \neq 0 ; \quad k_{1} \neq 0
$$

ii) $D_{u} p^{a}=\dot{p}^{a}-\left[\alpha \sigma_{c}^{a}+\beta \omega_{c}^{\cdot a}+\gamma_{1} \delta_{c}^{a} \theta+\gamma_{2} u^{a} u_{c}{ }^{\theta+}+\dot{u}^{a} u_{c}+\psi u^{a} \dot{u}_{c}\right] p^{c}$, by definition.

$$
=(1-\psi) k_{1} u^{a}+k_{2} Q^{a}-\alpha \sigma_{c}^{a} p^{c}-\beta \omega_{c}^{\cdot a} p^{c}+\gamma_{1} \theta p^{a} \text {, by (RSF-1). }
$$

$$
=(1-\psi+\beta) k_{1} u^{a}+\left[k_{2}-\alpha\left(\gamma_{132}+\gamma_{123}\right)+\beta / 2\left(\gamma_{123}-\gamma_{132}\right)\right] Q^{a}
$$

$$
+\left[\alpha / 6\left(7 \gamma_{122}\right)-\alpha / 3\left(\gamma_{133}+\gamma_{144}\right)-\gamma_{1}\left(\gamma_{122}+\gamma_{133}+\gamma_{144}\right)\right] p^{a}
$$

$-\left[\alpha\left(\gamma_{142}{ }^{+} \gamma_{124}\right)-\beta / 2\left(\gamma_{124}^{-\gamma} 142\right)\right] R^{a}$, by computational aids. $D_{u} p^{a}=0$, iff, the coefficients of $u^{a}, p^{a}, Q^{a}, R^{a}$ are separately zero ie. It follows that $D_{u} p^{a}=0$, iff, $1-\psi+\beta=0$.

$$
\begin{aligned}
& k_{2}-\alpha\left(\gamma_{132}+\gamma_{123}\right)+\beta / 2\left(\gamma_{123}-\gamma_{132}\right)=0 . \\
& \alpha / 6\left(7 \gamma_{122}\right)-\alpha / 3\left(\gamma_{133}+\gamma_{144}\right)-\gamma_{1}\left(\gamma_{122}+\gamma_{133}+\gamma_{144}\right)=0 . \\
& \alpha\left(\gamma_{142}+\gamma_{124}\right)-\beta / 2\left(\gamma_{124}-\gamma_{142}\right)=0 .
\end{aligned}
$$

iii) $D_{u} Q^{a}=\dot{Q}^{a}-\left[\alpha \sigma_{c}^{a}+\beta{\omega_{c}^{*}}^{a}+\gamma_{1} \delta_{c}{ }^{a} \theta+\gamma_{2} u^{a} u_{c} \theta+x \dot{u} \dot{u}_{c}+\psi u^{a} \dot{u}_{c}\right] Q^{c}$
$=-k_{2} p^{a}-\gamma_{1} \theta Q^{a}+k_{3} R^{a}-\alpha \sigma_{c}^{a} Q^{c}-\beta \omega_{c}^{a} Q^{c}$
since $u_{c} Q^{C}=0, P_{c} Q^{c}=0$,
$=\left[k_{2}+\alpha / 2\left(\gamma_{132}+\gamma_{123}\right)+\beta / 2\left(\gamma_{132}-\gamma_{123}\right)\right] p^{a}-\gamma_{1}\left(\gamma_{122}+\gamma_{133}+\gamma_{144}\right)+\alpha / 6\left[\left(\gamma_{122}\right.\right.$
$\left.\left.+7 \gamma_{133}+\gamma_{144}\right)\right] Q^{a}+\left[\kappa_{3}-\alpha / 2\left(\gamma_{143}+\gamma_{134}\right)+\beta / 2\left(\gamma_{134}-\gamma_{143}\right)\right] R^{a}$
$D_{u} Q^{a}=0$ eff $-\kappa_{2}+\alpha / 2\left(\gamma_{132}+\gamma_{123}\right)+\beta / 2\left(\gamma_{132^{-\gamma}}^{123}\right)=0$
$\gamma_{1}\left(\gamma_{122}+\gamma_{133}+\gamma_{144}\right)+\alpha / 6\left(\gamma_{122}+7 \gamma_{133}+\gamma_{144}\right)=0$
$\kappa_{3}-\alpha / 2\left(\gamma_{143}+\gamma_{134}\right)+\beta / 2\left(\gamma_{134}-\gamma_{143}\right)=0$.
iv) $D_{u} R^{a}=\dot{R}^{a}-\left[\alpha \sigma_{c}^{a}+\beta \omega_{c}^{\cdot a}{ }^{+\gamma} \gamma_{1} \delta_{c}^{a} \theta+\gamma_{2} u^{a} u_{\theta}+x \dot{u}^{a} u_{c}+\psi u^{a} \dot{u}_{c}\right] R^{c}$, by definition.

$$
\begin{aligned}
= & -k_{3} Q^{a}-\left[\alpha \sigma_{c}^{a} R^{c}+\beta \omega_{c}^{\cdot a} R^{c}+\gamma_{1} \theta R^{a}\right], \text { since } u_{c} R^{c}=0 \\
= & {\left[\alpha / 2\left(\gamma_{142}+\gamma_{124}\right)-\beta / 2\left(\gamma_{123}-\gamma_{132}\right)\right] p^{a} } \\
& +\left[\alpha / 2\left(\gamma_{143}+\gamma_{134}\right)-\beta / 2\left(\gamma_{143}-\gamma_{134}\right)\right] Q^{a} \\
& +\left[\alpha\left\{\gamma_{144}+1 / 6\left(\gamma_{122}+\gamma_{133}+\gamma_{144}\right)\right\}-\gamma_{1}\left(\gamma_{122}+\gamma_{133}+\gamma_{144}\right)\right] R^{a} \\
& , \text { by computational aids. }
\end{aligned}
$$

$$
\begin{aligned}
& D_{u} R^{a}=0, \text { iff, the co-efficients of } u^{a}, P^{a}, Q_{1}^{a} R^{a} \text { are separately zero i.e. } \\
& D_{u} R^{a}=0, \text { iff, } \alpha / 2\left(\gamma_{142}+\gamma_{124}\right)-\beta / 2\left(\gamma_{123}-\gamma_{132}\right)=0 \\
& \alpha / 2\left(\gamma_{143}+\gamma_{134}\right)-\beta / 2\left(\gamma_{143}-\gamma_{134}\right)=0 \\
& \alpha\left(\gamma_{144}+1 / 6\left(\gamma_{122}+\gamma_{133}+\gamma_{144}\right)-\gamma_{1}\left(\gamma_{122}+\gamma_{133}+\gamma_{144}\right)=0\right.
\end{aligned}
$$

The tetrad will be D-transported iff all the following 12 conditions are satisfied.

$$
\begin{aligned}
& \gamma_{1}+\gamma_{2}=0,(1-x)=0, \theta \neq 0, k_{1} \neq 0 . \\
& 1-\psi+\beta=0, k_{2}-\alpha\left(\gamma_{132}+\gamma_{123}\right)+\beta / 2\left(\gamma_{123}-\gamma_{132}\right)=0, \\
& \alpha / 6\left(7 \gamma_{122}\right)-\alpha / 3\left(\gamma_{133}+\gamma_{144}\right)-\gamma_{1}\left(\gamma_{122}+\gamma_{133}+\gamma_{144}\right)=0 . \\
& \alpha\left(\gamma_{142}+\gamma_{124}\right)-\beta / 2\left(\gamma_{124}-\gamma_{142}\right)=0 . \\
& -k_{2}+\alpha / 2\left(\gamma_{132}+\gamma_{123}\right)=0 . \\
& \gamma_{1}\left(\gamma_{122}+\gamma_{133}+\gamma_{144}\right)+\alpha / 6\left(\gamma_{122}+7 \gamma_{133}+\gamma_{144}\right)=0, \\
& k_{3}-\alpha\left(\gamma_{143}+\gamma_{134}\right)=0, \\
& \alpha / 2\left(\gamma_{142}+\gamma_{124}\right)-\beta / 2\left(\gamma_{123}-\gamma_{132}\right)=0, \\
& \alpha / 2\left(\gamma_{143}+\gamma_{134}\right)-\beta / 2\left(\gamma_{143}-\gamma_{134}\right)=0, \\
& \alpha\left(\gamma_{144}+1 / 6\left(\gamma_{122}+\gamma_{133}+\gamma_{144}\right)\right)-\gamma_{1}\left(\gamma_{122}+\gamma_{133}+\gamma_{144}\right)=0 .
\end{aligned}
$$

We observe that these are 12 equations in 18 unknowns.

REFERENCES

CARTER,B. and QUINTANA,H. (1972). Foundations of General Relativistic high-pressure eleasticity. Proc. Roy. Soc. Lond., A 221, 57-83.

DANTZIG, D. VAN (1932). Zur allgemeine differential Geometry-I Proc. Kon. Akad. Amsterdam, 35, 524.

ERINGEN, A.C. (1962). Non-Linear Theory of Continuous Media. McGraw-Hi.ll Book Company, Inc., New York.

GUMASTE, S.P. (1984). Congruences in General Relativity. Ph.D. Thesis Chapter IV. Shivaji University, Kolhapur, p. 121-155.

RADHAKRISHNA, L. (1976). Relativistic Rheology. Proc. International Conference o.n Recent Developments in Mathematics and Applications, Banaras Hindu University, pp.163-169.

RADHAKRISHNA, L. and BHOSALE, D.R. (1976). On the Fermi Propagation and Lie Propagation of Tensors on General Relativity on Proc. of Int. Symp. on Rel. and Unified Field Theory. Calcutta.

RADHAKRISHNA, L., DATE,T.H., ${ }^{-}$and KATKAR,L.N. (1981). Jaumann Transport in Relativistic Continuum Mechanics. GRG, 13, 266 -220. $939-946$

RADHAKRISHNA,L. and WALWADKAR,B.B. (1980,a). On the Truesdell Propagation in Relativistic Rheology. Proc. Einstein Centenary Symposium, Ed. Kondo and Karade, pp. 391-401.

RADHAKRISHNA,L. and WALWADKAR,B.B. (1980b), Locally weak conservation laws in Relativistic Rheology. Proc. IAGRG-X, Ed. M.Nagraj, p. 183-191.

75

RAY-CHAUDHARI, A.K. (1979). Theoratical Cosmology (Oxford : Clavendon Press) :

STEPHANI, H. (1982) General Relativity, An introduction to the theory of the gravitatioinal field. Cambridge University Press, New York, 166.

SYNGE, J.L. (1962). Geometrical Optics, (Cambridge-University Press).

LICHNEROWICZ, A. (1967). Relativistic Hydrodynamics and Magnetohydrodynamics, W.A. Banjamin INC, New York.

NARLIKAR, J.V. (1978). General Relativity and Cosmology, Macmillan Company of India Ltd.

