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CHAPTER - 11

FERM! - TRANSPORT

1. INTRODUCTION :

An elegant exposition of the Fermi derivative De/Dg of a vector
field X with respect to a time-like vector field U has been giveh in the
famous book "The large scale structure of space-time" by Hawking and

Ellis (1973) in index-free notatioh as

g
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Later Radhakrishna and Bhosle (1975) considered due corrections for signature
of the metric tensor (-, -, &-. +) on the form of the Fermi derivative and

gave the following notation for tbé Fermi derivative of x% along U .

‘ | Y : -k ke
FU Xab = xg;k uk + Xlg (ukua _ UkUa ) ..,.xﬁ (u Uy - ui, ).

For geodesic motion U2 = 0 and then

a _ :a
FaXb = *p

l.e., the material derivative and Fermi derivative are identical. Thus, Fermi

derivative is a generalization of the material or intrinsic derivative.

Material tensors : If x°u_ =0, then we get, '

‘Fuxa = _L xa

where | is the 3-dimensional projection operator defined by
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1A% = yBAP - 8p - uyp A
.o.a_ b c__c
(Note: y3 =3,y vg=v,)

We comment that the Fermi derivative of a material tensor is again a
material tensor. In other words Fermi derivative of a material tensor

measures the spatial growth of the tensor (Bressan, 1978).

We observe that

) Fy9ap =0
. a _ °
ii) Fuu =0
iii) Fuua = 0

V) FiYap = Fy (Ggpupy) = 0

~Thus - the gravitational potentials, the flow vector and the three-

dimensional projection operator are Fermi trans’ported, identically.

Physical Interpretation of the Fermi Transported Tetrad .

Under Fermi transport the magnitude of a vector is unchanged and
the scalar pfoddm(':?.of two vectors is unchanged. Hence, if we define any
orthonormal fetrad A}‘a) at any point on"a curve Y of a congruence, it
remains orthonormal tetrad at any other point on the curve Yy of the congru-
ence if the tetrad is Fermi transported. This property is shared by parallel

transport.

Fermi Transport and Parallel Transport :

The parallel transport is defined by a simple equation and it is the
natural transport for the comparison of two vectors at two different points

in the space. But the Fermi transport is more important in some physical



situations for the formation of physical laws (Stephani, 1982). Both transports
conserve an orthonormal tetrad under advance along the curve of a time-
like congruence but still a great difference is between these two transports.
1f we define an orthonormal tetrad A‘za) on a curve Y of a congruence at

some points so that 1?4) = uk

, it is observed that ) ?4) at any another
point on the curve does not coincide with uk under parallel transport unless
the congruence is geode_sic. But under Fermi transport A (§) remains tangent
to the curve +y of a congruence. This provides us the physical interpreta-

tion of the Fermi transported tetrad (Synge, 1960).

Remark :

The Fermi transport not only conserves the orthonormal tetrad along
the time-like congruence, but it also provides an orthonormal tria®h of
congruences orthogonal to the time-like congruence. "This Fermi transported
tetrad system is the best approximation to the co-ordinated system of an
observer who employs locally a non-rotating inertial system in the sense

of Newtoniaﬁ mechanics" (Stephani, 1982).

2. FERMI TRANSPORT OF | ab

We now propose to study the Fermi transport of the 2-dimensional
projection operator_[_ab = Gap = UYgUp * Pan. Obviously | ab is not Fermi

transported identically, since

Fupa £0

The exact ekpre&sion for Fu_{_ ab is derived in the following theorem. In

fact we determine the necessary and sufficient conditions for the vanishing

of Ful ab .
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There are three types of 2-dimensional projection operators, namely
D Lab = %b = Yal% * PaPp
i) J. 'ab

W "

9ab ~ Ualp + QQ,

9ab - Ya¥p * RaRp

We study their Fermi transports in the following discussions.

Theorem - 1 : The following are equivalent (TFAE).
1) 1L ab is Fermi transported.

2) k, = 0 (Torsion of the stream line vanishes).

Proof : (1) implies (2).

We consider,
Fulab = Fu (955 - Uglp * P,Pp)s Dy definition of 1 ab *

Fugab - Fuuaub + FuPan, due to linearity of F.

[}

P.FuPp * PoFuPar sjnce Fudp = 0 FuSap = 0 °

* ok « k : .k -k
Pa[Pb + Pk(u Uy = Upu )] o+ Pb{Pa + Pk(u u, - uyu )

by definition of Fupa

. K . K . Ko
P a(F‘b + Pku ub) + Pb(p a * Py ua), since pu- = 0

-k
P, (kyuy + KpQp) + Pplicyuy + koQy) + PUT(P Uy + Pou.)
by (RSF-2).

-k .
=(Pu_+Pul)(k, +PU)+P_".
ab  'ba ‘M K a Q(ky) + P Q,(k,)
on rearrangement .

<k -
= k2 (paob + Pan), since k, + Pku 0.

We have the relation



27

Fu J.ab = ky (PaQb + PQ, ) ' e (2.1)
On contracting FU J_ ab with pa, we d)tain’

_ a a
F‘aFuJ.ab = ko (P PaQb * bep Qa)
- . ap _ _ an _
= kZQb’ since P Pa = -1, P Qa =0
Transvecting with Ob. we get .
bpa - AP
Q°P FuJ_ ab = sz Qb

QPr3F K

ulab = %2 ,  Since Q°q, = -1 - (2.2)
1t follows that

when, Fu J_ ab = 0,

we get kz;—- 0, from (2.2)

(2 implies (1)

Put k2 = 0 in (2.1), to get

Fulap = ©

Hence

¥
Q

Ful ab

This completes the proof.

0 iff ky =

We now investigate the Fermi transport of the 2-dimensional operator
’ = -
1 ab = %b "~ Ya'p C}aQb
Theorem 2 : The following are equivalent (TFAE) .

N ap IS Fermi transported

2) k2=k3=0

Proof : (1) implies (2)
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We consider,

Fulap = Fu Bap = Ugtp + QQp)
= QF Q) + QF Q.. since Fg, =0, Fu, =0,
" 9l Qi) o Q_sa i 0 1
= daéb + éan + QaukaGk + QbOkﬁkua. since Qkuk = 0.
Fy J."ab - Qaéb + Qbéa + Q‘kl“lk (Quuy + Quuy) e (2,3)

Follan = QKyP +kaP) + k
ulab a 2b3b Ob(-kzPa+K3Pa) + Qk,P (Qaub*Qbua)
( by RSF =2 )

K
= -k (QPp*QuP,) + Kg(QRp+QuR ) + K QPH(Q u +Qpu,).

/I .
Fulap = kz(Qan*Qbﬁa) + K3(QRy + QpR,) . (2.4)
since QP = 0
contracting Fu J-‘ab with Q% and RP successively, we get .
a a
QF  V'ap = Q[ -Kx(QaP,+QpP,) + ka(QaRy+QR,) ]
= an . 1 A . ag .
_ksz—kaRb.since QQa- I QPa-O,Q Ral 0
b~a ! - by, -
REQTF, Lab = R (koPp - k3Ry)
bna _ :
R Q (FU_I_'ab) - k3 wew (2.5)
Now, transvecting (2.4) with p? and Qb, we have .,

3
PH-ky(Q P +QuP,) + KalQ R +Q R

a {
PoFulab

= k2Qb + 0, since PaQa = 0, Fi'aPa = -1, PaRa = 0.

a ¢ =
P Fl!.l_ab = k2Qb
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QPP 1y = Q%kyQp , singe Q°Qy = -1
b,a ) - - ’
Q P (Fu..[,ab) - k2 ) (21 2] (2'6)
Hence, from (2.5) and (2.6), we have,
I - ; = -
Fu_[_ab-o |mplies.k2-k3—0

Conversely, if, k, =0, kg = 0 . implies F,|' =0 by (2.4)
This completes the proof.
Note :
(a) The two non-vanishing double inner products are
bq2 ' -

.. bpa i

i) QP (Fy | 'gp) = kg
(b) Other 14 double inner products with Fui'ab vanish, identically.

(c) ky = O implies: ky = O, by definition of k,.

Theorem - 3 : The following are equivalent (TFAE).
i}
1) I ab is Fermi transported.
2)k3 = 0, (Bitorsion or third curvature vanishes).
Proof : (1) implies (2)

We consider,

Ful'ab = Fulab = YaUp * RaRyp)

_ _ . . . F.
Fugab uaFuub ubFu"a+RaFuRb + RbFuRa , since linearity of

RaFuRb + RbFuRa,,since Fugab = 0, Fuub = 0,

b -k ku h ‘k k' ‘ .
‘Ra[ Rb+Rk(u u, - u ub)] + Rb{Ra+Rk(u uy-u ua)} , by definition.
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+ R

. - * K b k _
RaR bRa,* Rku (Rau +Rbua), since Rku = 0.

FuJ_"ab b

- k
= R (-k3Q,) + R (-kyQ,) + R K P (R u +R U)

by (RSF-1 and 11).
. k
t - - =
Fu iab = k3(RaQb + Ran) , since RkP 0 ws(2.7)
Contracting (2.7) with QP
b "
Q Fu J. ab

b " _ R a _ abA be .
QFuJ.ab' k3. since RRa-QQb-1,QRbO e (2.8)

b
Q [-l<3(RaQb + Ran) ]

Other double inner products of Fu_l_"ab vanish identically
" _ - = -
Hence, FUJ_ ab = F u(gab ua"b"RaRb) ks (RaQb+Ran)
[
It follows that,whery, Ful ab = 0,
we get, k, = 0, from (2.8)

(2) implies (1),

]
(=)

Put k

' "
3 =0 in (27), to get, F.ui ab

Hence,

|1} H -
Fulab 0 iff k3 =0

This completes the proof.
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3. THE FERMI TRANSPORT OF THE RELATIVISTIC SERRET-FRENET

TETRAD :
i) F‘uua = 0, by property.
i) F 2= PP PR @® - u i
= kyu? + k,Q® + PMk,Pu?,  by(RSF-1,2)and Py, = 0.
FP? = k,Q?
i) FLa® = 0%+ Q¥ (G® - u i?)
= —k2Pa + k3Ra s Ssince Qkuk =0 d‘Pk = 0,
iv)  FR® =R+ RK (Gu® - u &)

a . k
PN | k, P, since R =0,
kgQ™ + Rk, "k k

- - a
- k30 .

Serret Frenet tetrad satisfies

a _
Fuu =0
a _ a
a__, pa a

a_ _ a
Since k2 = 0 implies k3 = 0, we infer that the necessary and sufficient

condition for the Fermi transport of relativistic Serret-Frenet tetrad is

that k2 =0.
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