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CHAPTER - II

FERMI - TRANSPORT

1. INTRODUCTION :

An elegant exposition of the Fermi derivative Dp/Ds of a vector 

field 1c with respect to a time-like vector field U has been given in the 

famous book "The large scale structure of space-time" by Hawking and 

Ellis (1973) in index-free notation as

D,_X

ds

Later Radhakrishna and Bhosle (1975) considered due corrections for signature 

of the metric tensor (-, S. +) on the form of the Fermi derivative and 

gave the following notation for th6 Fermi derivative of xa along tT .

Fu Xb - *S;k “k * «K“a - V* > ♦ *k >

For geodesic motion ua = 0 and then

r- a *a Fuxb= x b

i.e., the material derivative and Fermi derivative are identical. Thus, Fermi 

derivative is a generalization of the material or intrinsic derivative.

Material tensors : If x u& = 0, then ^ we get J

1 xa

where ]_ is the 3-dimensional projection operator defined by

F xa ux
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lAa Y aAb 
b

a a \*u- < «S -u %>A •

( Note : a n b c c \ 
Y a “ ’^a^b_Ya

We comment that the Fermi derivative of a material tensor is again a 

material tensor. In other words Fermi derivative of a material tensor 

measures the spatial growth of the tensor (Bressan, 1978).

We observe that

0 Fu9ab - 0 

ii) Fuua - 0

Hi) Fuua . 0

iv) 'Vab * Fu V.“b> ■ 0

Thus the gravitational potentials, the flow vector and the three- 

dimensional projection operator are Fermi trans ported, identically.

Physical Interpretation of the Fermi Transported Tetrad .

Under Fermi transport the magnitude of a vector is unchanged and 

the scalar product of two vectors is unchanged. Hence, if we define any 

orthonormal tetrad xjj^) at any point on'a curve y of a congruence, it 

remains orthonormal tetrad at any other point on the curve y of the congru­

ence if the tetrad is Fermi transported. This property is shared by parallel 

transport.

Fermi Transport and Parallel Transport :

The parallel transport is defined by a simple equation and it is the 

natural transport for the comparison of two vectors at two different points 

in the space. But the Fermi transport is more important in some physical
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situations for the formation of physical laws (Stephani, 1982). Both transports 

conserve an orthonormal tetrad under advance along the curve of a time­

like congruence but still a great difference is between these two transports. 

If we define an orthonormal tetrad X ^ on a curve y of a congruence at
ir Is W

some points so that X ^ = u , it is observed that x at any another
k

point on the curve does not coincide with u under parallel transport unless 

the congruence is geodesic. But under Fermi transport ^ ^ remains tangent 

to the curve y of a congruence. This provides us the physical interpreta­

tion of the Fermi transported tetrad (Synge, 1960).

Remark :

The Fermi transport not only conserves the orthonormal tetrad along 

the time-like congruence, but it also provides an orthonormal triad of 

congruences orthogonal to the time-like congruence. "This Fermi transported 

tetrad system is the best approximation to the co-ordinated system of an 

observer who employs locally a non-rotating inertial system in the sense 

of Newtonian mechanics" (Stephani, 1982).

2. FERMI TRANSPORT OF _[ ab :

We now propose to study the Fermi transport of the 2-dimensional 

projection operator J_ab = gab - uaub + papt>* Obviously J_ ab is not Fermi 

transported identically, since

Fupa *°

The exact expression for FI . is derived in the following theorem. In 

fact we determine the necessary and sufficient conditions for the vanishing

^u-Lab •
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There are three types of 2-dimensional projection operators, namely

0 lab * 9ab - uaub * PaPb 

"> 1 'ab ■ Sab - uaub * QaQb

m) 1 "ab 3 9ab ' uaub * RaRb

We study their Fermi transports in the following discussions.

Theorem - 1 : The following are equivalent (TFAE).

1) J^ab is Permi transported.

2) kg = 0 (Torsion of the stream line vanishes).

Proof : (1) implies (2).

We consider,

* pu ^9ab - uaub * PaPb). by definition of 1 ab •

Fu9ab FuVb * FuPaPb , due to linearity of F.

' PaFuPb + PbFuPa- since Fu“b - »• Fu9ab - 0 •

- Pa'Pb * Pk(“kub ' vk)1
* Pb[Pa + Pk(6l<ua - Vk)1

by definition of F I

' Pa<Pb * Pk“kub> * Pb(pa
,{/ 1 Jr

♦ Pku ua), since pRu =

■ Pa (k1ub * k2Qb> * Pb<k1 ua * k2Qa> * pk“k(paub *

by (RSF-2).

<pa“b * plsua> (k1 + pkuk) ■f Pa Ob(k2) ♦ PBQa(k2)

on rearrangement .

- k2 (paQb * W' sinoe kl * Vk * 0 '

We have the relation
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Fu-l-ab = k2 ^pa^b + Pb^a ^ "*

On contracting FuJ^ab with pa, we obtain^

P^F. I aK = k0 (Pa P Qk + PKPaQJ ulab 2 a b b a
= - k2Qb, since paPg . -1, PaQg = o ■

Transacting with Qb, we get .

QbpaFuiab ‘ ~k2QbQb

Qbpapulab = k2 , sin°e QbQb = _1 — (2*2)

It follows that

when, F I . = 0, u -L ab ’
we get k^ = 0, from (2.2)

(20 implies (1) :

Put k2 = 0 in (2.1), to get

F I . = 0 u-J-ab
Hence ;

Fulab-° i,f k2=°

This completes the proof.

We now investigate the Fermi transport of the 2-dimensional operator 

Tab ' «ab * Vb * QaQb 

Theorem 2 : The following are equivalent (TFAE) .

1) j_#ab is Fermi transported

2) k2 - k3 « 0

Proof : (1) implies (2)
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We consider,

Ful'ab = Fu (9ab - uaub * QaQb>

’ QaFaQb ♦ QbFuQa- • sinoe Fu9ab = °- Fuua * °-

- WOk'VbV)] . Qb[ Qa*Qk(ukua-iauk) ]

" Qa°b * QbQa * Wk“k * Vk^V sinoe Qkuk

Ful'ab * <V>b * Qb°a * “Vb * Qbua> (2.3)

Fulab = Qa("k2Pb+k3Pb) + %(-k0P^K^Pj * O^k^Q^Q^^
2' a '3' a' T ^knV 

( by RSF - 2 )
-«2 <QaPb+QbPa> + K3<QaRb+QbRa> + k1QkP<(QaVW

Fulab " ~k2^aPb+%V + K3(QaRb + QbRa ) , - (2-4)
since QkPk = 0

contracting Fy ]^ab with Qa and Rb successively, we get •

Q^urab " q3 [ -k2<QaPb+QbPa> + k3<QaRb+CW 1

= k2Pb " k3Rb • since Q3Qa = °apa = °’ Q3Ra = 0 ‘ 

RbQaFuiab ' Rb(k2Pb - k3Rb>

Rb°a 'M'ab’ - k3 - (2-5>

Now, transvecting (2.4) with Pa and Q , we have .

P^ulito * pa'-k2<Qapb*QbPa> * MWW ■

. k2Qb 4 0, sinoe PaQa - 0, PaPa = -1, PaRa - 0 .

^b * k2^b ■
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O^ulab ’ Qb'k2Qb ’ slnf QbQb = -1

Qbp3 <Ful'ab> - -k2

Hence, from (2.5) and (2.6), we have,

Fu Tab • 0 lm[)lies k2 ■ k3 - 0 

Conversely, if, kg = 0, k3 ■ 0 • implies F ■ 0 by (2.4)

This completes the proof.

Note :

(a) The two non-vanishing double inner products are 

» RbQ3 <Ful'ab > * k3 •

M) Qbpa (Fulab> = -k2 •

(b) Other 14 double inner products with F j/ab vanish, identically.

(c) kg = 0 impliesi k3 * 0, by definition of kg.

Theorem - 3 : The following are equivalent (TFAE).

1) j"ab is Fermi transported.

2) k3 * 0, (Bitorsion or third curvature vanishes).

Proof : (1) implies (2)

We consider,

Fuf ab * Fu(»ab - uaub * RaRb>

- Fu^ab‘uaFuub-ubFuua+RaFuRb * RbFuRa > slnce linearlty °* F‘

* RaFuRb * RbFuRa ’since pu9ab - », F„ub » 0.

• Ra[ R0*Rk(ikub - ukub)] * Rb[Ra+Rktukua-ukiia)l , t>y definition.
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RaRb * RbRa ♦ Vk(Raub*Rbua)’ since Rk“k ' °-

■ Ra<-k3Qb> * Rb<-k3Qa> * RkK1pk(Raub*Rbua1'

by (RSF-l and II).

FuJ> - -k3<RaQb +RbQa> ' *'nceRkPk-0 

Contracting (2.7) with Qb

Qt>Fu l"ab - Qb '-k3<RaQb * W 1 

QbFui"ab = -k3- si"“ RaRa - QbQb=-'. QbV« 

Other double inner products of vanish identically

Hence, Fu i"ab = Fu(gab-uaVRaRb) = - k3 (RaQb»RbQa)

It follows that,when, FuX*ab = °* 

we get, kg = 0, from (2.8)

(2) implies (1),

Put k3 = 0 in (2.7), to get, = 0

Hence,

Fuj!'ab = 0 i,f k3 = °

This completes the proof.

.(2.7)

(2.8)
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3. THE FERMI TRANSPORT OF THE RELATIVISTIC SEftRET-FRENET

TETRAD :

i) Fuua = 0, by property.

H) FuPa - Pa + Pk (6kua - ukua)

= klUa + k2Qa + P^P^3, by( RSF-1,2)and Pkuk = 0. 

FuPa * k2Qa

Hi) FuQa - Qa ♦ Qk (ukua - ukua ) 

* -k2Pa + kgRa , since Qkuk - 0 &P * 0.

iv) FuR‘ » Ra + Rk (ukua - ukGa ) 

a - k Qa + Rkk Pkua’ s'nce ^kuk * ®

" ' k3Q3 •

Serret Frenet tetrad satisfies

F u u
a

F p u
F Q u

FuR

k2Qa

-kgP3 + kgRa

- k„Q.a

Since k2 = 0 implies kg = 0, we infer that the necessary and sufficient 

condition for the Fermi transport of relativistic Serret-Frenet tetrad is

that k2 = 0
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