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CURVATURE INHERITANCE 
IN RIM DISTRIBUTION



22

The critical study of the work due to Maartens and 
Maharaj (1986) suggest that there do exist proper CKV in FRW 
models and perfect fluid distributions. This suggested a 
clue to Duggal (1992) to modittp the concept of curvature 

collineation suitable for proper CKV and other related 
proper symmetries. Accordingly, he introduced a new symmetry 
called (apCurvature Inheritance (Cl) defined by equation 

(1,3.3),

Our aim here is to explore the geometrical and 
dynamical properties of Cl pertinent to RIM distribution.

Theorem(1) s If the spacetime admits Cl, then

L£ Rab “ 20 Rab' --- {1)

where a is scalar function of coordinates (Duggal, 1992). 
Here we call the symmetry vector £ satisfying (1) as the 
vector generating Ricci Inheritance (RI). We can rewrite the 
condition (1) for Cl in the following explicit form as

<VW + Rab(Va «d| + Rab(vb «d> “ 2oRab’ •••<2>
if

We study this expression with the following two specific 
types of the vector £ .

Case (i) » The Choice Ca = ua

For this case, equation (2) becomes
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<VoSab,u° + EdbVaud + RabTb“d “ 20 Rab' • • ■ t (3)

ji faThe concentration of this equation with g yields*

(V R)uc + Rj(Vud) + R$(V Ud) « 2a R, 
c da da

i.e. (VJR)uc + 2Rad(V u.) * 2a R.
c ad ...(4)

For the RIM distribution R « -p and hence 
equation (4) reduces to

{VCP )uc - 2Rad(Vftud) - 2ap . --- (5)

By using the equation (1,4.5) this result produces

(VoP)u° -21 ( P + |ih2)u*ud -4 ( P + |ih2)g,d - »hahd Vd

2ap

A eIf we substitute u (Vaud) * 0 and V&u ■ 0, then the above 
equation leads to

p + P0 + uh2e + 2uhahd Vftud - 2a P •

This with the help of continuity equation (1,6.4) generates

uh20 + 2uhahd V&ud ■ 2ap .

After using Maxwell equation (1,5.3), we get 

2 *2uh 0 + uh * -2ap . ....(6)
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i.e. Lu(uh2) * -2op - uh2e. —•. (7)
a..bFurther, innermultiplying equation (3) with u u gives

13 § mm % c a . cl a __ oiU U (V R fa)U + U U R^V U + U U ®a^aU

■ 2aRabuaub...... (8)

He simplify each term of this equation in following manner.

uaub(VcRab)u°

a b u u Vct(P + uh2)uaub -$(P + l»h2igab “ phahb^]u°#

(Vide 1,4.5).

If we substitute (Vu )ua * 0, uah * 0 and (V ga^) « 0,
c a a c

then the above equation leads to

u*ub,VWu° ■ * vc(p + uir) u ...(9)

Now we take the second term of L.H.S. of equation (8).

u“ubRdbv a“d

a b * u u (P + uh2)udub -*(P + vh2)gdb “ whahb Vau<1'

After using u^^u® « 0, this reduces to

a b„ „ d u u RjKV.u * 0.db a

(Vide 1,4.5)

---(10)

Similarly we observe that the third term on L.H.S. of
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equation (8) also becomes

a b_ _ d » uuR .V u = 0.ad. a ---(11)

Also the R.H.S. of equation (8) Is simplified as

2aRabu&uk “ a(P + uh2), (Vide 1,4.7). ...(12)
Thus by means of equations (9), (10), (11) and (12) the
equation (8) is reduced to

[vo<P ♦ *.’>]«■ - 2»<P ♦ Ph2,. 

i.e. I*U(P + uh2) » 2a(p + uh2). ---(13)

Further, by the contraction of (3) with hahb yields

ha»b< V.b,u° + hahbRdbV»ud + hahbRad Vd -

2aRabhahb. ....(14)

We simplify each term of this equation as follows

hahb(VcRab)uc «

hahb V [(P + uh2)u u. ~|(P + uh2)q uh h. ] c a b ab a b u°.

(Vide 1,4.5).
By recalling uah_ ■ 0, haii ■ -h2,

a ci

(V h )uc ■ h , h ha * -ih2 and (V p )uc ** p,
C a a a C



we get
h2

hahb(V„ R . )uc « ----  { p - iuh2) .
c at) 2

Mow, we simplify the second term on L.H.S. of (14)

h#hbWa“a *

■ hahb|*(P + nh2)u(jUj) -|(P + uh2)®^ - ph

(Vide
If we substitute hau_ * 0 in this, then we get

&

hahbRdbvau<* - *hahd(Vftud)(uh2 - p ),

Using the Maxwell equation (1,5.3) we get,

hahbRdb?aud “ *c“*h2 - h20)(ph2 -p ).

Similarly we observe that the third term on 
equation (14) also provides

hahbRad<Vbud) « *(-*h2 - h2e)(ph2 -P),

Further the R.H.S. of equation (14) gives

2a Rabb*b^ ■ o(P - ph2)h2, (Vide 1,4.8).

»

...(15)

2*

hb]vd'

1,4.5).

....(16) 

L.H.S. of

--- (17)

...(18)

Thus employing equations (15), (16), (17) and (18) in
equation (14) we obtain
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* Ph2 - *ufi2h2 + (-*?»2 - h26)(ph2 -p )

a(P - uh2)h2,

This when simplified gives

ph2 - 2uh2h2 - 2u6h4 + Ph2 + 2h20P« 2a(P - uh2)h2. ..(19)

Further, innermultiplying equation with uahb, we get

uahb(VcRab)uc + uah^Rdb(Vau^) + uahbRa<j (Vbu^) ■

- 2oRabuahb........(20)

We simplify each term of this equation in following manner

uahb(V R )uc » 
c ab

■ uahb|Vct(P + uh2)uaub -$(P + uh2)gab “ whahb^ u°'

(Vide 1,4.5).

If we substitute uah « 0, u, * (V„u. )u° and h. ■ (V„h_ )u°a d cd a c a
and knowing that hfiua *» 0, h ua » 0, the above equation

cl a

reduces to

uahb(VcRab)uc * 0. ___ (21)

The second term on L.H.S. of (20)(is) also can be simplified
as follows
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uahbRa<j(Vbud) «

- uahb£(P + Ph2)uaud -i(P + uh2,®ab “ phabd]Vbu<i'

(Vida 1,4.5).

By using the results uahft - 0 and uaVbua « 0, we get

uahbRad Vfaud « 0. ....(22)

In similar way the third term on the L.H.S. of equation (20) 
provides

uahbRdbVaud - 0.  (23)

Further the R.H.S. of equation (20) becomes

2oRaduahb * 0.  (24)

By making use of these values (21), (22), (23) and (24) it 
is observed that the equation (20) is identically satisfied.^

Claim : For the RIM distribution obeying the Ricci 
Inheritance property along the flow vector ua implies Ricci 
Collineation iff 6*0.

Proof * On subtracting equation (6) from equation (13), we 
get

p - uh20 ■ 4aP + 2auh2.

By using continuity equation (Vide I, 6.4) in this equation.
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we get

-P e - uh2e - 2a(2 P + uh2),

-( P + uh2)ea - 2(29 + jih2) (25)

We know that the Ricci curvature Inheritance implies Ricci 
Collineation iff a * 0.

But a = 0 e ■ 0.
This completes the proof [Vide, (25)].

Case Ml) t The choice__£a.» h,a

For this case equation (2) becomes

(26)
ekThe contraction of this with g yields

(V„R)hc + 2Rj V _hd - 2aR. 
c da (27)

For the RIM distribution R B -P and hence (27) reduces to

(VcP )hc - 2Rad(Vahd) - 2oP (21)

By using the equation (I, 4.5), this result becomes

(VP )hc -2 (P +uh2)uaud -*(P + uh2)gad - 
c uhahd V h« - 

a d

2a P
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If we substitute I, C6.6) and (6.7) then the above( result 

leads to

tV (P -*uh2)] hc - 2aP . ....(29)
c

Further, innermultiplying equation (26) with uau° gives

uaub(VcRab)hC + uaubR(ib(Vahd) + uaudRa<JVbh^ * 2auaubRftb

____(30)

We simplify each term of this equation in following manner 
ua“b(7oRab,h0 "

■ uahbjvct(P + uh2)uaub -i(P + Ph2)gftb - |ihahbljhc,

(Vide 1,4.5).

If we substitute uah = 0 and uaV,u ■ 0 the above equation
cl C a

leads to

uaub(VcRab)hc - *[Vc(P + uh2)jhc. ------ (31)

Now we take the second term of L.H.3. of equation (30)

a b— _ , d uuR,,V h - do a
p aj

- uaub^(P + uh2)udub -i(P + Ph2)gdb - Ph^JV^,

(Vide I, 4.5).
After using u_h*a * 0 and uah, ■ 0, this reduces to

a el

uaubRdbVahd “0. ----- (32)
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Similarly, we observe that the third term on L.H.S. of
*

equation (30) also simplified as

“a“\aVd " °- ....(33)

Further, R.H.S. of equation (30) is simplified as

2auaubRab * a(P +uh2), (Vide I, 4.7). --- (34)

Thus by utilising equations (31), (32), (33) and (34) in 
equation (30) we get

V (P + uh*) c
hc - 2a(p + uh2). ....(35)

a. bFurther innermultiplying equation (26) with h h , we have

.«ub .a. b Pub, .a. bTh h (VJELu)h + h h RjUV.h + hc‘h"R_JVuhv' - 2a h"hwRftb.c ab db a ad b

....(36)

We simplify each term 
manner.

of this equation in the following

h“hb(vwh0 -
r "i« hahb[Vct(P + uh2)uaub -i(P + Ph2)gab - piyyjh0.

(Vide 1,4.5).
If we substitute uah = 0, hah_ * -h2, V_gaK * 0 and

a a C aO

(Vh )ha - -i V h2,
v Cl C we get



32

hahbV R , h° - *(V P - uV h2)hch2. --- '(37)
v aD v C

Now the second term on R.H.S. of equation (36) is simplified 
as follows

»ahbHdb<Vahd) -

■ hahb£(P + uh2)u^Ujj -f(P + iih2)gftb ~ uh^hjv^h*1,

(Vide I, 4.5).

If we substitute hau. * 0, h ha ■ -h2 and (V hd)h. - -*V.h2,a a a a a
we get

h<,»bBdbvahd ' — ,p -»h2)h»Vah2. ---(38)

Similarly, we can observe that the third term on L.H.S. of 
(36) is simplified as

1h,hbWa 4
(P -uh2)hbVbh2. ---(39)

Further the R.H.S. of equation (36) gives

2ohahbRab - a(P - uh2)h2, (Vide I, 4.8) ---(40)

Thus utilising equations (37), (38), (39) and (40) in
equation (36), we get

V <P - uh2)Ihch2 + (P - uh2)(V h2)h°. c J c
- 2a(P - uh2)h2. ---(41)
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fi bFurther, innermultiplying equation (26) with u h , we get 

“ahb(V0Rab)h° ♦ u»hbRdbVahd + uahbRadVahd -

« 2a uahbR&b. ------(42)

We can simplify each term of this equation in following 

manner

uahb(V R K)hc * 
c ah

uahbjVcUP + uh2)uftub -$(P + Ph2)aab ~ PhaV]h°'
(Vide 1,4.5).

By using the results uah * 0, V g , = 0 and hau * 0 we get
ft C ftD ft

uahb(VcRab)hc = p(Vcub)hbhc). ------(43)

The second term on L.H.S. of equation (42) is simplified in 

following manner.

uahbR,.V hd * uahb 
db a

(P + ph2)u^ub -|(P + ph2)gab “ uhdhb V h a

If we use the results uah *0, (V hd)h, « -4V h2, we get
a a d a

uahbR,v(V_hd) 
db a

1

4
(P -uh2)(Vah2)ua. (44)

The third term on L.H.S. of (42) is simplified as follows.
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uahb*adVd *

« uahb£(P + vh2)uaud (P + Ph2)gftd ” ubahd]Vbbd'

(Vide 1,4.5).
Now, using the result uah„ « 0, we get

O.

uahbRadVbhd - -i(p + uh2)udhbVbhd. ---(45)

Further the R.H.S. of equation (42) becomes

2a uahbRab « 0. ---(46)

Thus by using the values (43), (44), (45) and (46) in (42), 
we get

p(Vcub)hbhc + *(P - uh2)(Vah2)ua - uh2(Vbud)hbhd - 0. ..(47)

THEOREM i For RIM distribution, Cl along vector hi 
degenerates into CC.

Proof : On subtracting equation (29) from (31) we get 

3 (Vch2)hc - 4 a h2.

Further multiplying (29) by two and adding in equation (35) 
we get

3(VC P )hc * 2a(3 P + uh2). - - (49)
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Substituting the values (48) and (49) in equation (41) we 

get

4 a P h2 - 0,

i.e. a ■ 0, since P »* 0, h2 »* 0. * ' C50)

Hence

Lr Ht j * 2 # R? jC bed bed

—> L ^ R^cd * 0 which describe* CC. Here the proof of 

the theorem is complete.

Corollary t If RIM distribution admits Cl along the magnetic 

field ft, then

P,_hc - 0 - u(V h2)hc.
v C

The proof follows from the equations (48), (49) and (50).

Remark t In case of homogeneous magnetic field we observe 

that Ricci Inheritance symmetry —> CC.

Conclusion i In this chapter, we have examined the 

implications of curvature inheritance symmetry with 

reference to the spacetime of RIM distribution.

In Case (i) . we have found that the curvature 

inheritance degenerates into curvature collineation along 

the symmetry vector u if either expansion vanishes or the
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matter density P is balanced by magnetic field (6 « 0).

In second case, dealing with the curvature 

inheritance where the magnetic field vector h acts as 

symmetry vector, we have shown that it leads to curvature 

collineation. Moreover, the matter density and the magnitude 

of magnetic field remain invariant along this vector.


