CHAPTER III

CURVATURE INHERITANCE
IN RIM DISTRIBUTION
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The critical study of the work due to Maart?ns and -
Maharaj (1986) suggest that there do exist proper CKV in FRW
models and perfect fluid distributions. This suggested a
clue to Duggal (1992) to modfg;)the concept of curvature
collineation suitable for proper CKV and other related
proper symmetries. Accordingly, he introduced a new symmetry

calledCurvature Inheritance (CI) defined by equation
(1,3.3),

Our aim here is to explore the geometrical and

dynamical properties of CI pertinent to RIM distribution.

Theorem(l) : If the spacetime admits CI, then

LERab"ZG Rab' ‘ ooo-(l)

where o is scalar function of coordinates (Duggal, 1992).
Here we call the symmetry vector & satisfying (1) as the
vector generating Riccl Inheritance (RI). We can rewrite the

condition (1) for CI in the following explicit form as
(VR.)ES+ R, (V. D) + R, (v, £) = 2ar (2)
c ab ab'"a ab''b 3 ab® *°°°

We study this expression with the following two sp‘cific

-

types of the vector £ .

>

as 3 e Choice 2 - ua

For this case, equation (2) becomes
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d d

c E 3
The concentration of this equation with qab vields.
c a d b d, .
c ad -
i.e. (ch)u + 2R (Vaud) 2a R. ceesl4)

For the RIM distribution R = -p and hence

equation (4) reduces to
c ad ‘

"By using the equation (I,4.5) this result produces

‘ r
(v_p)u® “2[(p 4 ph?)u®ud -3(p + un?)g2d - nh‘hd]vaud -

= 2ap .

d

If we substitute u (Vaud) = 0 and Vaua = 8, then the above

~equation leads to

2 d

p + 08 + nh%e + 2uh®h Vu, = 28 .

Thiﬁ)with the help of continuity equation (I.G.&{)generates

2 d

a
ph“8 + 2uh™h Vaud 2ap .
After using Maxwell equation (I,5.3), we get

“hze + uﬁz = -zap . 000.(6)
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1.e. L (uh?) = -2ap - un’e. e (T)
Further, innermultiplying equation (3) with uaub gives
ab c ab d ab d
uu (chab)u + uu Rdbvau + uu Radva“
ab
= Z“Rab“ u . ....(Q)

We simplify each term of this equation in following manner.
ab c .
uu (chab)u

« uldyb 2 - 2 _ c
u“u [vc((ﬂ + wnh )“a“b $(p + uh ’qab uhah ]]u ’

(vide I,4.5).

' a _ a, . ab,
If we substitute (cha)u 0, u ha 0 and (ch ) 0,

then the above equation leads to
WP (v R )€ = §{V_(P + un?) |uC (9)
c ab l_ c J » . s 0 0

Now we take the second term of L.H.S. of equation (8).

b d

a
uuRdeau =

o vdubl (o 2 _ 2 RIS N |
u’u L(p + unh )udub $(P + uh )qdb "hahvaa“ ‘

(vide I,4.5).

After using udvaud = (, this reduces to

ab d
u u Rdbva“ = 0, eees(10)

Similarly we observe that the third term on L.H.S. of
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equation. (8) also becomes .

b d

a =
u“u Radvau 0. ceeofll)

Also the R.H.S. of equation (8) is simplified as

b

2aR,u?uP = a(p + uh?), (Vide I,4.7). e (12)

Thus by means of equations (9), (10), (11) and (12) the

equation (8) is reduced to

[vc(p + uhz)]uc = 2a(p + uh?),
t.e. Ly(p + uh?) = 2a(p + un?). ceee(13)
Further, by the contraction of (3) with hahb vields

h®hP(v R, 1u® + h®hPR v ud + n®nPR_, vbua -

= 2R, h%h°.  ....(14)

~We simplify each term of this equation as follows
n®hP(v g Ju® =

« panbl 2 _ 2 - 1 0
h®h [vc[(p + nh )uaub $(P 4+ uh )qab "hahb]J“ v

(vide I1,4.5).
By recalling u®h, = 0, h*h_ = -h?,

cg* *aa—*z cc *
(Vcha)u ha' hah $4h* and (Vcl>)u P,
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we get

h2

2

n’hb(vcnab)u" - ( p - ¢uh?). .. (15)

Now, we simplify the second term on L.H.8. of (14)

a,b d _
h™h Rdbvau

= h3hD 2 - 2 - d
h®h [(D + nh )udub $4(P + uh )qdb "hdhb]va“ ’

(Vvide I,4.5).
If we substitute h®u, = 0 in this, then we get

b

d
Rdbva“

h2h - ihahd(vaud)(uhz -0,

Using the Maxwell equation (I,5.3) we get,

h‘hbndbvaud = p(-4h% - ne)(unt -p). ... (16)

Similarly we observe that the third term on L.H.S. of

. equation (14) also provides

d

h®hPr ) = $(-3h% - n%)(ph? -9, cee (1)

ad(vbu
Further the R.H.S. of equation (14) gives

2a Rabhahb = a(p - nh?)n?, (Vide I,4.8). ...(18)

- Thus employing equations (15), (16), (17) and (18) in

equation (14) we obtain
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¢ on2 - gubn? + (-3h2 - n2e)(un? -p) =
= a(p - wh?)n?,
This when simplified gives

oh? - 2uh2n2 - 2ueh? + ohZ + 2h2ep= 2a(p - vh?)n2. ..(19)

b

Further, innermultiplying equation with u®h . we get

a,b c a,b d a, b d, .
u®h (chab)“ + u“h Rdb(va“ ) + u*h Rad(vb“ )

b ZGRabuahb‘ LI I I (20)

We simplify each term of this equation in following manner
a, b c
u“h (chab)“ =
a, bl 2 2 1 ¢
= u“h {Vc[(p + ph )uaub -4(P 4+ nh )qab - uhahb}Ju ’
(Vide I,4.5).

a, . * o ' c
If we substitute u ha 0, U, = (vcub)u and ha = (vcha)“

* x
and knowing that haua = 0, haua = 0, the above equation

reduces'to

a, b c
u h (chab)u = 0. eessf21)

-~

Y

The second term on L.H.S. of (20) s) also can be simplified

as follows
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a, b d, .
u h.Rad(vb“ )

a, b 2 2 - d
= ulh [(p + wh?)uuy -4(o + unl)g,, ‘uhahd]vbu :

(Vide I,4.5).

By using the results u‘ha = 0 and uavbua = 0, we get

a, b a |
u h Rad vbu g 0. ....‘22)

In similar way the third term on the L.H.5. of equation (20)

provides

b d

a
u“h Rdbva“ = 0. cees(23)

Further the R.H.S. of equation (20) becomes

2aR_ u2nP = 0. 24

adY

By making use of these values (21), (22), (23) and (24) it

-

is observed that the equation (20) is identically satisfled.f/

"Claim : For the RIM distribution obeying the Ricci
Inheritance property along the flow vector u? implies Ricci

Collineation iff 6 = 0.

Proof : On subtracting equation (6) from equation (13), we

get

2

x 2
p - wh“8 = 4ap + 2aph”.

By using continuity equation (Vide I, 6;4) in this equation,
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we get
2 2
~-P0O - puh®e = 2a(2P + uh®),

-(p + uhd)e
103. a - 2 - ..'-..(25)
2(2p + uh”)

We know that the Ricci curvature Inheritance implies Ricoil

Collineation iff @ = 0.

But ¢« = 0 &> 6 = 0.
This completes the proof ([Vide, (25)1].

e 3 e chojice el

For this case equation (2) becomes

c d d _ _
The contraction of this with GAb y;elds
c a d _
(VCR)h + 2Rd vah 2aR. cees(27)

For the RIM distribution R = -p and hence (27) reduces to
c . ,pad -
(ch )h 2R (vahd’ 2ap , eeeos(28)

By using the equation (I, 4.5), this result becomes

(VP )n® -z[(o +ph2)u2ud -p(p + un2)g29 - uh‘hd] v,hy =

= 2aP .



30

If we substitute I, (6.6) and (6.7) then the above result

leads to

(v (P -4un?)1 v = 200 . .. (29)

Further, innermultiplying equation (26) with uaub glives

d b, -

a.b c ab d a d a
uu (chab)h + uu Rdb(vah }) + utu Radvbh = 2au U Rab

veee(30)
We simplify each term of this equation in following manner

ab c
uu (chab)h =
= wanb | 2 - 2 - 1ie
u“h [Vc[(p + uh )“aub $4(P + uh )qab uhahleh '

(vide I,4.5).
If we substitute uaha = 0 and uavcu; = 0 the above equation

l. J

Now we take the second term of L.H.S. of equation (30)

b d

S..a
uu Rdbvah =

o ua.bl 2 s 2 _ T nd
u“u [(D 4+ nh )udub $(P + ph )qdb “hdhijah ’
(vide I, 4.5).

After using uah*a = 0 and uaha = 0, this reduces to

b d

a
uu Rdbvah = 0. eeea(32)
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‘Similarly, we observe that the third term on L.H.S. of'

équatioh (30) also simplified as

a b d
uu Radvbh 0. vees(33)

Further, R.H.S. of equation (30) is simplified as

zcu‘ubnab = a(p +uh2), (Vide I, 4.7). ....(34)

Thus by utilising equations (31), (32), (33) and (34) in
equation (30) we get

r 1
|V (e + uhz)Jhc = 2a(p + ph?). ve..(35)

b

Further innermultiplying equation (26) with hah . we have

b

d d
Rdbvah

a, b c a a, b a, b
h"h (chab)h + hh + h%h Radvbh = 2a h“h Rab'

eses(36)
We simplify each teYW#f this equation in the following

mannher.

a, b c
h h (VcRab)h =

- nabl 2 _ 2 _ 1.¢
h®h [Vc[(p + nh )uaub $4(p + uh )qab nhahh]Jh ’

(Vide I1,4.5).
If we substitute u ha 0, h ha h®, chab 0 and

a _ _ 2
(vcha)h ] Vch -y we get
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hahbchabhc = (v _p - uvchz)h°n2. ve.(37)

Now the second term on R.H.S. of equation (36) is simplified

as follows
a,b d, .
h*hPRy, (v, %)
e hanb 2 - 2 - d
h®h [(o + uh?)ugu, -4(p + uh?)g uhahb]vah ,
(Vide I, 4.5).

a, . a_ _,.2 d - 2
If we substitute h u, 0, hah h® and (vah ’hd - tvah '
we get
1

a, b d _ NI | 2

Similarly, we can observe that the third term on L.H.S. of
(36) is simplified as

1
do__ (p -pnd)n?
4

b

2
Radvb

h®h h v he. cee.(39)
‘Further the R.H.S. of equation (36) gives
Zahahbaab = a(p - ph)n?, (vide I, 4.8) ....(40)

Thus utilising equations (37), (38), (39) and (40) in
equation (36), we get

r 7
AL uhz)Jhchz +(p - uhz)(vchz)hc -

= 2a(p - ph?)nZ. .. (41)
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Further, innermultiplying equation (26) with uahb, we get

u? b c a,b d a, b a _
h (V R b)h + u“h Rdbv h” + u“h Radvah

a, b
= 2a u h Rab’ ceel.(42)

We can simplify each term of this equation in following

manner

u® b
h (v R b)h
= v®hP[v (P + nh?)u u, -#(p + wh?)g_, - uh_h J|n®
c . ab ab ab
(Vvide I,4.5).
a = = *a =
By using the results u ha 0, chab 0 and h ua 0 we get

a b _ b . c
u?h (V R b)h = p(vcub)h h”). ce..143)

The second term on L.H.S. of equation (42) is simplified in

following manner.

a, b a_ .abl 2 _ 2 _ d
u?hR v hd = ulh [(o + whPrugu, 40 + un?ig,, - uhgh Jv h

If we use the results uaha = 0, (Vahd)hd s‘—{vahz, we get

1
a, b d 2 2, .a
h Rdb(vah ) = —z~ (p ~-nh )(Vah yu®. .:..(44)

The third term on L.H.S. of (42) is simplified as follows.
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a,b d
u®h Radvbh

a,. b 2 2 - d
= u?h [(p + wh)u ug -#(p + wn?ig,, - uhahd]vbh ,

(Vide I, 4.5).

Now, using the result uaha = 0, we get

b d

a b d
u h Radvbh

2

Further the R.H.S. of equation (42) becomes
a, b
2a Wh'R, = 0. cee.(46)

Thus by using the values (43), (44), (45) and (46) in (42),

we get -
b, c 2 2, a 2 b.d _

p(vcub)h h” + $(P - ph )(Vah Ju® - uh (Vbud)h h 0. ..(47)
THEOREM : For RIM distribution, CI along vector h
degenerates into CC.
Proof : On subtracting equation (29) from (31) we get

2,,.C 2 . ..

3 (V,h*)h® = 4 a h”. : .-+ - (48)

Further multiplying (29) by two and adding in equation (35)

we get

c 2
3(V,P)h” = 2a(3P + uh®). -+ - -(49)
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Substituting the values (48) and (49) in equation (41) we

get

4 a P hz = (,
i.e. a =0, since P £ 0, h2 ¥ 0. ~'(50)
Hence

a a
Lg Rpog = 2 @ Ryog

==) Lg Rgcd = 0 which describes CC. Here the proof of

the theorem is complete.

Corollgrx + If RIM distribution admits CI along the magnetic
field h, then

C o0 a 2,,¢C
P.gh 0 = n(V,h™)n".

The proof follows from the equations (48), (49) and (50).

- Remark : In case of homogeneous magnetic field we observe

that Ricci Inheritance symmetry => CC.

Conclugion :+ In this chapter, we have examined the
implications of curvature inheritance symmetry with

reference to the spacetime of RIM distribution.

In Case (i), we have found that the curvature
inheritance degenerates into curvature collineation along

the symmetry vector u if either expansion vanishes or the



36

matter density p is balanced by magnetic field (6 = 0),

In second case, dealing with the curvature
inheritance where the magnetic field vector h acts as
symmetry vector, we have shown that it leads to curvature
collineation. Moreover, the matter density and the magnitude

of magnetic field remain invariant along this vector.



