CHAPTER 1V

CONFORMAL MOTIONS AND
CURVATURE INHERITANCE |
(JOINT EFFECT)
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ETHEE I .
In chapter II, we have studied the properties of

RIM distribution admitting a group of conformal motions.

The chapter III is devoted to the study of
symmetry group of conformal motions leading to curvature
inheritance in RIM distribution. These two aspects of
conformal motions and curvature inheritance are treated

separately in earlier chapters.

This chapter IV throws light on the implications
of RIM distribution admitting both group of confé;mal

red

motions and curvature inheritance simultaneously. v//

Iheorem : (Duggal, 1992)
A CI is CKV if

R .
Vab¢ = -—;—- [Tqab "ZRab] . R (1- 1’

By using the values [I,(4.5) and (4.6)] for R and Rab

respactively in above equation, we get

&
.« |—P_ - 2 - (P 2 -
v, 2 [ TGy 2000 + whPluu - 400+ unPig uhahb]]

*

eeee(1.2)

a_b

The contractions of this with u®u"-, hahb

b

and u®h® after

simplification give the following results.
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a 40 )
(V.. ¥ JuduP = - [ — 4 uhz] cera(1.3)
ab
2 3 '
ab « . (3uh? - 20 )n?
(v, ¥ Ih®hP = { ] e (1.4)
2 3 ¢
ab _
(VaBW )u©h 0. vee.(1.5)
Further, equation (1.2) after transvection with q‘b yields
cd _ ap
(vcdv )g T ceee(l.6)

This result when coupled with-equation (II, 2.14) produces

P = a b
LE 2(a P + Rb Va £7). oo {1.7)
By making use of (1.3) in equation (II, 2.15), we derive

a r4p

2, _ _ cd 2] _,pa b
L¢ (uh®) a(vcdv )g~" + 4BV+ rul + sh J RV, £ -

‘This after using (1.6) and simplifying provides
2
4 rh
Lg (wh?) = al- — P + —) + 4B¥- 28%v_ ¢€P. vee.(1.8)
3 2
Now by substituting the values from (1.4) and (1.6) in
(II, 2.10), we get
p 1 2 a
Ly B = a(— - ——ph“)-2BY¥-2Ch" (L
¢ 3 2

E,'ha)‘ (1.9)

Claim : If RIM distribution admits CKV and CI both then
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a 3 2
thha=0 = P = —— ph®.
8

The proof follows from the results (1.7), (1.8) and (1.9).

2. E_SPECI CONFO MOTIONS
We recall the defining conditions for special

conformal motions (Vide Chapter I, Note (ii))

vcd¢ = 0. ceeaa(2.1)
These conditions with (1.6) imply

a = 0. veso(2.2)

Hence we infer that the curvature inheritance degenerates

into curvature collineation if CKV is special CKV.

Further the conditions (2.1) simplify equations
(1.7) and (1.8) as follows.

Lg e = 282V, ¢P. cen(2.3)

Lg (h?) = =200 +un?) ¥ -282 v, P, e (2.4)
In particular if vagb = Euahb then (2.1) with (I, 1.9)
gives

L. (uh? 2y

¢ (mh?) = 200 + un?) . (2.5)

This shows that the conformal factor ¥ depends explicitly on

the magnetic field only.
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3. PLICIT RELATION BETWEEN a AND V E

It is proved by Duggal, 1992 that "the spacetime
admitting CKV and proper CI simultaneously is conformally
flat". This result is used to develop the relation between ¥

and a by considering a suitable example.

Any metric Jix leading to conformally flat space
can be expressed in terms of MinkojéLki metric "1k as

follows. ki

- 2
qik x nikp ....(3.1)

where X is a function of co-ordinates.
The Scalar curvature R pertaining to the metric 9K is
related to the function X through the equation
(Gidas, 1982).

1 3

(vcdx)ch + — RX® = o, e (3.2)
6

1
6

3

0, (vide I, 4.6). ....(3.3)

from equation (3.1) we can write

This implies a functional relation

vX = E(X). c...(3.5)
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We recall the earlier result (Vide, 1.6)
-aR

cd _ ‘
(vcdv )q = —-—-—5——-—-—. 0-00(306)

By using (3.3), (3.5) and (3.6) we derive

1 1
cd _ 2 cd
(vcd'l’ )g s ¥ RX +(—----x )[vch (x)]q '

This implies

d

1 3 v ;& (X)1g°

a = v {(~ — Xz) - cd ’
2 RX

i.e.
, 1 3
G = (" — xz) w + [V E (X).}QCd- oooo(3o7)
2 px t cd J

Hence we got an explicit relation between a and ¥ via known

function X.

4, SPACETIME MODEL ADMITTING CONFORMAL MOTIONS
We develop here a static spherically symmetric
space-time model concomitant with RIM distribution admitting

a group of conformal motions.

The static spherically symmetric metric in
D 2 —————

Schwarzchild coordinates is given by the line element.

2

as? = a%(r)1dat? - B%(r)dar? - r%(ae? + sineds?). ..(4.1)

12838
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We choose comoving system so that the orqhoqoqality

condition between flow field and magnetic field imply

‘ 1

w? . u463, u4  J— ceoo(4.2)
. A .

hd = hlb?. cee.(4.3)

For this choice the line element (4.1) yields the field

equations for the RIM distribution (I, 4.5) are given by

2 1 2A’ 1 1
uh = 2 [ + 2 ]' 2 I} cooo(‘o‘)
B Ar r r
1 2 1 A'B' A" 1 A’ B'
— uh = T[—.—__. T v " e (-—-—- - ———)] o-oo(‘os)
2 B AB A r A B v
1 2 1 1 2B’ 1
(p + -— nh ) = 2 [ 2 + ] bt T. :oo-(4t6)
2 B r

(Primes denote differentiation w.r.t. r).
Further the Maxwell equation (I, 5.1) for the line element

(4.1) and for the choice (4.2) and (4.3) we obtain

0 4
(u* / -9) 1
ot h*,4
— + 20' .o-o(4o7)
v -9 u4 h1
ut, 2 Vbhb
1 + = 0. eses(4.8)
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On integrating these two equations, we get the value of h1
in the form

- pg?
h1 = ~—;7~—, where f = f(r). cees(4.9)

Now we find the value of A, we impose an extra condision of

conformal symmetry
L9, = 2v %ab° ...(4.10)

These sixteen equations with the choice of arbitrary vector

o

X = Alr) , ...(4.11)

or
and usinq the metric symmetry (4.1) we get

n
B =

, where n is arbitrary constant of ...(4.12)
¥ of integration.

Also the value of A is given by one of the integrals as

A =mr, withm as constant. ...(4.13)
For these values of A and B the equations (4.4) to (4.6)

generate the following results

=] - =
- - » .00(4-14)
2 n2 r2 rz

- __“uh = + . 000(4'15)



. 2, 2 2% 1 1
(P + wh?®) = [ + ] - .
, nt L ary :2 -;I

Adding and subtractihq (4.14) and (4.15) we get

2v¢2 1 i

nzr2 2r n“r

-4y 2 2 'Lk

2
~2ph = + + ’
nré ré n‘r
) 292 1 2 V¥
1-8. ph = - - .
n’ré ré n‘r

Equations (4.17) and (4.18) imply

1.1 s
r nz v

[y

|
w
<
<
f—

e

n 2r
' 2
o d the lue of ¥

From equation (4.18) we write

4 #2 n2
20y + - = 0.
r r

This provides an immediate integral in terms

constant C1 in the form

44

...(4.16)

... (4.17)

...(4.18)

.0.(4‘19)

...(4.20)

of 1integral
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2 .
n C
vz = + i' ooc(‘czl)
4 4r
That implies that
209 = ___5-— 1 ...(4.22)
r

On substituting this value in (4.21) gives

C1 4 m C1 n
..___..-—..._._._[._._+ 4]+ 30. ...(4.23’

Thus the static spherically symmetric spacetime model
admitting a group of conformal motions corresponding RIM

distribution is given by

-4
C
f 7
dsz =m2r2dt2 - Znan + —%—J dr2 - rz (de2 + sinzedQZ).
r
oo-(4024)
Discussion : We have successed in constructing a spacetime

model compatible with RIM distribution admitting a group of

conformal motions.

‘The value of parameter a describing the curvature
inheritance is explicitly related with the value of ¢ thro-
ugh equation (3.7). Therefore we infer that the above model

also satisfies the CI symmetry property.
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APPENDIX

A6

THE VALUES OF KINEMATICAL PARAMETERS

Expansion Scalar (e)

a

9 = Vau
- T
8 =5 — 3 (u” / -9)
/-9 dx
1
[ = I -
/-9 ot
1 > 1 2
0 = i ( ABr )r
. ABr“ at A
1 p.)
8 = » (Br?),
ABr< at
6 = 0. (Vide, IV 4.13)

*
Acceleration (uaz

*a a, b
u (Vbu Ju’, -

*a a c b
u = (u’, + u a

*a _ .a b c

u u bu + u u rgb.
a = 1 =

1 1 b c.b 1

{since by definition)

ceeo 1)

~———»(u4 /' -9) (since only u‘ is existing)

(Vide IV, 4.2)

(2)
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1 4.4

f.e. u = 0 + rgqg W {since only u4 is existing) '

1 1 o :
since u4 - and ri4 = —; (Az))
A 2B or
. 10D , 12
we get, u = — (A®) (—)
2B or A
This impllies
1
A
®x)
u = —y— .eee(3)
B°A
Also we get
u“t2 = u*3 = u]"4 = 0

(since only u4 is existing and u*’ = u4, u4 4 u4 4).

+ u
4 a4
Therefore we get
*a* - *l * - *1 2
utu, u u1 qll(“ )
2
i Wy, = - Y (Vide IV, 4.13, 4.14) (4)
8. u ud. ——'—n'—z-;z v e ’ . v .
3) Shear Tensor Components
o ﬁ= $4(Vu_ + V.ul - $i(Vv.u yuCu, + u_(Vv_u, )u€) - i 6 h
ab b a ab c a b a ¢cb ab.

3
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Since © = 0 and only u, is existing and uaua -1, Uy g4 " 0

we find

4
Oup = & [Vpu, + vaub] - u4r;b + 10 g up t uarg4l

Clearly
a
Ca 0
and G, = 0 ,(u =0=u, and 4, = 0)

= = »m 4 =
%3 0., u, 0 u, and s 0)

e = 0 (u_=0=u_ and r4 0)

23 > v Y 3 23
= - ‘ =

014 {[u4 u, r14] S (since u, 0)

i.e. O14 = + [A* - A — (2AA')] S (since u = —)
2A A
94 = ¢ (A' - A')
014 = 0.
2 _ _ab -

Hence o "o 0. eees(5)

4. Rotatjion Tensor Components

- a _ b, _ c,. _ c
Yab {[Vbu Vau ] i((vcua)u uy “a(vcub)u 1,

(since by definition) ,



and

Thus
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4 a

By using b = rga. “a,4 = 0, u ua = 1,
u4 is existing we get
wab = *{ua'b - ub'a] '![ua rAb4 - r‘a4 ub]
wWip = O
Wip = 0 (since u, = 0 = uz)
Wiz = 0 {since u, = 0= u3)
Wy = 0 (since u = 0= u3)
L 0 (since u, 0 u, 5 =0 r34 0)
s
Weya =00 Ug,3 =0 u; =0, f, =0
1
Wap = t (A' - A')
wa = (.
we get
wz = wab = 0. ee.(6)
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Further the relative anisotrophy

2
e 0
=) = 2= 0 => o0o=0 (?)
p p

This proves that the flow of RIM distribution admitting

conformal motion is essentially accelerating.

B) THE VALUES OF DYRAMICAL VARIABLES
We recall the equation (IV, 4.20)

1 3¢y 1
e e
r nz 2r '

using the equation (IV, 4.23) this yieldi

1 3C1 1 (8)
p = ———-—["' - ]. s o0
r 2n2t5 2r

Recall the equation (IV, 4.19)

2 2 1 299" -

n2r2 r2 nzr

By using the equations (IV, 4.22 and 4.23) this yvields

3C
nhz = 216 - 2 . on-s(g)
2n“r




