CHAPTER 11

RIM DISTRIBUTION AND A
GROUP OF CONFORMAL
| MOTIONS
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1. P IES OF CONF IO

We recall the necessary conditions for conformal

motions (Vide I, 3.2),

Legdap = Z‘anb) | .....(1.1)
i.e. vbga"'vagb- Z\Ilqab.
This implies that

v = v b, veee(1.2)

It is known that if a fluid spacetime admits a
conformal Killing vector (CKV) &, then the following

kinematical results hold (Maartens et al., 1986).

Lgua = q’ua"' hap .‘..(1;3)
- b x b
ha 2 W,p £+ mu, m'bha‘ cees(l.4)
"where m = - Ea uw? and Wab is the vorticity tensor and
hg - -ubua. The contraction of (1.4) with h? gives
2 b b, a
h = ‘vbm)h - 2 wab E h . 0000(105)

we observe from (1.3) that the fluid flow lines are mapped
into fluid flow lines under the action of ¢ {f ha = 0. Hence
the integral curve of §a is called as material curve if

ha = 0. Here the material curve in a fluid is a curve that
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moves with the fluid as the fluid evolves. We study the‘

followin@ two subcases of conditions (1.1).

i) The choice Ea = y?

In this case (1.1) becomes

Vbua + vaub - zq;qab. eessfl.6)

The various contractions of this give

1@ =0 = 0. ce (1.7

w = 0. .0..(1.8)
Thus if the fluid flow vector is CKV then fluid flow lines

" are expansionfree and geodesic. Moreover the CKV reduces

to Killing vector (KV).

i1) The chojce E® = h2

For this case, the equation (1.1) implies

Vbha + Vahbﬂzwqab. eeesf(1.9)

This equation with the help of Maxwell equations (5.1)

generate the following results.

(i) 8¢ = 0,
(11) (V.h%)u® = 0 = (V_h)n?,
a a
(1i1) v = 0.
So we infer from these results that for RIM spacetime

admitting conformal Killing magnetic field vector
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(a) Fluid flow lines are expansionfree. .

(b) The magnitude of magnetic field is preserved along the
flow lines as well as along the magnetic lines.

(c) The conformal Killing vector §{ reduces to Killing

vector along the magnetic field lines.

COMMENTS

According to above two cases the conformal motion
along fluid flow lines as well as a}onq magnetic lines
degenerates into group of motions. Hence conformal motion

along the fluid flow and magnetic lines are not permitted.

2. MO NS IE E
DISTRIBUTION
For CKV &, Coley and Tupper (1989) have proved
that
- - _ 'y cd
Ly Rgy 2(vab¢) (vcdv)q Jab* ceeaf2.1)

But we have the expression for Ricci tensor corrosponding to

RIM distribution as

2 2
Rab = (p + uph )“aub -$(Pp +ph )qab - “hahb’

i.e. Rypy = Auwu, +B dap + € hahb’ eeeal2.2)
where A = (P + uhz).
B = -}(P + nh?), ceeo(2.3)

C = -n,
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By taking Lie derivative of both sides of equation’'(2.2)

with respect to £, we write
Lg Rab = uu (I‘E A) + A ua(Lg ub) + A ub(Lg ua).. +
+ qab(I‘EB) + B (Lg qab) + C“’gha)hb +

¢ Chghy, /

LERab = u,u, (Lgk) + A ua(L

+ C ha(L hb) + (L

3

ub) + A ub(L “a) +

g 2

o+ qab(LgB) + B (L€ °ab) + C(Lgha)hb +

: !'l
By utilising equation4(1.3) in the above equati.on. we get

Lg Rab = uaub (Lg A) + A ua(wb + hb) +

+ A “b(‘"“a + ha) + Yab L

EB + B (zwab) +

+ C(LE ha)hb + C ha(LE hb). ceeo(2.4)

Hence equations (2.1) and (2.4) give
- - cd -
Z(Vab V) (Vcd‘b )g 9ab

= uaub(Lga) + A ua(‘bub + hb) +

+ A ulyu, +h,) + g, (L_B)+Bl2vg,,) +

£

g
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Theorem (2.1) : For the RIM distribution admitting a

conformal groups of motions along vector §

cd

a b
(1) Lgp = 6(vcd\p)q + Ry V, £

2 cd ab a b
(i1) LE (uh®) = -B(V 4 V)9 +4B¢~(vabw Yutuo - 2Ry vaE .

Proof : By taking innermultiplication of equation (2.5) with

ua' we get

a cd a
-Z(Vab\b Ju® - ch‘p 1g7 g pu =

a a
= u,uu (LE A) + A u “aw“b +‘hb) +

a a
+ A upu (\l’ua + ha’ + u 9ap ‘If; B) +

a a
+ u®(2v¢ J,p) B + U cu‘&;ha)hb +
+ u?n_c(L,_ n.).
a Eb
\ .
h, % a
V 7 _...This can be simplified by using the values u ha = 0,

{5 ' (’V;Jaua ?Dnd qabub = u? as

a cd
-Z(Vab1' Ju® - (Vcd\li ) g uy

| .. 1
aub(L£AY+A\lfub+Ahb+ {"‘v

+lUl!ub + “b”'/z B) + ZWBuuD

va

a
+ Cu (LEha)hb' / cee.(2.6)
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f.e. =20V ¥)u® - (V g% ) ¢%%uy = '
= {LE(A + B)]ub + 2u, (A + BV +
¢ [A + cud (Lgha)]hh. v

Further by contracting equation (2.5) with h®, we get

a cd a _

0 o

- pa L a. "
h uaub(Lgh) + Ah ua(‘l'ub + hb) +

~N

v a
+ ha) + qab(L B)h™..

a
+ Ah ub(llf u £

a

a 4 a
+ Bh3(2v qabY + Ch™(Ly h )hy.
%

a v
+ Ch ha(Lg hb). .

By knowing that u and h are orthogonal and magnitude of

magnetic field is (-hz). this reduces to

- a _ cd, _ 2
2(V,,¥ )b (VoqV 19 "hy = Ay h® + (L Bihy + 2BV h+

2
+ CLyh )h®h, - ch?(L; hy)
£ Va b £’
- a _ cd -
i.e. Z(Vab'l' )h (Vcd'l' )g hb

r al
= [(Lg B) + 2BV + C(Lg ha)h Jhb -

) 2 2
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Further the contraction of (2.5) with qab vields

ab cd

P
W

PSR
= WPl &) + APV, + hy) 4

a y o
+Aw(Vu +h,)+ 4L, B) + /,

a b
+ 8BY+ C(L ha)h + Ch “‘ghb)'

11

cd - a

..(2.8)

a - a -
(since u ha 0 and u u, 1).

Further contraction of equation (2.6) with uP

a a =
u ua = 1, u ha 0 we get

and writting

7 ¢

a b ot
-Z(Vab"’ Ju'u -(vcd"' )g *L€A+ZA¢ +L£B+@9 7

cd ' ab
i.e. Lg (A+B) = "Vcd"’ )g~" -2(A+B)¥- Z(Vabi' JuBu©. ..(2.9)

b

‘ Similarly, the contraction of (2.7) with h™, after writting

a - a - ~h%
u ha 0, h ha h® we gst

P4+ (v 9 1¢%h% = -1 BIn? -2B¥ n? -

a

-zcn“u.g hy)hZ,

2 _ ab _ cd, 2 _ 2 _

a 2
- ZCh (Lgha)h . -c-(2010)
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Also on innermultiplying equation (2.6) with hb and
simplifying we obtain.

b

a 2 ‘ 2,.a
-Z(Vab\l) Juh” = A(-h") + C(Lg ha) (-h“)u™,

a,b : al.2
i.e. 2(V, ¥ )u?hP = [A + ClLy hy)u ]h : een(2.11)

Since from the values of A and B we know that A = -2B so

that equation (2.8) becomes

cd

ab

2 cd a b
LE (P +ph®) = Z(VCdW Jg= o - 4BV + Z(Vagv Jutu~. (2.12)
We know that the CKV satisfying the conservation law

generator equation

a.b cd

a, .b a b, _ _af cd
i.e. (Vanb) E5 0+ Rb(va £0) 3(Vodt g~ cese(2.13)
 Since R: - _T; - ¢ Tq; (Via field equations),
Hence Equation (2.13) produces

a a _ a
vaRb VaTb l(VaT)Qb.

But by Ricci Identities, VaTg = 0 and for the RIM distribu-

tion T = p, Hence equation (2.13) provides

b a b cd
“(Vb()) £+ ZRb(Va £E%) = -6(Vcd¢ Jg=,
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cd a b .
l.e. LgfP = 6(V_ ¥ )g"" + 2R (V, E7) . _ eeeil(2.14)

This value by virtue of equation (2.12) produces

cd

2 ab a,, b
Lg (0h®) = =8(V 49 Jg= +4BYU-(V, ¥ Juu” - RV, £

oc--(ZoIS)

Thus we have derived the required expressions (a); and (b),
’ A SR

[Vvide equations (2.14) and (2.15)]. '{{:) {’ﬂ}
Remark : This theorem provides the rate of change of matter
‘density and the magnitude of the magnetic field along CKV
admitted by RIM distribution.

For the special conformal vector g, we have the

necessary condition

Then equations (2.8), (2.9), (2.10) and (2.11) reduce to

EZ - - V - a §
Lg (A + 4B) 2AY 8BV -2Ch (LE ha’ ceea(3.1)
Lg (A + B) = -2aV - BV, cees(3.2)
= - - a t .
LEB 2BY- 2Ch (Lgha), ceee(3.3)

a.,, 2
O= [A + C(Lgha)u 1h®,
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i.e. A+ ClL; ha)ua = 0. ce-r(3.4)
On substituting A = -2B in (3.2)

L, (-2B + B) = -2(-2B)Y - BVY

3

1-60 LEB‘ “38“’0 : ....‘3.5)
By using equation (3.5) in (3.3) we get

BY =2 cn"(x.g h,). ee..(3.6)
f.e. V = 2¢ h®(L_h_), cee (3.7
B £ a
4n a
i.e. y = 7;—:—;;77 h (Lg ha).

This shows that the value of ¢ depends mainly on the value

of magnetic field.

Note t According to Holl and Decbsta (1988), there is very

- 1imited scope for CKV in Relativity which is due to

(

existance of a covariently constant hypersurface, orthogonal
and geodesic vector. In particular, Friedman Robertson

Walkar (FRW) and perfect fluid model are excluded.



