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CHAPTER 111
TBE METHODS FOR COMPUITING EIGENVALUES AND EIGENYECTORS
(3.1) Introduction

There are two types of methods for computing eigenvalues and
eigenvectors namely (i} Iterative methods, (i1} Direct or
transformation methods.

The iterative methods are most useful when the matrix is large
and sparse and having good estimate of the eidenvector.

The power method, Defletion method, Inverse iteration
technigque, Bimultaneous iteration for real symmetric matrices by
Clint and Jennings are some known iterativenmethods for computing
eigenvalues and eidenvectors. Here we discuss the Power method in
detail,

{3.2) THE POWER METHOD

The matrix power method is the iterative method which is used to
obtain the largest eigenvalue and the corresponding eigenvector of

an nx<n matrix.
The method is as follows,
l.et A be an n¥Xn matrix with linear elementary divisors whose
eigenvalues satisfy,
Prg b = 201 = gl = ... ... :'lir% LR R - SN T P (1)
The eidenvalues 24,29, ...,2, will be refered as the dominant

eigenvalues. By assumption there exists n linearly independent

eigenvectors X15Xgs .03 Xy and an arbitrary vector Z(O}can be



expressed in the form

z(0) = = o3 Kg (2)
vwhere «; are scalars, not all zero.
Let us define the iterative schene
ASIEEN ALY (3)
k=1,2,3,....
vhere Z(0)ig arbitrary, then
7(k}= az{k-1} - a27(k-2) - | = Akz (0}
z{k)y -~ =« .3 “ikxi (4)
Here provided that «y, «g, «g,..... , «,. are not all zero. The

f
right hand side of equation (4) is altimately dominated by the

)
!

term I oy Mg
o #=# (O, we have

kxi. In particular if r = 0 and we assume that

7{k) - 1% { egxXy L oeg (23 /7) Xy }

= -)‘}‘i{ { “1x1+ Ek } (5}

for k sufficiently large, where =y is a vector with very small
The vector Z‘k)is an approximation to the unnormalized

elements,

eigenvector xy and is accurate if H%kﬂ.is sufficiently small.

Since z{k+1) = ').}f+1 -{«1X1+ Ekﬂ}

It follows that for any i
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The rate of convergence depends on the ratios

Prg/2q 1, Iag/2ql,..n s, P2y, /29 and 1f these ratios are smaller the
convergence is faster.

Computer lmplementation:

The Power method can be implemented in a computer as

follows:
Step 1 @ Input the matrix A.

Step 2 : Choose the initial vector z(0) as
20y = (111 ...)7
Step 3 : Form Z$p+1} and 0(P*+1)4q
g(p+1) = p z(p)
Pps1 = maxl plp+lly,

7 (p+l) - 1/Ppeq plp+l),

vwhere p = 1,2,3,.
. )
Sster 4 : The lapgest magnitude eigenvalue is the

largest magnitude component of glp+l) and the corresponding

standardized eidenvector is Z(p+1) (vhen p is large).



(3.3} JACOBI METHOD :

Jacobi method is the one of tﬁe most stable direct method for
computing the complete eigensystem of a real symmetric matrix.

The basis of this aldorithm is the similarity transformation,
which aims to reduce the original matrix to diagonal form by
carrrying out a sequence of plane rotations.

The method is based on following theorems and definition

Theorew (1): All the eidenvalues of a Hermitian matrix are real.

Teorem(2y: If an n¥n matrix is real symmetric then there exists a

real orthogonal matrix R such that R_lA R =D. Where D is a

diagonal matrix.
Unitary matrix: A matrix R is said to be unitary if and only if

r* = g1,
The orthogonal matrix is a particular case of unitary matrix.

-~

The aim of Jacobi’s algorithm is to reduce to zero the off

[

diagonal elements of a matrix A by means of the transformations.

Define,  E(g)= | L 1§12 (1)
i3
Digy = &, Iaf§)1? (2)

i=1
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and if we choose the parameteres so that

Bigee) & Bgy

we have that

Dig+sy 2 gy,

Let A be a n¥n real symmetric matrix. Then construct

successively the sequence of matrices A(s) such that

Where R(p,q) 1s a rotation through an angle € in the plane (p,q).

The plane and the rotation angle ¢ is chosen to ensure that aé%*l)

is identically zero. Where aég) is taken through the elements of
A(yy lying above the diagonal and of maximum modulus.

Ve know that a similarity transformetion using the plane rotation
R(p,q), affected the entries in rows and columns p and q only. The

modified elements are given by

a3n = ajp cost + ajg singd = ap3
s+1) . _ 3) s s el — 5+1
agq ) = agg) sind + agq)coue = aég )

" ) €3 [ . 3 .' -
s+l) = aég) cosle  + Zaéa) cos® sin® + aéa) sin%o

e~
oL

(3)



{(5+1) _ _(8) oi.2a - (s) R | (=) el
Bgq = apy’ sin 5 Zapq cos® gind +aqq coscd
(S+1) - (S) - (S) o &3 4 ¥y (S) 5‘2 — 2
ang = (aqq apn Y cos® sing + 8pq { cos®® -5in“d )

il

(5+1)
aqp .

If the rotation angle ¢ is chosen to annihilate
we require
tal8) - A(8)y ainog (5) feae9g =
(app a4q } sinZg 4+ Za cosZd = O

i.e

tan2é = B9
(5) _ L(s7
Cgpp aqq.)
the angle & is chosen so that

if aég) - a&g) = Q then © is chosen to be
(5) (s) n
<'apq / Tapg {> 1
from eguation (3)
. — 8342
Hs+1) = Bgy — 2 (afgh)
giving
D(g+s) = D(gy + 2(aff))?

a)

(

s+1)
Q

4)

(5)

2%



Then the matrix A(S) will be & diagoﬁal matrix.

that is as s—«w

2

lafg™) - afP] =0

From equation (3) we have that

s+1) _ (s
al ) &pp)

t

—al8) (1 —noa? (5) cost sin® + alS)ainla
ann (1 —cos®d) + Zan cost sine + aqq sin“d

(S)cose sind

:(a&g} - aég))ﬁinze + 2 als

(s) _ o(8) =
If ajg arp’ = 0

we have | aég+1} - aég)! = laég}l

sinceldl = n/4
If we have reached the stade when l&ég}!é €

it follows that | &ég+1) ~ &ég)! -
Thus this algorithm generates a sequence'of matrices which tend

to a fixed diagonal matrix, which is similar to ocur initial

matrix. The disgonal elements are the eidenvalues of the initial

matrix.

RS



Caleculation of the eigenvectors

An n¥n matrix A has exactly n eigdenvalues 2 ,,2%,,...... 2, and
corresponding n eigenvectors x{!},x(2), . .., x{m),

Let D = diag(ii,lz,....,mn) and

¥ = (21, x(2) . x(8)y pe respectively the diagonal matrix
with »,%,,....,%, as diagonal elements and an n¥n matrix with
x(l) as its ith solumn vector. Then from AxX = »x we can write
\ AX.:XD

Premultiplying both sides by %1 ve get
%1ax = D
If A is an nxn real symmetric matrix and if we employ the Jacobi
method, then X = KyRoRg ....ERy. Thus while computing the
eigenvalues we post multiply Ry 4 gy currently generated K. The

resultant matrix is ¥, each of whose columns is an eigenvector: in
k-th column is the k-th eidenvector of A corrseponding to the k-th

eigenvalue 1. e Ak
Hote : Here we have to remember that at each stage in the

reduction of a real symmetric matrix to diagonal form one must
work with complete matrix. Again the elements reduced to zero in
on e step may become nonzero in later step and the process is an

infinite, particularly for larder matrix.



(3.4) GIYEN’D METHOD:

This method is applicable to an nXn real symmetric matrix A.
It consists in carrying out a sequence of orthogonal
transformations on A4 to produce a tridiagonal form.
In this process an element reduced to zero by one rotation never

becomes nonzero in later rotation.

Let :
’~1 O 0 0 . ..., ;7

0 ¢ -s O ...... 0

51 = O 2] c O ..., 0

0 0 O 1 ..., 0
L.O 0 O 0 11:

be an orthogonal matrix where ¢ and 8 are to be determined when

A is subjected to the transformation Al = SlTAsl then (1,3)th

i1

element of Ay = (3,1)th element of Ay -sa,,+ ca,, these vanish
1f we choose tan® = s/c = a,;/a,, or equivalently
5 = a,,/ ( 8%, + .2 1/2
12 1z als )

y1/2

such a transformation can be treated as a rotation in the (2,3 )

rlane. Then the matrix Al has the‘form
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— -3
I =x x 0 x ..... X X
X X X X e X X
0 x x = ..... X X
Ay = X X X X .... X X
X X X X ..... x :xJ

wher? X i3 any deneral value possibly not equal to zero.
Successive rotetions, thus carried out in the planes
(2,3),(2,4),...,(2,n) vhere the 8’s are so chosen that the new
(1,3)rd, (1,4)th,..... (1,n)th elements vanish. After (n-2) such

rotations we obtain An~2 which has the form

x
X
o
o
o
o

N

X X X X. 2 X
0 x x x X X
An—Z = 0 x x x X X

0 X X %X....X X

The second row of Anwz is treated in the same way as the first

row. The rotations here are made in the planes
(3,43,(3,8),..... (3,n}. Thus after (n-1)}(n-2)/ 2 rotations ,a

symmetric btridiagonal matrix T of the form



- —_—
Xx x 0 0...00 0O
X x x 0...00 0O
0 x x x...00 0

T = 0 0 x x...00 0O
0 0 0 0O0....xx x
0O 0 0 0....0x =

S —
ig obtained. Here no successive transformation affects the
prrevious zeros. The eigenvalues of T and A are identical since

the two matrices are similar.
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(3.5) EIGENSYSTEM OF A SYMMETRIC TRIDIAGONAL MATRIX

The Given’s transformation gives us a symmetric matrix to a
symmetric tridiagonal form. The eigenvalues of such matrices are
computed using Strum sequence property and bisection. The method
is as follows,

Let T denote a symmetric tridisgonal matrix with elements

tig = dy
Ti,itr = Ligy, 1 T o€y

assuming that none of the ey is zero.

Thus — ) —_
dl el 0 0 0] 0O 0‘
91 dz ez 0] .0 : 0 0
0O 82 d3 83 0 O 0
T =

0 0 0 0 en-2 dp-1 €n-1

) 0 0 0 0 €p -1 dy,
b : .

Let pr(ﬁ) denote the determinant of the leading principal minor

!

of T - 21.



Thus

Pp(2) = det

We define pg(2)
pp(2)

expanding pr(l)

Since pn(m}
we may compute

Po(l)

By ()

Pr(2)

dy-> eq 0 0 0 0

el dz—?\ 62 Q Q 0

) 0 0 €r-2 dp_1=* ©ep_y
0 0 0 0 e,y  dp
= 1

= dl"")‘.

by the final row the result

(dp-2)pp_1 (%)~ e%_lprnz(l}

det(T-21)

it by measns of the relations

1

1

1

d l —

Here the zeros of p,(2) strictly separate those of p,._,(2).

Using the formulas (1) we can evaluate the numbers

pol{),py(2), .. ... Pp(?) for some value of 2.

sgreements

in sign betwveen successive members

The number of:

of the sequence

{p,(2)} is denoted by s(2).

= (dr-—")‘)pr_l(')\) - e%_lpr_z(ﬁ‘): r = 2, 3’ NI ¢ I

AL
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Then using the sturm sequence property we can locate approximate
intervals in whioh each of the eigenvalue lie,
The sturm sequence property :The number of agreements in sign

5{(2) of successive members of the sequence {pr(l)} is equal to the

number of eigenvalues of T which are strictly greaﬁer than 2.

Using Sturm sequence property togeﬁber with the method 'of
bisection allows us to determine any eidgenvalue to prescribed
accuracy, The first step is Lo locate an interval [%§O},1£0)] in
which only bhe eigenvalue 2 lies, by means of shurm sequence
procerdure,

¥or some k<n we have

s(2407) = x, s(2{9)) = k+1.

Let ul®) = 1/2{1§O)+%£0)] and s(u{0)) which must either have the
value k or k+1.If s(u{®Y) = k, then % lies in the interval
[120),u(0)]; otherwise it is in [u(O),lgo)]. This process may be

repetitively applied to determine a tight interval for 2.
The above technique is used to find the eigenvalues in
aparticular interval, or the first few,or the last few eigenvalues

of an n¥Xn symmetric tridiagonal matrix.
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