CHAPTER 4

CHAPTER 4 FUZZY RELATION EQUATIONS ON UNION AND INTERSECTION PRESERVING OPERATORS

In this chapter we study union and intersection preserving operators defined on I and discuss fuzzy relation equations based on these operators.

4.1 UNION AND INTERSECTION PRESERVING OPERATORS:

Definition 4.1.1 [L]: A binary operation * on I is said to be union preserving operator if

1) $\mathrm{a}^{*} 0=0$
2) $a^{*}\left(\sup b_{i}\right)=\sup \left(a^{*} b_{i}\right), \forall a, b_{i} \in I$.
$i \in I \quad i \in I$
Definition 4.1.2[L]: A binary operation - on I is said to be intersection preserving operator if
3) $\mathrm{a} \cdot 1=1$
4) $\mathrm{a} \bullet\left(\inf \mathrm{b}_{\mathrm{i}}\right)=\inf (\mathrm{a} \bullet \mathrm{b}) \forall \mathrm{a}, \mathrm{b}_{\mathrm{i}} \in \mathrm{I}$. $i \in I \quad i \in I$

Theorem 4.1.3 [L]: The union preserving operator * is an order preserving operator.
Proof: Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{I}$ and $\mathrm{b} \leq \mathrm{c}$. Then $\operatorname{Sup}\{\mathrm{b}, \mathrm{c}\}=\mathrm{c}$
Now $a^{*} \sup \{b, c\}=\sup \left\{a^{*} b, a^{*} c\right\}$
i. e. $a^{*} c=\sup \left\{a^{*} b, a^{*} c\right\}$

Therefore, $\mathrm{a}^{*} \mathrm{c} \geq \mathrm{a} * \mathrm{~b}$.

Theorem 4.1.4[L]: The intersection preserving operator • is an order preserving operator.

Proof: Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{I}$ and $\mathrm{b} \leq \mathrm{c}$. Then $\inf \{\mathrm{b}, \mathrm{c}\}=\mathrm{b}$
Now $a \bullet \inf \{b, c\}=\inf \{a \bullet b, a \bullet c\}$
i. $e . a \bullet b=\inf \{a \bullet b, a \bullet c\}$

Therefore, $\mathrm{a} \bullet \mathrm{b} \leq \mathrm{a} \bullet \mathrm{c}$.

Theorem 4.1.5 [L]: If * is an union preserving operator, then there exists a unique intersection preserving operator \bullet such that $a^{*} b \leq c$ if and only if $a \bullet c \geq b$

Proof: Define a mapping *: I x I \rightarrow as follows
$a \cdot c=\sup _{x \in B}\{x\}$, where $B=\left\{x \in I \mid a^{*} x \leq c\right\}$
Since $\mathrm{a}^{*} 0 \leq 0, \mathrm{a}^{*} 0 \leq \mathrm{c}$, for all $\mathrm{c} \in \mathrm{I}$
Therefore, $0 \in \mathrm{~B}$
i. e. $B \neq \phi$.

Therefore, B is a bounded subset of $[0,1]$ bounded by 0 and 1 .
Hence, • is well defined.
Let $a^{*} b \leq c$. Then $b \in B$
Therefore, $\mathrm{a} \bullet \mathrm{c}=\sup \{\mathrm{x}\} \geq \mathrm{b}$

$$
x \in B
$$

Thus, $a \cdot c \geq b$
Conversely let $\mathrm{a} \bullet \mathrm{c} \geq \mathrm{b}$. Then $\mathrm{a} * \mathrm{~b} \leq \mathrm{a} *(\mathrm{a} \bullet \mathrm{c})$

$$
\begin{aligned}
\text { Now } a^{*}(a \bullet c) & =a * \sup _{x \in B}\{x\} \\
& =\sup _{x \in B}\left(a^{*} x\right) \\
& \leq c
\end{aligned}
$$

Hence, $a *(a \bullet c) \leq c$
Therefore, $\mathrm{a} * \mathrm{~b} \leq \mathrm{c}$ if and only $\mathrm{a} \cdot \mathrm{c} \geq \mathrm{b}$

```
Since a * \(1 \leq 1,1 \in B\)
Therefore, \(\mathrm{a}^{*} 1 \leq 1 \Rightarrow \mathrm{a} \cdot 1 \geq 1\)
Hence \(\mathrm{a} \bullet 1=1\)
Next, we claim that,
\(a \bullet\left(\inf b_{i}\right)=\inf \left(a \bullet b_{i}\right)\)
    \(i \in I \quad i \in I\)
Now \(a \cdot\left(\inf b_{i}\right)=a \cdot\left(\inf b_{i}\right)\)
    \(i \in I \quad i \in I\)
Therefore, \(a^{*}\left(a \bullet \inf \left\{b_{i}\right\}\right) \leq \inf \left\{b_{i}\right\} \leq b_{i}, \forall i \in I\)
    \(i \in I \quad i \in I\)
iff \(a \bullet b_{i} \geq a \bullet\left(\inf b_{i}\right)\)
        \(i \in I\)
iff \(\inf \left(a \bullet b_{i}\right) \geq a \bullet\left(\inf b_{i}\right)\)
    \(i \in I \quad i \in I\)
Now \(\inf \left(\mathrm{a} \bullet \mathrm{b}_{\mathrm{i}}\right) \leq \mathrm{a} \bullet \mathrm{b}_{\mathrm{i}}, \forall \mathrm{i} \in \mathrm{I}\)
        \(i \in I\)
Therefore, \(\mathrm{a}^{*} \inf \left(\mathrm{a} \bullet \mathrm{b}_{\mathrm{i}}\right) \leq \mathrm{b}_{\mathrm{i}}, \forall \mathrm{i} \in \mathrm{I}\).
        \(i \in I\)
iff \(a^{*}\left(\inf \left(a \bullet b_{i}\right)\right) \leq \inf \left\{b_{i}\right\}\)
        \(i \in I \quad i \in I\)
iff \(a \bullet \inf \left\{b_{i}\right\} \geq \inf \left(a \bullet b_{i}\right)\)
        \(i \in I \quad i \in I\)
Hence, \(a \bullet \inf \left\{b_{i}\right\}=\inf \left(a \bullet b_{i}\right)\)
        \(i \in I \quad i \in I\)
Uniqueness: Since \(a^{*} b=a * b, a \bullet(a * b) \geq b\)
Similarly a * \((\mathrm{a} \cdot \mathrm{c}) \leq \mathrm{c}\)
Suppose \(\bullet_{1}\) is any other operator satisfying \(a^{*} b \leq c\) if and only if \(a \bullet_{1} c \geq b\).
Now \(\mathbf{a}^{*}(\mathrm{a} \bullet 1 \mathrm{c}) \leq \mathrm{c}\)
Therefore, \(\mathrm{a} \bullet \mathrm{c} \geq \mathrm{a} \cdot \mathrm{c}\)
Also a * \((\mathrm{a} \bullet \mathrm{c}) \leq \mathrm{c}\)
```

Hence, $a \bullet 1 c \geq a \bullet c$

Therefore, $\mathrm{a} \bullet \mathrm{c}=\mathrm{a} \bullet 1 \mathrm{c}$.

Similarly following result holds.
Theorem 4.1.6 [L]: If • is an intersection preserving operator, then there exists a unique union preserving operator * satisfying $\mathrm{a}^{*} \mathrm{~b} \leq \mathrm{c}$ if and only if $\mathrm{a} \cdot \mathrm{c} \geq \mathrm{b}, \forall \mathrm{a}, \mathrm{b}$, $c, \in \mathrm{I}$.

Proof: Define a mapping *: I x I \rightarrow as follows
$a^{*} b=\inf \{x\}$, where $C=\{x \mid a \bullet x \geq b\}$. $x \in C$

Theorem 4.1.7 [L]: Let $\mathrm{a}, \mathrm{c} \in \mathrm{I}$. If the equation a * $\mathrm{x}=\mathrm{c}$ has at least one solution, then there exists an intersection preserving operator - such that $\mathrm{a} \bullet \mathrm{c}$ is the maximum solution of $a * x=c$.

Proof: Let x be a solution of the equation $\mathrm{a} * \mathrm{x}=\mathrm{c}$. Then $\mathrm{a} * \mathrm{x} \leq \mathrm{c}$.
Therefore, by above Theorem 4.1.5, there exists an intersection preserving operator • such that $\mathrm{a} \cdot \mathrm{c} \geq \mathrm{x}$

Then $\mathrm{a}^{*} \mathrm{x} \leq \mathrm{a} *(\mathrm{a} \cdot \mathrm{c})$
Therefore, $\mathrm{c} \leq \mathrm{a} *(\mathrm{a} \bullet \mathrm{c}) \leq \mathrm{c}$
Hence, $a^{*}(\mathrm{a} \bullet \mathrm{c})=\mathrm{c}$
Let $d \in I$ be a solution of $a * x=c$.
Then a* $\mathrm{d} \leq \mathrm{c}$
Therefore, $(a \bullet c) \geq d$.

[^0]Theorem 4.1.8 [L]: Let $\mathrm{a}, \mathrm{b} \in \mathrm{I}$. If the equation $\mathrm{a} \cdot \mathrm{x}=\mathrm{b}$ has at least one solution, then there exists an union preserving operator ${ }^{*}$ such that $\mathrm{a}^{*} \mathrm{~b}$ is the minimum solution of $a \bullet x=b$.

Definition 4.1.9 [L]: Operators * and • defined in the above Theorems 4.1.5 are called inverse operator of each other.

Theorem 4.1.10 [L]: If the equation $\mathrm{a}^{*} \mathrm{x}=\mathrm{c}$ has the minimum solution, $\mathrm{a}-\mathrm{c}$, then following hold.
i) $a^{*}(a-c)=c$
ii) $a \bullet c \geq a-c$
iii) $a \cdot\left(a^{*} c\right) \leq c$

Proof: We only prove (iii)
iii) Since $\mathrm{a}^{-} \mathrm{c}$ is a minimum solution of $\mathrm{a}^{*} \mathrm{x}=\mathrm{c}, \mathrm{a}^{-}\left(\mathrm{a}^{*} \mathrm{c}\right)$ is a minimum solution of $a^{*} x=a^{*} c$

Also c is a solution of $\mathrm{a} * \mathrm{x}=\mathrm{a}^{*} \mathrm{c}$
Hence, $\mathrm{a} \bullet(\mathrm{a} * \mathrm{c}) \leq \mathrm{c}$.

Similarly we prove the following:
Theorem 4.1.11 [L]: If the equation $a \cdot x=b$ has the maximum solution, $a^{\bar{*}} b$, then following hold.
i) $a \cdot\left(a^{\bar{*}} b\right)=b$
ii) $a^{*} b \leq a^{\bar{*}} b$
iii) $a^{*}(a \bullet b) \geq b$.

4.2 FUZZY RELATION EQUATIONS WITH UNION PRESERVING OPERATOR:

Definition 4.2.1: Let $P(X, Y)$ and $Q(Y, Z)$ be fuzzy relations. Let * be an union preserving operator. Then * - sup composition of P and Q is a fuzzy relation, $\mathrm{R}(\mathrm{X}, \mathrm{Z})$, defined as follows:

$$
P^{*} Q(x, z)=\sup _{y \in Y}\{Q(x, y) * P(z, y)\}
$$

Definition 4.2.2: Let $P(X, Y), Q(Y, Z)$ and $R(X, Z)$ be fuzzy relations. Then the equation $P^{*} Q=R$ is called * - sup fuzzy relation equation or fuzzy relation equation with union preserving operator *.

This problem, $\mathrm{P} * \mathrm{Q}=\mathrm{R}$, can be partitioned into a set of simpler problems $\mathrm{p}_{\mathrm{i}}{ }^{*} \mathrm{Q}=\mathrm{r}_{\mathrm{i}}, \forall \mathrm{i}$.

If $\mathrm{p}=\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}\right), \mathrm{Q}=\left(\mathrm{q}_{\mathrm{ij}}\right)_{\mathrm{n} \times \mathrm{m}}$ and $\mathrm{r}=\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{m}}\right)$. Let ${ }^{*}$ be an union preserving operator. Then $r_{j}=\underset{i .}{\sup }\left(q_{i j} * p_{i}\right)$

Let $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and $r=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$. Then $p \leq r$ if and only if $p_{i} \leq r_{i}$, for all i.

We will discuss above equation when Q and r are given.
Theorem 4.2.3 [L]: There exists a solution to fuzzy relation equation p * $Q=r$ if and only if t * $Q \geq r$, where $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ and $t_{i}=\inf \left\{q_{i j} \bullet r_{j}\right\}, \bullet$ is inverse operator of *.

Proof: Suppose $t^{*} Q \geq r$, where $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ and $t_{i}=\underset{j}{\inf \left\{q_{j j} \bullet r_{j}\right\}, \bullet \text { is inverse }}$ operator of *.
$\operatorname{Now} \sup _{\mathrm{i}}\left(\mathrm{q}_{\mathrm{ij}} * \mathrm{t}_{\mathrm{j}}\right)=\sup _{\mathrm{i}}\left(\mathrm{q}_{\mathrm{ij}} * \inf \left\{\mathrm{q}_{\mathrm{ik}} \bullet \mathrm{r}_{\mathrm{k}}\right\}\right)$

$$
\begin{aligned}
& \leq \sup _{\mathrm{i}}\left(\mathrm{q}_{\mathrm{ij}} *\left\{\mathrm{q}_{\mathrm{ij}} \cdot \mathrm{r}_{\mathrm{j}}\right\}\right) \\
& \leq \mathrm{z}_{\mathrm{j}}
\end{aligned}
$$

Thus, $\sup \left(q_{i j} * t_{i}\right) \leq r_{j}, j=1,2,3, \ldots, m$

But $t^{*} Q \geq r$. Therefore, $\sup _{i}\left(q_{i j} * t_{i}\right) \geq r_{j}$

Hence, $\sup _{\mathrm{i}}\left(\mathrm{q}_{\mathrm{ij}}{ }^{*} \mathrm{t}_{\mathrm{i}}\right)=\mathrm{r}_{\mathrm{j}}, \mathrm{j}=1,2, \ldots \mathrm{~m}$

Thus, $\mathrm{t}^{*} \mathrm{Q}=\mathrm{r}$
i. e. t is a solution of equation $p^{*} Q=r$.

Conversely suppose that t is a solution of equation $p * Q=r$.
Therefore, $\mathrm{t} * \mathrm{Q}=\mathrm{r}$
i. e. $\sup _{i}\left(q_{i j} * t_{i}\right)=r_{j}, j=1,2, \ldots m$.

Thus, $\sup _{i}\left(q_{i j} * t_{i j}\right) \geq r_{j}, j=1,2, \ldots m$
i. e. ${ }^{*} \mathrm{Q} \geq \mathrm{r}$

Theorem 4.2.4 [L]: Given Q and r if we define $t_{i}=\inf _{j}\left(q_{i j} \bullet r_{j}\right) \forall i=1,2, \ldots n$, then $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is the maximum solution of the equation $p^{*} Q=r$.

Proof: Let $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ be a solution of $p^{*} Q=r$
Then $r_{j}=\sup _{i}\left(q_{i j} * u_{i}\right), \forall j$

Now $\mathrm{t}_{\mathrm{i}}=\inf _{\mathrm{j}}\left(\mathrm{q}_{\mathrm{ij}} \bullet \mathrm{r}_{\mathrm{j}}\right)$
$=\inf _{\mathrm{j}}\left[q_{i j} \bullet \sup _{\mathrm{k}}\left(\mathrm{q}_{\mathrm{kj}} * u_{k}\right)\right]$
$\geq \inf _{j}\left[q_{i j} \bullet\left(q_{i j}^{*} u_{i}\right)\right]$
$\geq \inf _{j} u_{i}$
$\geq u_{i}$
Therefore, $t_{i} \geq u_{i}$, for all $i=1,2,3, \ldots n$.
Thus, $\mathrm{t} \geq \mathrm{u}$

Let us assume that there exists solutions to the equation $\mathrm{p}^{*} \mathrm{Q}=\mathrm{r}$ so that $\mathrm{t}=\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$ with $\mathrm{t}_{\mathrm{i}}=\inf _{\mathrm{j}}\left(\mathrm{q}_{\mathrm{ij}} \bullet \mathrm{r}_{\mathrm{j}}\right) \forall \mathrm{i}=1,2, \ldots \mathrm{n}$, is the maximum solution. To obtain minimal solution of $p^{*} Q=r$ for p, we shall introduce a matrix $D=\left(d_{i j}\right)_{n \times m}$ as follows:
$d_{i j}= \begin{cases}q_{i j} \cdot r_{j}, & \text { if } q_{i j} * t_{i}=r_{j} \\ 0, & \text { otherwise }\end{cases}$
Here $a-b$ is the minimum solution of $a * x=b$.

We assume that the minimum solution of $a^{*} x=b$ exists.
Theorem 4.2.5 [L]: Define $D^{*}=\left(d_{i j}\right)_{n \times m}$ is a submatrix of matrix D, where $d_{i j}{ }^{*}=d_{i j}$ or o. Ifsup $d_{i j}^{*}>0$, for $r_{j} \neq 0, j=1,2, \ldots, m$, then $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where $a_{i}=\sup _{j} d_{i j}^{*}, i=1,2,3, \ldots, n$ is a solution of the equation $p^{*} Q=r$.

Proof: Let $\mathrm{r}_{\mathrm{j}} \neq 0$. Then there exists i_{o} such that,
$\mathrm{d}_{\mathrm{ioj}}^{*}=\mathrm{d}_{\mathrm{ioj}}>0$
Now $\sup \left(q_{i j} * a_{i}\right) \geq q_{i o j} * a_{i o}$
$\geq \mathrm{q}_{\mathrm{ioj}} * \operatorname{supd}_{\mathrm{i}} \mathrm{d}_{\mathrm{ioj}}$
$\geq \mathrm{q}_{\mathrm{ioj}} * \mathrm{~d}_{\mathrm{ioj}}^{*}$
$=\mathrm{qioj}^{*}\left(\mathrm{q}_{\mathrm{ioj}} \stackrel{\mathrm{r}}{\mathrm{j}}\right)$
$=r_{j}$

Now $\mathrm{D}=\left(\mathrm{d}_{\mathrm{ij}}\right)_{\mathrm{n} \times \mathrm{m}}$
$\mathrm{d}_{\mathrm{ij}}= \begin{cases}\mathrm{q}_{\mathrm{ij}} \bar{\bullet}^{-} \mathrm{r}_{\mathrm{j}}, & \text { if } \mathrm{q}_{\mathrm{ij}} * \mathrm{t}_{\mathrm{i}}=\mathrm{r}_{\mathrm{j}} \\ 0, & \text { otherwise }\end{cases}$

Therefore, $\mathrm{q}_{\mathrm{ij}}{ }^{-} \mathrm{r}_{\mathrm{j}}=\mathrm{q}_{\mathrm{ij}}-\left(\mathrm{q}_{\mathrm{ij}} * \mathrm{t}_{\mathrm{i}}\right) \leq \mathrm{t}_{\mathrm{i}}$
Hence, $\mathrm{a}_{\mathrm{i}}=\sup _{\mathrm{j}} \mathrm{d}_{\mathrm{ij}}{ }^{*}=\sup _{\mathrm{j}} \mathrm{d}_{\mathrm{ij}}$
$=\sup _{\mathrm{j}}\left(\mathrm{q}_{\mathrm{ij}} \cdot \mathrm{r}_{\mathrm{j}}\right)$
$=\sup t_{i}$
$=t_{i}$
Thus, $\sup _{i}\left(q_{i j} * a_{i}\right) \leq \sup _{i}\left(q_{i j} * t_{i}\right)=r_{j}, j=1,2, \ldots, m$
i. e. $\sup _{i}\left(\mathrm{q}_{\mathrm{ij}} * \mathrm{a}_{\mathrm{i}}\right) \leq \mathrm{r}_{\mathrm{j}}, \mathrm{j}=1,2,3, \ldots, \mathrm{~m}$

Hence, $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a solution of $p^{*} Q=r$

Theorem 4.2.6 [L]: If $\mathrm{A}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}\right)$ is a solution of equation p * $\mathrm{Q}=\mathrm{r}$, then $D(A)=\left(d(A)_{i j}\right)_{n \times m}$, is a submatrix of D and $\sup _{i} d_{i j}^{*}>0$ for $r_{j} \neq 0, j=1,2,3, \ldots, m$, where
$d(A)_{i j}= \begin{cases}d_{i j}, & q_{i j}^{*} a_{i}=r_{j} \\ 0, & \text { otherwise }\end{cases}$
Proof: Since $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is the maximum solution, $a_{i} \leq t_{i}, i=1,2,3, \ldots, n$
Hence, $q_{i j} * t_{i} \geq q_{i j} * a_{i}$
i. e. $q_{i j}{ }^{*} a_{i} \geq r_{j}$
$\operatorname{Now} q_{i j} * t_{i}=q_{i j} *\left(\inf _{k}\left(r_{i k} * r_{k}\right)\right)$
$\leq \mathrm{q}_{\mathrm{ij}} *\left(\mathrm{q}_{\mathrm{ij}}{ }^{-} \mathrm{r}_{\mathrm{j}}\right)$
$\leq r_{j}$
Thus, $\mathrm{q}_{\mathrm{ij}} * \mathrm{t}_{\mathrm{i}}=\mathrm{r}_{\mathrm{j}}$
Hence, $\mathrm{q}_{\mathrm{ij}} * \mathrm{t}_{\mathrm{i}}=\mathrm{r}_{\mathrm{j}}$
Therefore, $D(A)$ is a submatrix of D
If $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a solution of $p * Q=r$, thensup $\left(r_{i j} * a_{i}\right)=r_{j}, j=1,2,3, \ldots, m$
For $\mathrm{r}_{\mathrm{j}} \neq 0$, there exists i_{o} such that, $\mathrm{r}_{\mathrm{o}_{0 j}} * \mathrm{a}_{\mathrm{i}_{\mathrm{oj}}}=\mathrm{r}_{\mathrm{j}}$
Therefore, $\mathrm{d}(\mathrm{A})_{\mathrm{i}_{\mathrm{ij}}} \geq 0$
Hence, $\sup d(A)_{i j}>0, j=1,2,3, \ldots, m$

Theorem 4.2.7 $[\mathrm{L}]: \sup \mathrm{d}(\mathrm{A})_{\mathrm{ij}} \leq \mathrm{a}_{\mathrm{i}}$

Proof:
$d_{i j}= \begin{cases}q_{i j} \cdot r_{j}, & \text { if } q_{i j} * t_{i}=r_{j} \\ 0, & \text { otherwise }\end{cases}$

Also
$d(A)_{i j}= \begin{cases}d_{i j}, & \mathrm{q}_{\mathrm{ij}} * \mathrm{a}_{\mathrm{i}}=\mathrm{r}_{\mathrm{j}} \\ 0, & \text { othewise }\end{cases}$
Therefore, $\mathrm{d}(\mathrm{A})_{\mathrm{ij}}=\mathrm{q}_{\mathrm{ij}}{ }^{-} \mathrm{r}_{\mathrm{j}}$
Since $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a solution, $d_{i j}{ }^{*}=d_{i j}$ or 0 with $a_{i}=\sup _{i} d_{i j}{ }^{*}$
Therefore, $d(A)_{i j}=q_{i j}-r_{j}=q_{i j}-\left(q_{i j} * a_{i}\right) \leq a_{i j}$, for $r_{j} \neq 0$
Hence, $\sup d(A)_{i j} \leq a_{i}$, for $r=1,2,3, \ldots, n$

Method for calculating all minimal solutions [L]

Step1: Write the formula P of the matrix by
$P=I I\left(\sum_{i=1}^{n} d_{i j}\right)$, product over $j, r_{j} \neq 0$.
(If $\mathrm{d}_{\mathrm{ij}}=0$, then omit it)
Here, ' Σ ' indicates the logical 'or' and 'II' indicates the logical 'and'
Then calculate P in Σ form according to polynomial multiplication as:
$P_{1}=\sum d_{k 1} 1_{1} d_{k 2} l_{2} \ldots d_{k r} 1_{r}$
Step 2: 'Multiplicate' for all terms

$$
\mathrm{dpq} \cdot \mathrm{drs}=\left\{\begin{array}{lc}
\max (\mathrm{dpq}, \mathrm{drs}) & \mathrm{r}=\mathrm{p} \\
\text { unchanged } & \text { otherwise }
\end{array}\right.
$$

until the term $\mathrm{d}_{\mathrm{k} 111} \mathrm{~d}_{\mathrm{k} 212} \ldots \mathrm{~d}_{\mathrm{krrr}}$ satisfies $\mathrm{ki} \neq \mathrm{kj}$ for $\mathrm{i} \neq \mathrm{j}$
Step 3: 'Sum' among terms
$\mathrm{d}_{1} \mathrm{r}_{1} \mathrm{~d}_{2} \mathrm{r}_{2} \ldots \mathrm{~d}_{\mathrm{n}} \mathrm{r}_{\mathrm{n}}-\mathrm{d}_{1} \mathrm{~s}_{1} \mathrm{~d}_{2} \mathrm{~s}_{2} \ldots . . \mathrm{d}_{\mathrm{n}} \mathrm{s}_{\mathrm{n}}$
$= \begin{cases}d_{1} r_{1} d_{2} r_{2} \ldots d_{n} r_{n}, d_{k} r_{k} \leq d_{k} s_{k}, k=1, \ldots, n \\ \text { unchanged, } & \text { otherwise }\end{cases}$
All the minimal solutions are given by $t^{*}=\left(t_{1}^{*}, t_{2}^{*}, \ldots, t_{n}^{*}\right)$, where $t_{k}^{*}=d_{k^{\prime}} r_{k}$, $\mathrm{k}=1,2,3, \ldots, \mathrm{n}$

4.3 FUZZY RELATION EQUATIONS WITH INTERSECTION PRESERVING OPERATOR

Definition 4.3.1: Let $\mathrm{P}(\mathrm{X}, \mathrm{Y})$ and $\mathrm{Q}(\mathrm{Y}, \mathrm{Z})$ be fuzzy relations. Let • be an intersection preserving operator. Then $-\inf$ composition of P and Q is a fuzzy relation, $\mathrm{R}(\mathrm{X}, \mathrm{Z})$, defined as follows:

$$
\begin{aligned}
P \bullet Q(x, z)= & \inf \{Q(x, y) \bullet P(z, y)\} \\
& y \in Y
\end{aligned}
$$

Definition 4.3.2: Let $P(X, Y), Q(Y, Z)$ and $R(X, Z)$ be fuzzy relations. Then the equation $P \bullet Q=R$ is called • - inf fuzzy relation equation or fuzzy relation equation with intersection preserving operator \bullet.

This problem, $\mathrm{P} \bullet \mathrm{Q}=\mathrm{R}$, can be partitioned into a set of simpler problems $\mathrm{p}_{\mathrm{i}} \bullet \mathrm{Q}=\mathrm{r}_{\mathrm{i}}, \forall \mathrm{i}$.

If $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right), Q=\left(q_{i j}\right)_{n \times m}$ and $r=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$. Let \bullet be an intersection preserving operator. Then $r_{j}=\underset{\substack{\inf \\ i .}}{ }\left(q_{i j} \bullet p_{i}\right)$, for $j=1,2, \ldots, m$

We will discuss above equation when Q and r are given and give the method for obtaining maximal solutions.

The proofs of the following theorems 4.3 .3 to 4.3 .7 can be obtained dually from Theorem 4.2.3 to Theorem 4.2.7 respectively.

Theorem 4.3.3 [L]: There exists a solution to fuzzy relation equation $\mathrm{p} \bullet \mathrm{Q}=\mathrm{r}$ if and only if $t \bullet Q \leq r$, where $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ and $t_{i}=\sup _{j}\left\{q_{i j} * r_{j}\right\}$, * is inverse operator of \bullet.

Theorem 4.3.4 [L]: Given Q and r if we define $t_{i}=\sup _{j}\left(q_{i j} * r_{j}\right), \forall i=1,2, \ldots n$, then $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is the minimum solution of the equation $p \bullet Q=r$.

Let us assume that there exists solutions to the equation $p \cdot Q=r$ so that $\mathrm{T}=\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$ with $\mathrm{t}_{\mathrm{i}}=\sup _{\mathrm{j}}\left(\mathrm{q}_{\mathrm{ij}} * \mathrm{r}_{\mathrm{j}}\right), \forall \mathrm{i}=1,2, \ldots \mathrm{n}$, is the minimum solution. To obtain maximal solutions of $p \bullet Q=r$ for p, we shall introduce a matrix $D=\left(d_{i j}\right)_{n \times m}$ as follows:
$d_{i j}= \begin{cases}q_{i j}{ }^{\bar{*}} r_{j}, & \text { if } q_{i j} \bullet t_{i}=r_{j} \\ 1, & \text { otherwise }\end{cases}$
Here $\mathrm{a}^{\bar{*}} \mathrm{~b}$ is the minimum solution of $\mathrm{a} \bullet \mathrm{x}=\mathrm{b}$.

We assume that the maximum solution of $a \bullet x=b$ exists.
Theorem 4.3.5 [L]: If $D^{*}=\left(d_{\mathrm{ij}}^{*}\right)_{\mathrm{nxm}}$ is a submatrix of matrix D , where $\mathrm{d}_{\mathrm{ij}}{ }^{*}=\mathrm{d}_{\mathrm{ij}}$ or 1 , such thatinf $\mathrm{d}_{\mathrm{ij}}^{*}<1$, for $\mathrm{r}_{\mathrm{j}} \neq 1 ; \mathrm{j}=1,2, \ldots, m$. Then $\mathrm{A}=\left(\mathrm{a}_{1}, a_{2}, \ldots, a_{n}\right)$ with $a_{i}=\inf _{j} d_{i j}^{*}, i=1,2,3, \ldots, n$ is a solution of the equation $p \bullet Q=r$.

Theorem 4.3.6 [L]: If $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a solution of equation $p \bullet Q=r$, then $D(A)=\left(d(A)_{i j}\right)_{n \times m}$, is a submatrix of D and $\inf _{i} d_{i j}^{*}<1$, for $r_{j} \neq 1, j=1,2,3, \ldots, m$, where
$d(A)_{i j}= \begin{cases}d_{i j}, & \mathrm{q}_{\mathrm{ij}} \bullet \mathrm{a}_{\mathrm{i}}=\mathrm{r}_{\mathrm{j}} \\ 1, & \text { othewise }\end{cases}$

Theorem 4.3.7 [L]: $\inf _{j} d(A)_{i j} \geq a_{i}$.

Method for calculating all maximal solutions [L]

Step 1: Write down the formula P of a matrix D as

$$
\mathrm{P}=\mathrm{II}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~d}_{\mathrm{ij}}\right), \text { product over } \mathrm{j}, \mathrm{r}_{\mathrm{j}} \neq 0 .
$$

(If $_{\mathrm{ij}}=1$ then omit it).
Calculate P in Σ from according to polynomial multiplication :

$$
\mathrm{P}=\Sigma \mathrm{dk}_{111} \mathrm{dk}_{212} \ldots . . \mathrm{dk}_{\mathrm{rlr}} .
$$

Step 2: 'Multiplicate' for all terms.

$$
\mathrm{dpq} \mathrm{drs}=\left\{\begin{array}{ll}
\min (\mathrm{dp}, \mathrm{drs}) & \mathrm{r}=\mathrm{p} \\
\text { unchanged }
\end{array}, \quad \mathrm{r} \neq \mathrm{p} .\right.
$$

until the term $\mathrm{dk}_{1} \mathrm{l}_{1} \mathrm{dk}_{2} \mathrm{l}_{2} \ldots . . \mathrm{dk}_{\mathrm{r}} \mathrm{l}_{\mathrm{r}}$. satisfies $\mathrm{k}_{\mathrm{i}} \neq \mathrm{k}_{\mathrm{j}}, \mathrm{i} \neq \mathrm{j}$.
Step 3: 'Sum' among terms
$\mathrm{d}_{1} \mathrm{r}_{1} \mathrm{~d}_{2} \mathrm{r}_{2} \mathrm{~d}_{\mathrm{n}} \mathrm{r}_{\mathrm{n}}+\mathrm{d}_{1} \mathrm{~s}_{1} \mathrm{~d}_{2} \mathrm{~S}_{2} \mathrm{~d}_{\mathrm{n}} \mathrm{S}_{\mathrm{n}}$

$$
= \begin{cases}d_{1} r_{1} d_{2} r_{2} \ldots . d_{n} r_{n} ; d_{k} r_{k}>d_{k} s_{k} ; & k=1 ; n \\ \text { unchanged } & \text { otherwise }\end{cases}
$$

All maximal solutions are

$$
T^{*}=\left(t_{1}^{*}, t_{2}^{*}, \ldots \ldots, t_{n}^{*}\right)
$$

where $t_{k}^{*}=d_{k}^{*}{ }^{*} ; k=1,2, \ldots, n$.

[^0]: Similarly we prove the following:

