CHAPTER 4

:

CHAPTER 4 FUZZY RELATION EQUATIONS ON UNION AND INTERSECTION PRESERVING OPERATORS

In this chapter we study union and intersection preserving operators defined on I and discuss fuzzy relation equations based on these operators.

4.1 UNION AND INTERSECTION PRESERVING OPERATORS:

Definition 4.1.1 [L]: A binary operation * on I is said to be union preserving operator if

2) a * (sup b_i) = sup (a * b_i), \forall a, b_i \in I. i \in I i \in I

Definition 4.1.2[L]: A binary operation • on I is said to be intersection preserving operator if

1)
$$a \bullet 1 = 1$$

2) $a \bullet (\inf b_i) = \inf (a \bullet b) \forall a, b_i \in I.$ $i \in I$ $i \in I$

Theorem 4.1.3 [L]: The union preserving operator * is an order preserving operator.

```
Proof: Let a, b, c \in I and b \le c. Then Sup\{b, c\} = c
```

```
Now a * \sup\{b, c\} = \sup\{a * b, a * c\}
```

```
i. e. a * c = \sup\{a * b, a * c\}
```

Therefore, a * c \geq a * b.

Theorem 4.1.4[L]: The intersection preserving operator • is an order preserving operator.

Proof: Let a, b, $c \in I$ and $b \le c$. Then $\inf\{b, c\} = b$

Now $a \bullet \inf\{b, c\} = \inf\{a \bullet b, a \bullet c\}$

i. e. $a \bullet b = \inf\{a \bullet b, a \bullet c\}$

Therefore, $a \bullet b \le a \bullet c$.

Theorem 4.1.5 [L]: If * is an union preserving operator, then there exists a unique intersection preserving operator \bullet such that a * b \leq c if and only if a \bullet c \geq b

Proof: Define a mapping $*: I \times I \rightarrow I$ as follows

 $a \bullet c = \sup \{x\}$, where $B = \{x \in I \mid a * x \le c\}$ $x \in B$

Since a * $0 \le 0$, a * $0 \le c$, for all $c \in I$

Therefore, $0 \in B$

i. e. B $\neq \phi$.

Therefore, B is a bounded subset of [0, 1] bounded by 0 and 1.

Hence, • is well defined.

Let a * b \leq c. Then b \in B

Therefore, $\mathbf{a} \bullet \mathbf{c} = \sup \{x\} \ge \mathbf{b}$ $\mathbf{x} \in \mathbf{B}$

Thus, $a \bullet c \ge b$

Conversely let $a \bullet c \ge b$. Then $a * b \le a * (a \bullet c)$

```
Now a * (a \cdot c) = a * \sup_{x \in B} \{x\}
= \sup_{x \in B} (a * x)
\leq c
```

Hence, a * (a • c) \leq c

Therefore, a * b \leq c if and only a • c \geq b

Since a * $1 \le 1, 1 \in B$ Therefore, a * $1 \le 1 \Rightarrow a \bullet 1 \ge 1$ Hence a $\bullet 1 = 1$ Next, we claim that, $a \bullet (\inf b_i) = \inf(a \bullet b_i)$ i e I i e I Now $\mathbf{a} \bullet (\inf \mathbf{b}_i) = \mathbf{a} \bullet (\inf \mathbf{b}_i)$ i ∈ I i∈I Therefore, a * (a • inf { b_i }) \leq inf { b_i } \leq b_i, $\forall i \in I$ iel iel $iff a \bullet b_i \ge a \bullet (inf b_i)$ i∈I iff $inf(a \bullet b_i) \ge a \bullet (inf b_i)$ i∈I i∈I Now $\inf(a \bullet b_i) \le a \bullet b_i, \forall i \in I$ i∈I Therefore, $a * inf (a \bullet b_i) \le b_i, \forall i \in I$. i∈I iff $a * (\inf (a \bullet b_i)) \leq \inf \{b_i\}$ i∈I i∈I iff $a \bullet \inf \{b_i\} \ge \inf (a \bullet b_i)$ i∈I i∈I Hence, $\mathbf{a} \bullet \inf \{ \mathbf{b}_i \} = \inf (\mathbf{a} \bullet \mathbf{b}_i)$ $i \in I$ $i \in I$ Uniqueness: Since a * b = a * b, $a \bullet (a * b) \ge b$ Similarly a * $(a \bullet c) \le c$ Suppose \bullet_1 is any other operator satisfying a * b \leq c if and only if a \bullet_1 c \geq b. Now $a * (a \bullet_1 c) \leq c$ Therefore, $a \bullet c \ge a \bullet_1 c$ Also a * (a • c) \leq c

Hence, $\mathbf{a} \bullet_1 \mathbf{c} \ge \mathbf{a} \bullet \mathbf{c}$

Therefore, $\mathbf{a} \bullet \mathbf{c} = \mathbf{a} \bullet_1 \mathbf{c}$.

Similarly following result holds.

Theorem 4.1.6 [L]: If • is an intersection preserving operator, then there exists a unique union preserving operator * satisfying a * b \leq c if and only if a • c \geq b, \forall a, b, c, \in I.

Proof: Define a mapping *: I x I \rightarrow I as follows

 $a * b = \inf \{x\}, \text{ where } C = \{x \mid a \bullet x \ge b\}.$ $x \in C$

Theorem 4.1.7 [L]: Let a, $c \in I$. If the equation a * x = c has at least one solution, then there exists an intersection preserving operator • such that a • c is the maximum solution of a * x = c.

Proof: Let x be a solution of the equation a * x = c. Then $a * x \le c$.

Therefore, by above Theorem 4.1.5, there exists an intersection preserving operator \bullet such that $a \bullet c \ge x$

Then a * x \leq a * (a • c)

Therefore, $c \le a * (a \bullet c) \le c$

Hence, $a * (a \bullet c) = c$

Let $d \in I$ be a solution of a * x = c.

Then a * d \leq c

Therefore, $(a \bullet c) \ge d$.

Similarly we prove the following:

Theorem 4.1.8 [L]: Let a, $b \in I$. If the equation $a \bullet x = b$ has at least one solution, then there exists an union preserving operator * such that a * b is the minimum solution of $a \bullet x = b$.

Definition 4.1.9 [L]: Operators * and • defined in the above Theorems 4.1.5 are called inverse operator of each other.

Theorem 4.1.10 [L]: If the equation a * x = c has the minimum solution, $a \bullet c$, then following hold.

i) a * (a - c) = cii) $a \cdot c \ge a - c$ iii) $a - (a + c) \le c$ Proof: We only prove (iii) iii) Since a - c is a minimum solution of a + x = c, a - (a + c) is a minimum solution of a + x = a + cAlso c is a solution of a + x = a + cHence, $a - (a + c) \le c$.

Similarly we prove the following:

Theorem 4.1.11 [L]: If the equation $\mathbf{a} \cdot \mathbf{x} = \mathbf{b}$ has the maximum solution, $\mathbf{a} \cdot \mathbf{x} = \mathbf{b}$, then following hold.

- i) $\mathbf{a} \bullet (\mathbf{a} \ \overline{*} \mathbf{b}) = \mathbf{b}$
- ii) a * b \leq a $\overline{*}$ b
- iii) a $\overline{*}$ (a b) \geq b.

Definition 4.2.1: Let P(X, Y) and Q(Y, Z) be fuzzy relations. Let * be an union preserving operator. Then * - sup composition of P and Q is a fuzzy relation, R(X, Z), defined as follows:

$$P * Q (x, z) = \sup_{y \in Y} \{Q(x, y) * P(z, y)\}$$

Definition 4.2.2: Let P(X, Y), Q(Y, Z) and R(X, Z) be fuzzy relations. Then the equation P * Q = R is called * - sup fuzzy relation equation or fuzzy relation equation with union preserving operator *.

This problem, P * Q = R, can be partitioned into a set of simpler problems $p_i * Q = r_i, \forall i.$

If $p = (p_1, p_2, ..., p_n)$, $Q = (q_{ij})_{n \times m}$ and $r = (r_1, r_2, ..., r_m)$. Let * be an union preserving operator. Then $r_j = \sup_i (q_{ij} * p_i)$

Let $p = (p_1, p_2, ..., p_n)$ and $r = (r_1, r_2, ..., r_n)$. Then $p \le r$ if and only if $p_i \le r_i$, for all i.

We will discuss above equation when Q and r are given.

Theorem 4.2.3 [L]: There exists a solution to fuzzy relation equation p * Q = r if and only if $t * Q \ge r$, where $t = (t_1, t_2, ..., t_n)$ and $t_i = \inf\{q_{ij} \bullet r_j\}$, \bullet is inverse operator of *.

Proof: Suppose t * Q \geq r, where t = (t₁, t₂, ..., t_n) and t_i = inf{q_{ij} • r_j}, • is inverse j

operator of *.

Now $\sup_{i} (q_{ij} * t_i) = \sup_{i} (q_{ij} * inf \{q_{ik} \bullet r_k\})$

$$\leq \sup_{i} (q_{ij} * \{q_{ij} \bullet r_{j}\})$$

≤ ."j

Thus, sup $(q_{ij} * t_i) \le r_j, j = 1, 2, 3, ..., m$

But t * Q \geq r. Therefore, sup $(q_{ij} * t_i) \geq r_j$

Hence,
$$\sup_{i} (q_{ij} * t_i) = r_j, j = 1, 2, ...m$$

Thus, t * Q = r

i. e. t is a solution of equation p * Q = r.

Conversely suppose that t is a solution of equation p * Q = r.

Therefore, t * Q = r

i. e. $\sup_{i} (q_{ij} * t_i) = r_j, j = 1, 2, ...m.$

Thus, $\sup_{i} (q_{ij} * t_i) \ge r_j, j = 1, 2, ...m$

i. e. t * $Q \ge r$

Theorem 4.2.4 [L]: Given Q and r if we define $t_i = \inf_i (q_{ij} \bullet r_j) \forall i = 1, 2, ..., n$, then

 $t = (t_1, t_2, ..., t_n)$ is the maximum solution of the equation p * Q = r.

Proof: Let $u = (u_1, u_2, ..., u_n)$ be a solution of p * Q = r

Then
$$\mathbf{r}_j = \sup_i (q_{ij} * u_i), \forall j$$

Now
$$t_i = \inf_j (q_{ij} \bullet r_j)$$

$$= \inf_{j} \left[q_{ij} \bullet \sup_{k} (q_{kj} * u_{k}) \right]$$

$$\geq \inf_{j} [q_{ij} \bullet (q_{ij} * u_i)]$$

$$\geq \inf \, u_i$$

 $\geq u_i$

Therefore, $t_i \ge u_i$, for all i = 1, 2, 3, ... n.

Thus, $t \ge u$

Let us assume that there exists solutions to the equation p * Q = r so that $t = (t_1, t_2, ..., t_n)$ with $t_i = \inf_j (q_{ij} \bullet r_j) \forall i = 1, 2, ... n$, is the maximum solution. To obtain minimal solution of p * Q = r for p, we shall introduce a matrix $D = (d_{ij})_{n \times m}$ as follows:

$$d_{ij} = \begin{cases} q_{ij} \bullet r_{j}, & \text{if } q_{ij} * t_{i} = r_{j} \\ 0, & \text{otherwise} \end{cases}$$

Here a $\overline{\bullet}$ b is the minimum solution of a * x = b.

We assume that the minimum solution of a * x = b exists.

Theorem 4.2.5 [L]: Define $D^* = (d_{ij}^*)_{n \times m}$ is a submatrix of matrix D, where $d_{ij}^* = d_{ij}^*$ or o. If $\sup_i d_{ij}^* > 0$, for $r_j \neq 0$, j = 1, 2, ..., m, then $A = (a_1, a_2, ..., a_n)$ where $a_i = \sup_i d_{ij}^*$, i = 1, 2, 3, ..., n is a solution of the equation p * Q = r.

Proof: Let $r_j \neq 0$. Then there exists i_0 such that,

* aio

$$d_{ioj} = d_{ioj} > 0$$
Now sup $(q_{ij} * a_i) \ge q_{ioj}$

$$\ge q_{ioj} * sup_i d_{ioj}^*$$

$$\ge q_{ioj} * d_{ioj}^*$$

$$= q_{ioj} * (q_{ioj} \bullet r_j)$$

$$= r_j$$

Now $D = (d_{ij})_{n \times m}$ $d_{ij} = \begin{cases} q_{ij} \bullet r_j, & \text{if } q_{ij} * t_i = r_j \\ 0, & \text{otherwise} \end{cases}$ Therefore, $q_{ij} \bullet r_j = q_{ij} \bullet (q_{ij} * t_i) \le t_i$ Hence, $a_i = \sup_j d_{ij}^* = \sup_j d_{ij}$

 $= \sup_{j} (q_{ij} \bullet r_{j})$ $= \sup_{j} t_{i}$

$$= t_i$$

Thus, $\sup_{i} (q_{ij} * a_i) \le \sup_{i} (q_{ij} * t_i) = r_j, j = 1, 2, ..., m$

i. e. $\sup_{i} (q_{ij} * a_i) \le r_j, j = 1, 2, 3, ..., m$

Hence, $A = (a_1, a_2, ..., a_n)$ is a solution of p * Q = r

Theorem 4.2.6 [L]: If A = $(a_1, a_2, ..., a_n)$ is a solution of equation p * Q = r, then D(A) = $(d(A)_{ij})_{n \times m}$, is a submatrix of D and sup $d_{ij}^* > 0$ for $r_j \neq 0, j = 1, 2, 3, ..., m$,

where

 $d(A)_{ij} = \begin{cases} d_{ij}, & q_{ij} * a_i = r_j \\ 0, & \text{otherwise} \end{cases}$

Proof: Since $t=~(t_1,\,t_2,\,\ldots\,,\,t_n)$ is the maximum solution, $a_i\leq t_i,\,i=1,\,2,\,3,\,\ldots\,,\,n$

Hence,
$$q_{ij} * t_i \ge q_{ij} * a_i$$

i. e. $q_{ij} * a_i \ge r_j$

Now $q_{ij} * t_i = q_{ij} * (\inf_k (r_{ik} * r_k))$

 $\leq q_{ij} * (q_{ij} * r_j)$

 $\leq \dot{r_j}$

Thus, $q_{ij} * t_i = r_j$

Hence, $q_{ij} * t_i = r_j$

Therefore, D(A) is a submatrix of D

If A = $(a_1, a_2, ..., a_n)$ is a solution of p * Q = r, then sup $(r_{ij} * a_i) = r_j$, j = 1, 2, 3, ..., m

.

For $r_j \neq 0$, there exists i_o such that, $r_{i_{oj}} * a_{i_{oj}} = r_j$

Therefore, $d(A)_{i_{oj}} \ge 0$

Hence, $\sup_{i} d(A)_{ij} > 0, j = 1, 2, 3, ..., m$

Theorem 4.2.7 [L]: $\sup_{i} d(A)_{ij} \le a_i$

Proof:

$$d_{ij} = \begin{cases} q_{ij} \bullet r_{j}, & \text{if } q_{ij} * t_{i} = r_{j} \\ 0, & \text{otherwise} \end{cases}$$

Also

$$d(A)_{ij} = \begin{cases} d_{ij}, & q_{ij} * a_i = r_j \\ 0, & \text{othewise} \end{cases}$$

Therefore, $d(A)_{ij} = q_{ij} \bullet r_j$

Since A = $(a_1, a_2, ..., a_n)$ is a solution, $d_{ij}^* = d_{ij}$ or 0 with $a_i = \sup d_{ij}^*$

Therefore, $d(A)_{ij} = q_{ij} \stackrel{-}{\bullet} r_j = q_{ij} \stackrel{-}{\bullet} (q_{ij} * a_i) \le a_i$, for $r_j \ne 0$

Hence, $\sup_{i} d(A)_{ij} \leq a_i$, for r = 1, 2, 3, ..., n

Method for calculating all minimal solutions [L]

Step1: Write the formula P of the matrix by

$$P = II \ (\sum_{i=1}^{n} d_{ij}), \text{ product over } j, r_j \neq 0.$$

 $(If d_{ij} = 0, then omit it)$

Here, ' Σ ' indicates the logical 'or' and 'II' indicates the logical 'and'

Then calculate P in Σ form according to polynomial multiplication as:

$$\mathbf{P}_1 = \Sigma \, \mathbf{d}_{\mathbf{k}1} \mathbf{l}_1 \, \mathbf{d}_{\mathbf{k}2} \mathbf{l}_2 \dots \mathbf{d}_{\mathbf{k}r} \mathbf{l}_r$$

Step 2: 'Multiplicate' for all terms

$$dpq . drs = \begin{cases} max (dpq, drs) & r = p \\ unchanged & otherwise \end{cases}$$

until the term $d_{k111} d_{k212} \dots d_{krlr}$ satisfies $ki \neq kj$ for $i \neq j$

Step 3: 'Sum' among terms $d_1r_1 d_2r_2 \dots d_nr_n - d_1s_1 d_2s_2 \dots d_ns_n$ $= \begin{cases} d_1r_1 d_2r_2 \dots d_nr_n, d_kr_k \le d_ks_k, \ k = 1, \dots, n \\ \text{unchanged, otherwise} \end{cases}$

All the minimal solutions are given by $t^* = (t_1^*, t_2^*, ..., t_n^*)$, where $t_k^* = d_k r_k$,

$$k = 1, 2, 3, ..., n$$

4.3 FUZZY RELATION EQUATIONS WITH INTERSECTION PRESERVING OPERATOR

,

Definition 4.3.1: Let P(X, Y) and Q(Y, Z) be fuzzy relations. Let • be an intersection preserving operator. Then • - inf composition of P and Q is a fuzzy relation, R(X, Z), defined as follows:

$$P \bullet Q (\mathbf{x}, \mathbf{z}) = \inf \{Q(\mathbf{x}, \mathbf{y}) \bullet P(\mathbf{z}, \mathbf{y})\}$$
$$\mathbf{y} \in \mathbf{Y}$$

Definition 4.3.2: Let P(X, Y), Q(Y, Z) and R(X, Z) be fuzzy relations. Then the equation $P \cdot Q = R$ is called $\cdot -$ inf fuzzy relation equation or fuzzy relation equation with intersection preserving operator \cdot .

This problem, $P \bullet Q = R$, can be partitioned into a set of simpler problems $p_i \bullet Q = r_i, \forall i.$

If $p = (p_1, p_2, ..., p_n)$, $Q = (q_{ij})_{n \times m}$ and $r = (r_1, r_2, ..., r_m)$. Let • be an intersection preserving operator. Then $r_j = \inf(q_{ij} \bullet p_i)$, for j = 1, 2, ..., mi.

We will discuss above equation when Q and r are given and give the method for obtaining maximal solutions.

The proofs of the following theorems 4.3.3 to 4.3.7 can be obtained dually from Theorem 4.2.3 to Theorem 4.2.7 respectively.

Theorem 4.3.3 [L]: There exists a solution to fuzzy relation equation $p \bullet Q = r$ if and only if $t \bullet Q \le r$, where $t = (t_1, t_2, ..., t_n)$ and $t_i = \sup\{q_{ij} * r_j\}$, * is inverse operator of \bullet .

Theorem 4.3.4 [L]: Given Q and r if we define $t_i = \sup_i (q_{ij} * r_j), \forall i = 1, 2, ..., n$, then

 $t = (t_1, t_2, ..., t_n)$ is the minimum solution of the equation $p \bullet Q = r$.

Let us assume that there exists solutions to the equation $p \bullet Q = r$ so that $T = (t_1, t_2, ..., t_n)$ with $t_i = \sup_j (q_{ij} * r_j), \forall i = 1, 2, ... n$, is the minimum solution. To obtain maximal solutions of $p \bullet Q = r$ for p, we shall introduce a matrix $D = (d_{ij})_{n \times m}$ as follows:

$$d_{ij} = \begin{cases} q_{ij} \stackrel{\overline{*}}{*} r_j, & \text{if } q_{ij} \bullet t_i = r_j \\ \\ 1, & \text{otherwise} \end{cases}$$

Here a $\overline{*}$ b is the minimum solution of a \bullet x = b.

We assume that the maximum solution of $\mathbf{a} \cdot \mathbf{x} = \mathbf{b}$ exists.

Theorem 4.3.5 [L]: If $D^* = (d_{ij}^*)_{n \times m}$ is a submatrix of matrix D, where $d_{ij}^* = d_{ij}$ or 1, such that $\inf_i d^*_{ij} < 1$, for $r_j \neq 1$; j = 1, 2, ..., m. Then $A = (a_1, a_2, ..., a_n)$ with $a_i = \inf_j d^*_{ij}$, i = 1, 2, 3, ..., n is a solution of the equation $p \bullet Q = r$.

Theorem 4.3.6 [L]: If A = $(a_1, a_2, ..., a_n)$ is a solution of equation $p \bullet Q = r$, then D(A) = $(d(A)_{ij})_{n \times m}$, is a submatrix of D and $\inf_i d^*_{ij} < 1$, for $r_j \neq 1$, j = 1, 2, 3, ..., m,

where

$$d(A)_{ij} = \begin{cases} d_{ij}, & q_{ij} \bullet a_i = r_j \\ \\ 1, & \text{othewise} \end{cases}$$

Theorem 4.3.7 [L]: $\inf_{i} d(A)_{ij} \ge a_i$.

Method for calculating all maximal solutions [L]

Step 1: Write down the formula P of a matrix D as

$$P = II \left(\sum_{i=1}^{n} d_{ij}\right), \text{ product over } j, r_j \neq 0.$$

(If $d_{ij} = 1$ then omit it).

Calculate P in Σ from according to polynomial multiplication :

 $P = \Sigma dk_{111} dk_{212}....dk_{rlr}$

Step 2: 'Multiplicate' for all terms.

dpq drs =
$$\begin{cases} \min(dp, drs) & r = p \\ \text{unchanged} & r \neq p \end{cases}$$

until the term $dk_1l_1 dk_2l_2....dk_rl_r$. satisfies $k_i \neq k_j$, $i \neq j$.

Step 3: 'Sum' among terms

 $d_1r_1 \ d_2r_2 \ d_nr_n \ + d_1s_1 \ d_2s_2 \ d_ns_n$

$$= \begin{cases} d_1 r_1 & d_2 r_2 \dots d_n r_n; d_k r_k > d_k s_k; k = 1; n \\ \text{unchanged} & \text{otherwise} \end{cases}$$

All maximal solutions are

$$T^* = (t_1^*, t_2^*, ..., t_n^*)$$

where $t_{k}^{*} = d_{k r k}^{*}$; k = 1, 2, ..., n.