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CHAPTER 4 FUZZY RELATION EQUATIONS ON UNION AND

INTERSECTION PRESERVING OPERATORS

In this chapter we study union and intersection preserving operators defined on

I and discuss fuzzy relation equations based on these operators.

4.1 UNION AND INTERSECTION PRESERVING OPERATORS:

Definition 4.1.1 [L]: A binary operation * on I is said to be union preserving operator
if
Ha*0=0

2)a*(supb) = sup(a*b),Va b el
ie I iel

Definition 4.1.2[L]: A binary operation e on I is said to be intersection preserving
operator if
1) ael =1

2)ae(infb;) = inf(aeb) Va,bel
ie iel

Theorem 4.1.3 [L]: The union preserving operator * is an order preserving operator.
Proof: Leta, b, ¢ € I and b <c. Then Sup{b, ¢} =c¢

Now a * sup{b, c}=sup{a*b,a* ¢}

i.e.a*c=sup{fa*b,a*c}

Therefore,a *c>a* b.

Theorem 4.1.4[L]: The intersection preserving operator  is an order preserving

operator,
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Proof: Leta,b,c € land b<c. Theninf{b,c} =b
Now a e inf{b, c}=inf{aeb,aec}
i.,e.aeb=inf{aebaec}

Therefore,aeb<aec.

Theorem 4.1.5 [L]: If * is an union preserving operator, then there exists a unique
intersection preserving operator @ such thata * b<cifand onlyifaec>b
Proof: Define a mapping *: I x I — 1 as follows

aec= sup {x}, whereB={x €l] a*x < ¢}
xeB

Sincea*0<0,a*0<c,forallcel

Therefore, 0 € B

i.e.B #¢.

Therefore, B is a bounded subset of [0, 1] bounded by 0 and 1.
Hence, e is well defined.

Leta*b<c.Thenbe B

Therefore,a e ¢ =sup {x}>b
xe B

Thus,aec>b
Converselyletaesc>b. Thena*b<a* (aec)

Nowa*(aec)=a * sup {x}
xeB

= sup (a*x)
xeB

<c

Hence,a* (aec)<c

Therefore,a* b<cifandonlyaec>b



Sincea *1<1,1e€B
Therefore,a* 1 <1 =>ael 21
Hence a o1 =1

Next, we claim that,

ae (mf b;) = inf{a e by)

iel iel

Now a e (inf b)) =a e (inf b)
iel iel

Therefore, a * (ae inf { b;}) < inf {b}< b, Viel
iel iel

iffaeb; > a e (inf by
iel

iff inf(aeb;)>ae(inf by
iel iel

Now inf(aeb;) < ae b, Viel
iel

Therefore, a * inf(a eb) < b, Viel
iel

iff a* (inf (asby)) < inf { b}
iel iel

iff ae inf{b}> inf (aeb)

tel iel

Hence,a e inf { b;} = inf (aeby)
iel iel

Uniqueness: Sincea*b=a*b,ae(a*b)>b
Similarlya * (aec) <c
Suppose #; is any other operator satisfying a ¥ b<c ifand only ifa ; ¢ > b.
Nowa* (ae;jc)<c
Therefore,aec>ae; ¢

Alsoa* (aec)<c
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Hence,aejc>aec

Therefore,a® c=a e, c.

Similarly following result holds.
Theorem 4.1.6 [L]: If » is an intersection preserving operator, then there exists a
unique union preserving operator * satisfying a * b<cifand onlyifaec>b, V a, b,
c, el
Proof: Define a mapping *: I x I — I as follows

a*b= inf {x}, whereC={x|aex 2b}.
xeC

Theorem 4.1.7 [L]: Let a, ¢ € 1. If the equation a * x = ¢ has at least one solution, then
there exists an intersection preserving operator ¢ such that a e ¢ is the maximum
solution of a * x =c.

Proof: Let x be a solution of the equationa * x =c. Thena * x <c.

Therefore, by above Theorem 4.1.5, there exists an intersection preserving operator o
suchthata e c > x

Thena*x<a*(aec)

Therefore,c<a* (aec)<c

Hence,a*(aec)=c¢

Let d € I be a solution ofa * x=c.

Thena*d<c

Therefore, (a® c) > d.

Similarly we prove the following:
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Theorem 4.1.8 [L]: Let a, b € L. If the equation a ¢ x = b has at least one solution,
then there exists an union preserving operator * such that a * b is the minimum

solutionofaex=bh.

Definition 4.1.9 [L]: Operators * and e defined in the above Theorems 4.1.5 are called

inverse operator of each other.

Theorem 4.1.10 [L]: If the equation a * x = ¢ has the minimum solution, a e c, then
following hold.

iya*(a eC)=c

ii)asc>a e ¢

fi)a e(a*c)<c

Proof: We only prove (iii)

iii) Since a e ¢ is a minimum solution of a * x = c,a e (a * ¢) is @ minimum solution
ofa*x=a*c

Also cisasolutionofa* x=a*¢

Hence, a o (a*c)<c.

Similarly we prove the following:
Theorem 4.1.11 [L]: If the equation a e x = b has the maximum solution, a * b, then
following hold.
yae(a *b)=b
iya*b<a *b

iiiya *(aeb)2b.
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4.2 FUZZY RELATION EQUATIONS WITH UNION PRESERVING OPERATOR:

Definition 4.2.1: Let P(X, Y) and Q(Y, Z) be fuzzy relations. Let * be an union
preserving operator. Then * - sup composition of P and Q is a fuzzy relation, R(X, Z).
defined as follows:

P *Q (x,z) = sup {Q(x,y) * P(z, y)}
yeyY

Definition 4.2.2: Let P(X, Y), Q(Y, Z) and R(X, Z) be fuzzy relations. Then the
equation P * Q = R is called * - sup fuzzy relation equation or fuzzy relation equation

with union preserving operator *.

This problem, P * Q = R, can be partitioned into a set of simpler problems
pi*Q=r, Vi
If p=(p1, P2, ---> Pn)» Q =(qjj) nxm and r = (11, Iz, ..., Iy). Let * be an union

preserving operator. Then r; = sup(q; * pi)
i.

Let p=(p1, p2, ..., pn) and r = (11, 12, ..., ). Thenp <rifand only if p; <, for

all i.

We will discuss above equation when Q and r are given.
Theorem 4.2.3 [L]: There exists a solution to fuzzy relation equation p * Q =r if and

onlyift * Q >, where t = (13, ta, ..., t;) and t; = inf{qj; ® r;}, @ is inverse operator of *.
j

Proof: Suppose t * Q >r, where t = (t, t, ..., ty) and t; = inf{q;; ® r;}, ® is inverse
j

operator of *,

Now sup(qi * t) = sup(qy * inf {qi ® r})
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IA

sup(qs * {qs * 1})

< 7

Thus, sup (g5 * t) <1,j=1,2,3,..,m
But t * Q > r. Therefore, sup (q5 * ti)) 21
Hence, sup (g *t)=r1,j=1,2,..m

Thus,t*Q =1
i. e. tis a solution of equationp * Q =r.
Conversely suppose that t is a solution of equationp * Q =r.

Therefore, t * Q =r

Le sup(g* t) =1,j=1,2,..m.
Thus, sup(g; * t;) >21;,j= 1,2, ..m

et ¥Q2>r

Theorem 4.2.4 [L]: Given Q and rif we define t; = inf (g5 e r)) Vi=1, 2, ... n, then
J

t=(t1, t2, ... , tn) is the maximum solution of the equation p * Q =r.
Proof: Letu= (uj, uy, ..., u,) beasolutionofp®* Q=r

Thenr; = sup(q5 * w), Vj
Now t; = inf (g *1;)

3
= Hif [gs Sgp (i * w]

> Hif [q5 ® (g5 * w)]

v

in_fu;
]
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2y
Therefore, t; > u;, foralli=1,2,3,...n.

Thus,t>u

Let us assume that there exists solutions to the equation p * Q = r so that

t=(t, tz, ..., tay with t; = inf (g ® ;) Vi=1,2, ... n, is the maximum solution . To
3

obtain minimal solution of p * Q =r for p, we shall introduce a matrix D = (d;j) nxm as
follows:

g * T, if i * ti = 1;
dij =

0, otherwise

Here a e b is the minimum solution of a * x = b.

We assume that the minimum solution of a * x = b exists.

Theorem 4.2.5 [L]: Define D* = (d;j*)a x m is @ submatrix of matrix D, where dy* = d;;

or o. Ifsup d; >0, for j # 0,j=1,2,..,m then A = (ay, a, ... , a,) where

*

a;=supd; ,i=1,2,3,..,n isasolution of the equation p*Q = r.
i

i
Proof: Let r; # 0. Then there exists i, such that,
d:oj = dioj >0

Now SIin (g5 * a) 2 Qi * aio

> * supd;,

2 Qioj * di‘oj

= Gioj * (Qioj ® ;)
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Now D = (dij)nxm
dij . L, ifqij 1= T
dij =
0, otherwise

Therefore, g ® 1;= qj o (g * 1) <t;

Hence, a; =supd;* = supd;
j i

= sup(qj * 1)
3

= supt;
J

Thus, sup (g5 * &) < sup(qz *t) =1, j=1,2, ..., m
i.e.sup(qz*a)<r,j=1,23,..,m

Hence, A=(a;, a3, ..., a,) isa solutionof p*Q=r

Theorem 4.2.6 [L]: If A =(ay, az, ... , an) is a solution of equation p * Q =r, then

D(A) = (d(A))axms is a submatrix of D and sup d; >0 forrn#0,j=123,.,m,

where
ds, i *ai=r
d(A); =
0, otherwise
Proof: Sincet= {ty, ta, ..., t,) is the maximum solution, a; <t;,i=1,2,3, ..., n

Hence, q; * t; = q; * &

ieqgj*az>r

Now g5 * ti = g5 * (inf (ri * 1)

< i * (g5 * 1))
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S ¢
Thus, g * ti =1
Hence, g * t; = 1
Therefore, D(A) is a submatrix of D
IfA=(a. as, ...,ay) isasolutionof p* Q=r, thensqp(rij *a)=r,j=1,2,3,...,m
For rj # 0, there exists i, such that, r; *a, =r;

Therefore, d(A); 20

Hence, squ(A)ij >0,j=1,2,3,...,m

Theorem 4.2.7 [L]: supd(A); < a;
i

Proof:
q * T if g * ti=1
dij
0, otherwise
Also
d» i * & =T
d(A)y =
0, othewise

Therefore, d(A); = qy ® T

Since A = (ai, a, ... , an) is a solution, dg* = dj or 0 with a; = supd;*

Therefore, d(A);y = qj; . Tj = Qi . (qi *a) sa, forr; =0

Hence, sup d(A)y <a,for r=1,2,3,...,n
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Method for calculating all minimal solutions [Lj]

Stepl: Write the formula P of the matrix by

P =1l (Z d;), product over j, r; # 0.

1
(If d; = 0, then omit it)

Here, ‘T’ indicates the logical ‘or’ and ‘II’ indicates the logical ‘and’
Then calculate P in T form according to polynomial multiplication as:
Py =Z diuhi diol . dik

Step 2: ‘Multiplicate’ for all terms

max (dpq,drs) r=p

dpq.drs = .
unchanged otherwise

until the term dii; diorz ... dieir - satisfies kizkj for i#
Step 3: ‘Sum’ among terms

d]l‘; dzrz... dnl'n - d;Sl szz ..... dnSn

{dll'x dors ... dnrn, dkrkﬁdksk, k= I,...,n

unchanged, otherwise
All the minimal solutions are given by t* = (t, t;, ..., t. ), where t = diry,

k=1,2,3,...,n
4.3 FUZZY RELATION EQUATIONS WITH INTERSECTION PRESERVING OPERATOR

Definition 4.3.1: Let P(X, Y) and Q(Y, Z) be fuzzy relations. Let e be an intersection
preserving operator. Then e - inf composition of P and Q is a fuzzy relation, R(X, Z),
defined as follows:

PeQ(x,2)= inf {Q(x, y) ® P(z y)}
veY
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Definition 4.3.2: Let P(X, Y), Q(Y, Z) and R(X, Z) be fuzzy relations. Then the
equation P @ Q = R is called o - inf fuzzy relation equation or fuzzy relation equation

with intersection preserving operator e.

This problem, P » Q = R, can be partitioned into a set of simpler problems

pi.Q=ri’Vi'

Ifp=(p1, P2 --+» Pu)s Q = (Qij) nxmand r =(ry, 13, ..., ). Let @ be an

intersection preserving operator. Thenr; = inf{q; ® p;), forj=1,2, ..., m
i

We will discuss above equation when Q and r are given and give the method
for obtaining maximal solutions.
The proofs of the following theorems 4.3.3 to 4.3.7 can be obtained
dually from Theorem 4.2.3 to Theorem 4.2.7 respectively.
Theorem 4.3.3 [L]: There exists a solution to fuzzy relation equation p ¢ Q =r if and

only ift ®« Q <r, where t = (t4, ty, ..., to) and t; = sup{q; * r;}, * is inverse operator of s,
j

Theorem 4.3.4 [L]: Given Q and r if we define t; = sup(qy * 1), Vi=1,2, ... n, then
j

t=(t1, tz, ... , tn) is the minimum solution of the equationp e Q =r.

Let us assume that there exists solutions to the equation p « Q = r so that

T={(t1, ta, ..., ta} Withti = sup(qs * rj), Vi=1, 2, ... n, is the minimum solution . To
j

obtain maximal solutions of p  Q = r for p, we shall introduce a matrix D = (dj) nxm

as follows:
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G * 1 if qj e ti =1
1, otherwise

Here a * b is the minimum solution ofa  x = b.

We assume that the maximum solution of a e x = b exists.
Theorem 4.3.5 [L]: If D* = (dij*)nxm is @ submatrix of matrix D, where d* = d; or 1,

such thatinf d;; < 1, for fj # 1;j = 1, 2, ..., m. Then A = (aj, a, ... , a,) with

ai=infd} ,i=1,2,3,..,n isasolution of the equation pe Q = r.
J

g

Theorem 4.3.6 [L]: If A= (aj, az, ... , ay) is a solution of equation p ® Q =r, then

D(A) = (d(A)y)nxm, is a submatrix of D and inf dj < 1,forr=1,j=1,2,3,.,m,

where
dj, Q5 ® & =1j

d(A); =
1, othewise

Theorem 4.3.7 [L]: inf d(A); > a;.

Method for calculating all maximal solutions [L]

Step 1: Write down the formula P of a matrix D as

P=1I (Z dij), product over j, 1; # 0.

i1

(If dij = 1 then omit it).

Calculate P in £ from according to polynomial multiplication :
P = Z dky dkap.....dKker.

Step 2: ‘Multiplicate’ for all terms.



min( dp, drs) r=p
unchanged = r#p

dpgdrs = {
until the term dk;l; dkal,.....dkl,. satisfies ki #k;, 1#].
Step 3: ‘Sum’ among terms
dir; dors dorn T diSy dasy disg

n'n?’

_|din dyr,dyrsder > dys, s k=1;n
unchanged otherwise

All maximal solutions are
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