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CHAPTER 1 PRELIMINARIES
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In this chapter we discuss some basic definitions and results in fuzzy set theory, 

which will be used in the remaining part of the dissertation.

1.1 FUZZY SETS:

Throughout this work X stands for the universal set and I for the unit interval of 

reals [0, 1].

Definition 1.1.1 [Di, D2, K2, R]: Let X be the universal set. A fuzzy set A in X is a 

function A: X I.

The set of all fuzzy sets of X is denoted by F(X)

Remark 1.1.2: Clearly every set can be considered as a fuzzy set by identifying it with 

its characteristic function, when it is necessary to distinguish a set from a “proper” 

fuzzy set it will be called a crisp set.

Definition 1.1.3 [Dj, D2, KJ: Let A and B be two fuzzy sets in X

(i) A fuzzy set A is a subset of fuzzy set B if, A (x) < B (x), Vx e X and is denoted 

by A c B.

(ii) A fuzzy set A is said to be a proper subset of frizzy set B, if A(x) < B(x), V x e X, 

and is denoted by A c B.

(iii) A fuzzy set A is equal to a fuzzy set B, if A(x) - B(x), V x e X.
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Remark 1.1.4: The inclusion relation ‘cr’ defined in the Definition 1.1.3 is a 

partial order relation on F(X).

Definition 1.1.5 [Di, D2, K2]: Let A and B be two fuzzy sets in X.

(i) The union of fuzzy sets A and B is a fuzzy set, A u B, in X defined as 

A u B(x) = max{A(x), B(x)} , V x e X.

(ii) The intersection of fuzzy sets A and B is a fuzzy set, A n B, in X defined as 

A n B(x) = min{A(x), B(x)} , V x e X.

Union and intersection of fuzzy sets can be easily extended for infinite fuzzy 

sets by replacing max and min by supremum and infimum respectively.

Definition 1.1.6 [Di, D2, K2]: Let A be a fuzzy set in X. The complement of A is a 

fuzzy set, A', in X defined as A '(x) = 1 - A(x), V x 6 X.

Definition 1.1.7 [K2]: Let A be a fuzzy set in X and a e I. Then the a - cut of A is 

defined as a crisp set {x e X | A(x) > a}.

We shall denote it by “A.

Thus, “A = {x 6 X | A(x) > a}

Definition 1.1.8 [K2]: Let A be a fuzzy set in X and a e I. The strong (strict) a-cut of 

A is defined as a crisp set {x e X | A(x) > a}.

We shall denote it by a+A.

Thus, a+A = (x e X | A(x) > a}
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Definition 1.1.9 [K2]: Let A be a fuzzy set in X. The support of A is a crisp set, 

{x € X | A(x) > 0},

We shall denote it by Supp(A).

Thus, Supp(A) = {x e X | A(x) >0}.

Definition 1.1.10 [K2]: The sup{A(x) | x e X} is called the height, h(A), of a fuzzy set

A.

Thus, h(A) = sup {A (x)}
x e X

When {A(x) | x e X} is finite, the height of A, h(A), is the maximum value 

attended by A.

Definition 1.1.11 [K2]: A fuzzy set A is said to be normal if, h(A) = 1. Otherwise it is 

called subnormal.

Theorem 1.1.12 [K2]:Let A, B e F(X). Then, for all a, (3 € I

i) a+ A c aA

ii) a < P ^ PA c aA and fJ+A c a+A

iii) a(An B)=“An aB

iv) a(A u B) =aAu aB

v) a+(AnB) =a+Ana+B

vi) a + (AuB) =a+Aua+B

vii) a(A') = ((1‘a>+A)'.
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Theorem 1.1.13 [X2]: Let A, B e F(X). Then, for all a e I

i) A c B if and only if “A c “B

ii) A c B if and only if tt+A c a'B

iii) A = B if and only if “A = “B

iv) A = B if and only if a+A = a+B.

Definition 1.1.14 [K2]: Let X and Y be two non-empty sets and let f: X -» Y be a 

function. Then f: F(X) -» F(Y) and f: F(Y) —> F(X) are defined as follows:

i) f(A)(y) = sup (A(x)}, VAeF(X)
X | V = fi^x)

ii) f’1(B)(x) = B(f(x)), V B e F(Y).

Definition 1.1.15 [K2]: Let A be a fuzzy set in X and a e I. Define a fuzzy set aA in 

X as:

aA(x) = a, if A(x) > a 

= 0, otherwise

Theorem 1.1.16 [K2]: (First Decomposition Theorem) If A e F(X), then 

A = VJ{aA | a e I}, where u denotes union of fuzzy sets.



1.2 TRIANGULAR NORMS:
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Union and Intersection of fuzzy sets defined in the Definition 1.1.5 was 

introduced by Zadeh in 1965. There are several ways to generalize these concepts with 

the help of triangular norms.

Definition 1.2.1 [F, K2, M]: A binary operation T on I is said to be a triangular norm 

or t-norm, if for all x, y, z e I

i) T(T(x, y), z) = T(x, T(y, z)) (Associative Law)

ii) T(x, y) = T(y, x) (Commutative Law)

iii) y < z => T (x, y) < T(x, z) (Monotonicity)

iv) T(x, 1) = x (Boundary condition)

Definition 1.2.2 [F, K2, M]: A binary operation S on I is said to be a triangular 

conorm or t-conorm, if for all x, y, z e I

i) S(S (x, y), z) = S (x, S(y, z)) (Associative Law)

ii)S(x,y) = S(y, x) (Commutative Law)

iii) y < z S(x, y) < S(x, z) (Monotonicity)

iv) S(x, 0) = x (Boundary condition)

Theorem 1.2.3 [K2]: Minimum is the largest t-norm and maximum is the smallest 

t-conorm.

Theorem 1.2.4[F]: Let T: I x I —» I. Define T I x I -» I by T '(x, y) = l-T(I-x,l-y), 

V x, y e I. Then T is a t-norm if and only if T ' is a t-conorm.



Proof: Let x, y, z e I.

(i) T' (T' (x, y), z) = T ' (1 - T (1 - x, 1 - y), z)

- 1 - T (1-(1 - T (1 - x, 1 - y)), 1 - z)

= 1-T( T(1 - x, 1 - y), 1 - z)

Now, T ' (x, T' (y, z)) = T ' (x, 1 - T (1 - y, 1 - z))

= 1 - T(1 - x, T(I - y,l - z))

= 1 - T(T(1 - x, 1 - y), 1 - z) By associativity of T

Thus, T ' (T ' (x, y), z) = T ' (x, T ' (y, z))

(ii) T ' (x, y)= 1 - T (i - x, 1 - y)

= 1 - T (I - y, 1 - x) By commutativity of T

= T ' (y, x)

(iii) Since y < z, 1 - y > 1 - z

=> T(1 - x, 1 - y) > T (1 - x, 1 - z)

1 -T(l -x, 1 -y)<l - T (1 -x, 1 -z)

T ' (x, y) < T ' (x, z)

(iv) T ' (x, 0) = 1 - T(1 - x, 1 - 0)

= 1 - T(1 - x, 1)

= l-0-x)

= x

Hence, T ' is a t-conorm on I

Similarly we prove the converse.

Definition 1.2.5[F]: T and T ' defined in the Theorem 1.2.4 are called dual of each
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other.
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Following are some triangular norms with their duals:

Example 1.2.6: (i) Ti (x, y) = min (x, y), Ti '(*, y) = max (x, y)

(ii) T2 (x, y) = x - y, T2 '(x, y) = x + y - x • y.

(iii) I3 (x, y) = max (0, x + y - 1), T3 ’(x, y) = min (1, x + y).

Definition 1.2.7 [K2]: Let T be a continuous t-norm. Then define wt: I x I -» I as 

follows:

wx(a, b) = sup{x € I | T(a, x) < b},V a, b e I

Theorem 1.2.8 [K2]: Let a, aj, b, c e I. Then

i) T(a, b) < c if and only if wT (a, c) > b

ii) wt (wj (a, b) b) > a

iii) wT (T (a, b), c) = wT (a, wT (b, c))

iv) a < b => wT (a, c) > wt (b, c) and wt (c, a) < wt (c, b)

v) T(wt (a, b), wT (b, c)) < wT(a, c)

vi) wt (inf aj, b) > sup WT(aj, b)
j j

vii) wt( sup aj, b) = inf WT(aj, b)
j j

viii) wT (b, sup aj) > sup wT(b, aj)
j j

ix) wt (b, inf aj) = inf WT(b, aj)
j j

x) T (a, wT(a, b)) < b

xi) wT(a, T(a, b)) > b
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Definition 1.2.9[F|: Let S be a continuous t-conorm. Then define cos: I x I -> I an 

operator as follows: oos(a, b) = inf{x g I | S(a, x) > b},V a, b e I

Theorem 1.2.10 [K2]: Let a, aj, b, c g 1. Then

i) S(a, b) > c if and only if ©s(a, c) < b

ii) cos ((Os (a, b) b) < a

iii) (Os (S (a, b), c) = (0S(a, (os(b, c))

iv) a < b (Os (a, c) > (Os (b, c) and o>s(c, a) < (0s( c, b)

v) (os (inf aj, b) = sup ©s(aj, b)
j j

vi) (Os (sup aj, b) < inf (Os(aj, b)
j j

vii) (Os (b, sup aj) < sup (Os(b, aj)
j j

viii) (Os (b, inf aj) < inf (Os(b, aj)
j j

ix) S(a, (Os (a, b)) > b

x) (Os (a, S(a, b)) < b

xi) cos (a, b) < max (a, b).

Proof: i) Let S(a, b) > c. Then b e {x g I | S(a, x) > c}

Therefore, b > inf {x g I i S(a, x) > b}

Hence, b > ©s (a, c)

Conversely let b > ©s (a, c). Then S(a, cos (a, c)) < S(a, b).

S(a, (Os (a, c)) = S(a, inf (x g I | S(a, x) > c}) = inf { S(a, x) | S(a, x) > c} > c 

Hence, S(a, b) > c.

ii) S((0s (a, b) a) = S(inf {x g I | S(a, x) > b}, a) = inf {S(a, x) | S(a, x) > b}> b.
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Therefore, by (i), ©s (©s (a, b) b) < a

iii) S(a, x) > cos(b, c) oS(b, S(a, x)) > c <=> S(S(a, b), x) > c o ©s(S (a, b), c) < x 

Thus, ©s(a, ©s(b, c)) = inf {x e I | S(a, x) > ©s(b, c)}

= inf {x e I | x > ©s(S(a, b), c)}= ©s (S (a, b), c).

iv) Let a < b. Then S(a, x) < S(b, x).

Therefore, {x e I | S(a, x)>c}c{xel | S(b, x) > c}

Thus, inf{x e I | S(a, x) > c}> inf{x g I | S(b, x) > c}

Hence, o>s (a, c) > ©s (b, c).

Now {x g I | S(c, x) > b}c{x g I | S(c, x) > a}

Thus, inf{x g I | S(c, x) > b}> inf{x g I | S(c, x) > a}

Hence, ©s (c, b) > ©s (c, a).

v) inf aj < aj, for all j
j

Thus, ©s (inf aj, b) > ©s(aj, b), for all j
j

Therefore, ©s (inf aj, b) > sup ©s(aj, b)
j j

Conversely sup ©s(aj, b) > ©s(aj, b), for all j
j

Therefore, S(aj, sup ©s(aj, b)) > b, for all j
j

Thus, inf S(aj, sup ©s(aj, b)) > b
j i

Then, S(inf aj, sup ©s(aj, b)) > b
j j

Therefore, ©s(inf aj, b) < sup ©s(aj, b)
j j

vi) sup aj > aj, for all j
j

Thus, ©s (sup aj, b) < ©s(aj, b), for all j
j
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Therefore, ©s (sup aj, b) < inf «s(aj, b)
j j

vii) sup aj > aj, for all j
j

Thus, tos (b, sup aj) > cos(b, aj), for all j
j

Hence, ©s (b, sup aj) > sup cos(b, aj) 
j J

Next sup tos (b, aj) > ©s(b, aj), for all j
j

Therefore, S(b, sup ©s(b, aj)) > aj, for all j
j j

Thus, S(b, sup ©s(b, aj)) > sup aj,
j j

Therefore, cos(b, sup aj) < sup ©s(b, aj)
j j

viii) inf aj < aj, for all j
j

Thus, cos (b, inf aj) < ©s(b, aj), for all j
j

Therefore, ©s (b, inf aj) < inf cos(b, aj)
j i

ix) Since ©s (a, b) < ©s (a, b), S(a, ©s (a, b)) > b.

x) Since, S(a, b) > S(a, b), ©s (a, S(a, b)) < b

xi) Since b < max {a, b), ©s(a, b) < ©s(a, max (a, b)) and 

max (a, b}< max{a, max (a, b}}

Now ©s(a, max (a, b)) < ©s(a, max{a, max{a, b}}) < max (a, b) (By property x)

Thus, ©s(a, b) < max (a, b).
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Theorem 1.2.11 [F]: Let S be the dual of a t-norm T. Then ct>s(a, b) = 1- wt(1- a, 

1-b), for all a, b e I.

Example 1.2.12: Let Ti, T2, T3, Tf, T2', T3' be the triangular norms given in the

Example 1.2.6. Then

wji (a, b)

wt2 (a, b)

ifa<b 

ifa> b

if a < b 

ifa> b

wx3 (a, b)
"l, ifa<b 

b-a+ 1, ifa>b

cosi(a,b) =

®S2 (a, b) =

0, if a > b 

b, if a < b

0, if a > b

b-a/(l-a), ifa<b

toS3 (a, b) =
0,

i b a,

if a > b 

ifa < b


