CHAPTER 3

1

٠

r

GENERALISED BI-IDEALS IN NEAR-RINGS

CHAPTER III GENERALISED BI-IDEALS IN NEAR-RING 5

§ 3.0 Introduction:

Throughout this chapter N denotes a right near-ring. The concept of bi-ideals in near-ring was introduced by T. Tamizh chelvam and N. Ganesan [3]. Generalization of bi-ideals in near-rings is done in this chapter, we name it generalized bi-ideal.

In § 3.1 we define a generalised bi-ideal in N and study some examples § 3.2 deals with the study of some properties of generalised bi-ideals. Mainly it is shown that in a zero-symmetric nearring N, a semigroup G of N is a generalised bi-ideal if and only if $GNG \subseteq G$.

. Also in case of generalised bi-ideals we prove:

Result 1	:	Set of all generalised bi-ideals in N forms a Moore
		system in N.

Result 2 : Intersection of generalised bi-ideal G subnear-ring S of N is generalised bi-ideal of S.

In 3.2.6. We define G.B. simple near-ring and give the

following result.

Result 3 : Let N be a near-ring with more than one element. Then the following conditions are equivalent :

- (i) N is a near-field
- (ii) N is G.B. simple, $N_d \neq \{0\}$ and for $0 \neq n \in N$ there exists **q** element $n' \in N$ such that $n'.n \neq 0$.

[]

§ 3.1 Definition and examples :

In this section we define generalised bi-ideal and give some examples of generalised bi-ideal in a near-ring N.

Definition 3.1.1 :

Let $\langle N, +, . \rangle$ be a near-ring. A non-empty subset G of N is called generalised bi-ideal if it satisfies the following conditions.

(1)
$$a+b\in G$$
, $\forall a,b\in G$

$$(2) \operatorname{GNG}_{\frown} (\operatorname{GN}) * \operatorname{G}_{\subseteq} \operatorname{G}$$

Some examples of generalised bi-ideals of near-ring are given below.

Example 3.1.2 : (Pilz, page - 408)

Consider the near-ring $N=\{0, a, b,c\}$ with addition and multiplication defined by the Cayley tables.

0 0 a b c 0 0 0 0 0 a a 0 c b a 0 b 0 b b b c 0 a b 0 0 0 0	+	0	a	b	С	•	0	a	b	с
a a 0 c b b b c 0 a b b c 0 a b b c 0 a	0	0	a	b	С	0	0	0	0	0
b b c 0 a b 0 0 0 0	a	a	0	С	b	a	0	b	0	b
	b	b	с	0	a	b	0	0	0	0
	c	С	b	а	0	с	0	b	0	b

Let $G = \{0,a\}$. Here G is generalised bi-ideal of N.

Example 3.1.3 : (Clay, 2.2, 13)

Consider the near-ring $N=\{0,a,b,c\}$ with addition and multiplication defined by the following tables.

:	+	0	a	b	с		0	а	b	с
	Ó	0	a	b	с	0	0	0	0	0
	a	a	0	с	b	a	0	а	b	с
	b	b	c	0	a	b	0	0	0	0
	c	с	b	а	0	с	0	a	b	с
	.	•								
	×.,	•								

Let $G = \{0,b\}$. Here G is a generalised bi-ideal of N.

[]

From the definition of bi-ideal of a near-ring (see 0.1.13) and the definition of generalised bi-ideal (by 3.1.1) it is clear that every bi-ideal in a near-ring is a generalised bi-ideal. But converse need not be true. This is established in the following example.

Example 3.1.4 :

Consider the set M of all 2x2 matrices over the set of all integers. M is a near-ring w.r.t. matrix addition and matrix multiplication. Let $A = \{ \begin{bmatrix} \alpha & 0 \\ 0 & 0 \end{bmatrix} / a$ is positive integer $\}$. It can be easily shown that A is a generalised bi-ideal. But $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \notin A$. Hence A is not a bi-ideal.

[]

By the definition of an ideal in a near-ring (see 0.1.10) it is clear that every ideal in a near-ring is a generalised bi-ideal. But converse need not be true. This is proved in the following example.

Example 3.1.5 :

In example 3.1.4 Consider $A = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} / a \text{ is positive integer} \right\}$. A is generalised bi-ideal of N. But as, $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \notin A$. Hence A is not an ideal of N.

We know that every quasi-ideal (see Def.0.1.14) in a nearring is a bi-ideal (see Result 0.2.10) and every bi-ideal in a near-ring is a generalised bi-ideal. Hence every quasi-ideal in a near-ring is a generalised bi-ideal. But converse need not be true. This is proved in the following example.

Example 3.1.6 : (Pilz, page - 408)

Let $N = \{ 0,a,b,c \}$ be the near-ring defined by the Cayley tables.

		a	b	С	•	0	а	b	С
0	0	a	b	С	0	0	0	0	0
a	a	0	с	b	a	0	b	0	b
b	b	с	0	a	b	0	0	0	0
с	c	b	а	0	c	0	b	0	b

Let $G=\{0,a\}$. G is a generalised bi-ideal of N.

For $a \in G$, $a \in N$, $b=a.a \in GN$

For $a \in G$, $a \in N$, $b=a.a \in NG$

and b=a.a = a.(0+a) = a.(0+a)-0

 \square

 $= a.(0+a) - a.0 \in N^*G , \quad \text{For } a, 0 \in N, a \in G$ Hence $b \in GN \cap NG \cap N^*G$ But $b \notin G$. Hence $GN \cap NG \cap N^*G \not\subset G$ Therefore, G is not a quasi-ideal in N.

3.2 Properties of generalised bi-ideal :

In this section we collect some properties of generalised biideal of a near-ring N.

Result 3.2.1 : The set of all generalised bi-ideal of a near-ring N form a Moore system on N.

Proof : By definition of generalised bi-ideal of N. N itself is a generalised bi-ideal. Let $\{G_i\}_{i \in I}$ be a set of generalised bi-ideals in N. Let $G = \bigcap_{i \in I} G_i$. Obviously G is closed w.r.t addition. Since $G \subseteq G_i$ for every $i \in I$. Therefore $GNG \cap (GN) * G \subseteq G_iNG_i \cap (G_iN) * G_i \subseteq G_i$ for every $i \in I$. [Since each G_i is a generalised bi-ideal]

Therefore GNG \cap (GN) *G $\subseteq \cap_{i \in I} G_i$

Therefore $GNG \cap (GN)^* G \subseteq G$

Hence G is a generalised bi-ideal of N. Therefore the set of all generalised bi-ideals of a near-ring N form a Moore system on N.

Result 3.2.2: If G is a generalised bi-ideal of a near-ring N. S is a sub near-ring of N. then $G \cap S$ is a generalised bi-ideal of S.

 \Box

Let $C=G \cap S$.

Since S is a subnear-ring of N. Therefore $\langle S, + \rangle$ is a subgroup of $\langle N, + \rangle$

Let $a,b \in C = G \cap S$

.

Therefore $a, b \in G$ and $a, b \in S$

Therefore $a+b \in G$ and $a+b \in S$

Therefore $a+b\in G \cap S \forall a, b\in G \cap S$

Hence $a+b \in C$, $\forall a, b \in C$ (1)

Now CSC \cap (CS) *C = (G \cap S) S (G \cap S) \cap ((G \cap S)S)*(G \cap S)

 $\subseteq GSG \cap S \cap (GS) * G [Since G \cap S \subseteq G, G \cap S \subseteq S]$ $\subseteq GSG \cap (GS) * G \cap S$ $\subseteq G \cap S = C$ Therefore $CSC \cap (CS) * C \subseteq C$ ------ (2) Hence form (1) and (2) . C is a generalised bi-ideal of S. Therefore , G \cap S is a generalised bi-ideal of S.

A necessary and sufficient condition for a semigroup G of N to be a generalised bi-ideal is given in the following result.

<u>Result 3.2.3</u>: Let N be a zero-symmetric near-ring. A semigroup G of N is a generalised bi-ideal iff GNG \subseteq G.

Proof :- For a semigroup G of <N, +>

First suppose that $GNG \subseteq G$.

Since , $GNG \cap (GN) *G \subseteq GNG \subseteq G$ Hence , $GNG \cap (GN) *G \subseteq G$ Therefore G is a generalised bi-ideal of N.

Conversly suppose G is a generalised bi-ideal of N.

Therefore, $GNG \cap (GN) * G \subseteq G$.

•

Let $n.g \in NG$

Therefore $n.g = n.(0+g) + 0 = n.(0+g) - n.0 \in N*G$

[Since N is a zero symmetric near-ring, therefore $n.0=0 \forall n \in N$]

Therefore $NG \subseteq N^*G$.

We get $GNG = GNG \cap GNG \subseteq GNG \cap (GN) *G \subseteq G$. Therefore $GNG \subseteq G$.

In the following result we give a property of a generalised bi-ideal in a zero-symmetric near-ring.

Result 3.2.4: Let N be a zero -symmetric near-ring. If G is a generalised bi-ideal of N. then Gn and n'G are generalised bi-ideals of N where n, $n' \in N$ and n' is distributive element in N.

Proof: Let $x \in G$, $y \in G$. Therefore $x+y \in G$.

Therefore $x.n \in Gn$ and $y.n \in Gn$.

Therefore $x.n + y.n = (x+y).n \in Gn$.

Therefore Gn is closed w.r.t. addition. And GnNGn \subseteq GNGn \subseteq Gn [Since G is a generalised bi-ideal, therefore from Result 3.2.3 GNG \subseteq G and nN \subseteq N] Therefore from result 3.2.3 Gn is a generalised sed bi-ideal of N.

Since n' is a distributive element in N.

•

Therefore n'(a+b) = n'.a+n'.b, $\forall a, b \in N$.

Let x , y \in G. Therefore x+y \in G. Hence n'.x+n'.y= n' (x+y) \in n'G [Since n' is a distributive element in N.]

Thus n'G is closed w.r.t. addition and n'GNn'G \subseteq n'GNG \subseteq n'G [Since N is zero -symmetric near-ring and G is a generalised bi-ideal of N, therefore from Result 3.2.3 GNG \subseteq G and Nn' \subseteq N.]

Therefore from result 3.2.3 n'G is a generalised bi-ideal of N.

As a corollary of Result 3.2.4 we get.

Corollary 3.2.5 : Let G be a generalised bi-ideal of a zero-symmetric near-ring N. b is a distributive element in N then bGc is a generalised bi-ideal of N, where $c \in N$.

Proof: Since G is a generalised bi-ideal of a zero symmetric near-ring N. Therefore from result 3.2.4 Gc is a generalised bi-ideal where $c \in N$ Again bGc is a generalised bi-ideal of N, where b is a distributive element in N.

Now we define G.B. simple near-ring and give necessary and sufficient condition for a near-ring to be a near-field.

Definition 3.2.6 :

A near-ring N is said to be G.B- simple if it has no proper generalised bi-ideals

<u>Result 3.2.7</u>: Let N be a near-ring with more than one element. Then the following conditions are equivalent.

(I) N is a near-field.

(2) \tilde{N} is G.B. simple, $N_d \neq \{0\}$ and for $0 \neq n \in N$ there exists an element $n' \in N$ such that $n'n \neq 0$.

Proof:

 $(I) \Rightarrow (ii)$

Let N be a near-field. To pove that N is G. B. simple. i.e To prove that {0} and N are the only generalised bi-ideals of N.

If $\{0\} \neq B$ is a generalised bi-ideals of N, then for $0 \neq b \in B$.Now prove that N = Nb and N=bN.

Let $n \in N$. Therefore $n=n.1 = n.(b^{-1}.b) = (n.b^{-1}) b \in Nb$. Hence $N \subseteq Nb$. But $Nb \subseteq N$. Therefore N=Nb, Similary N = bN. Now $N=N^2 = (N)$ $(N) = (bN) (Nb) = bN^2b \subseteq bNb \subseteq B$; Since B is a generalised bi-ideal of N. Therefore N=B. Hence N is G.B-simple and for $0 \neq n \in N$, there exist an element $1 \in N$ such that $1.n = n \neq 0$

 $(ii) \Rightarrow (i)$

Since $N_d \neq \{0\}$ we get N is not constant. We know that N_o is a generalised bi-ideal of N and since N is G.B simple we get $N = N_o$. Let

 $0 \neq n \in N$ by Result 3.2.4 Nn is a generalised bi-ideal of N and $0 \neq n'.n \in Nn$ for some $n' \in N$ Hence Nn=N.

Therefore N is a near-field (From Result 0.2.8)

•

۱

 $\left[\right]$

REFERENCES:

[1] Barua M.N.

.

"Near-rings and near-ring modules: Some Special Types", Doctoral Dissertation, Gauhati University, 1984.

[2] Berman G. and Silverman R.J.

"Near-rings", American Mathematical Monthly, 66 (1959), 23-34.

[3] Chelvam Tamizh T. and Ganesan N.

"On bi-ideals of near-rings", Indian J. Pure apl. Math. 18 (1987), 1002-1005.

- [4] Clay, James R."The near-rings on groups of low order", Math Zeitschr, 104 (1968), 364-371.
- [5] Dutta T.K.

"On generalised semi-ideals of Rings", Bull. Cal. Math. Soc. 74 (1982), 135-141.

[6] Herstein I.N.

"Topics in Algebra", Vikas Publications, Delhi.

[7] Pilz Gunter.

"Near-rings", North-Holland, Amsterdan, 1983.

[8] Sen M.K."On pseudo ideals of semigroups", Bull. Cal. Math. Soc., 67 (1975), 109-114