


36

Chapter-2
THE DISCRETE FOURIER TRANSFORM

Introduction:

In this chapter we develop a special case of the 
continuous F.T. which is amenable to machine computation. The 
approach will be to develop the discrete F.T. from a graphical 
derivation based on continuous F.T. theory followed by 
theoretical development.
(2.1) A graphical development

For the given function f(t) and its F.T. F(w) the 
modified F.T. pair will be in such a manner that the pair 
is ameanable to digital computer computation is called the 
discrete F.T.

To determine the F.T. of f (t) by means of digital 
analysis techniques, it is necessary to sample f(t). If 
it is sampled at a frequency of at least twice the largest 
frequency component of f(t), there is no loss of 

information as a result of sampling. If F{w)*0 for some 

|w| > wit then sampling will produce overlapping. To avoid 
this error T should be small.

For machine computation it is necessary to truncate 
the sampled function f(t) so that only finite number of
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points, say N are considered. Also both the time and 

frequency domains are represented by discrete values. 

These N samples define the discrete F.T. pair and 

approximate the original F.T. pair. Hence, the discrete 

F.T. requires that both the original time and frequency 

functions be modified such that they become periodic 

functions and N time samples and N frequency values 

represent one period of the time and frequency domain- 

waveforms.

(2.2) Theoretical Development
The graphical development as explained above modify the 

continuous Fourier transform such that it is acceptable for 

machine computation. Now it is necessary to derive the

mathematical relationships giving the modifications.

Let us consider f{t) and F(w), the F.T. pair. First it is 

necessary to sample f(t).

Let

A0(t) = 2 S(t-kT) be the sampling function with 
k=*-°°

Sampling interval T. Therefore the sampled function can be 

written as

f (t)Ao(t) = f (t)£ S(t-kT)k=—oo
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- 2 f (kT)S(t-kT) ------- (2.2.1)
k=-“

If due to choice of T the aliasing occurs then we use the 

truncation function (rectangular function)

X(t) - 1 , -T/2 < t < To -T/2

* 0 otherwise -----— (2.2.2)

where T0 is the duration of the truncation function. 

Especially it is designed to avoid the time domain aliasing. 

Thus the truncation gives.
DO

[f (t)Ao(t)]x(t) - (2f(kT) S(t-kT) ] x (t)
k=*-80

N-l
- 2 f (kT)S(t-kT) ------- (2.2.3)

k-0

Where it has been assumed that there are N equidistant impulse 

functions lying within the truncation function i.e. N ■= T0/T (T0 

is the length of rectangular function). This truncation in time 

domain may results In rippling in the frequency domain. 

Therefore it is necessary to sample the F.T, of equation 

(2.2.3). In time domain it is equivalent to the convolution of 

equation (2.2.3) with sampling function Ai(t) where

Ai(t)- To 2 S(t-rTo) (2.2.4)
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Convolution gives,

[f(t).Ao(t).x(t)]• Ai(t) -

N-l
* [ 2f (kT)8(t-kT) ]* iToSS(t-rTo)]

N-l N-l
- . . . .+T0£f (kT)8(t+To-kT) +To£f (kT) 8 (t-kT) +

k=o k-o

+ . . . —-----(2.2.5)

® N-l
fA(t)- T02 2 f (kT)S(t-To-kT) ------- (2.2.6)

r—-«> k-o

Here fA(t) is the approximation of f(t) from equation (2.2.6) 

it is clear that if the end points of the truncation function 

coincides with the sample values, the convolution in (2.2.6) 
would result in time domain aliasing, that is, Nth point of one 

period would coincide with the first point of the next period. 

Hence the end points of the truncation function should lie at 

the mid-point of two adjacent sample values.

To develop the F.T. of equation (2.2.6) recall that the F.T. of 

periodic function is a equidistant impulses as
oo

FA (n/T0)= 2 An 8(w-nw0), W0=l/Te ------- (2.2.7)
n=-°°
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To-T/2
Where A„ - 1 JfA(t) e~in*t/To dt,

To ~T/2
n=*0,+l,±2,±3,... ---- —(2.2.8)

Using (2.2.6) In (2.2.8), we get

To-T/2 « H-l
An = 1 I To 2 2 f (kT)8(t-kT-rTo)e'in*t/To dt,

Tf, -T/2 r—" k-0
*■0

S-nce integration is over only one period,

TO-T/2 w-i
A„ - J 2 f (kT)6(t-kT)e_in*t/To dt-T/2 k-0

N-l To-T/2
* 2f(kT) J e"in*t/To 8(t-kT)dt

k-0 -T/2

N-l
- 2 f (kT)e-in“lcT/To

k‘° ------ (2.2.9)
But T0 = NT

N-l
An - 2 f(kT)e'in,w , n « 0,±1,±2,±3,. . . ----- (2.2.10)k-0

Therefore eq.(2.2.7) gives,
A - N-l
F(n/NT ) = 2 2 f (kT) e"iB*k/*n—— K-0

----- (2.2.11)
The waveform given by (2.2.11) is not necessarily periodic. But 
it gives N distinct complex values for n = r, any arbitrary 
integer.

A N-l
F (r/NT) = 2 f (kT) e"i1,kr/N

k=0 ---- (2.2.12)
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and if n=r+2N then 

e-i*k(r+21»)/N _ e-i*lcr/N e~i2xk

- -lxkr/N ©

F £ f (kT)e"i*,l<r+2m/N
k-0

N-l
= £ f (kTJe'1*1"^ ‘

k-0
FA{r/NT)

Therefore there are only N distinct values for which equation
A(2.2.12) can be evaluated and F (n/NT) is periodic with period 

of N samples.

Therefore F.T.

FA(n/NT)

of (2.2.6) equivalently expressed as

N-l
* £ f (kT)e'in*lc/M

k-0 (2.2.13)

n=0,l,2,...(N-l)

Normally it is written as

N-l
Gin/NT) - £ g (kT)e-1"1**711 -------(2.2.14)x-o

n- 0,1,2,3 ...(N-l)

Thus continuous F.T. is approximated by discrete F.T. taking 

only N samples.

13893
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Discrete Inverse Fourier Transform :
The discrete inverse F.T. is defined by

N-l
g(kT) - (1/N) E G(n/m )eirak/n

n-0

k-0,1,2, ...N-l ----- (2.2.15)
Equation (2.2.15) shows periodicity in the same manner as the
discrete transform. The period is defined by N samples of
g ;kT). Hence g(kT) is actually defined on the complete set of
integers k=0, ±1, ±2, ... It is also note that both time and
frequency domain functions require to be periodic.

Gtn/NT)** G f(rN+njj , r~0,±1,±2,......
L NT J

giKT)* g^rN+k) tJ , r=0,±l,±2,...

(2.3) Band-Limited. Periodic Waveforms
i) Truncation Interval Equal to Period :-

Consider any function f(t) and its F.T. In this class the 
waveforms in continuous and discrete F.T. are exactly the 
same within a period. For the equivalence the two 
waveforms requires
1) the time function f(t) must be periodic.
2) f(t) must be band-limited.
3) The sampling rate must be at least two times the 

largest frequency component of f(t).
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4) The truncation function x(t) must be non-zero over 

exactly one period (or integer multiple period) of 

f (t) .

In the sequence of sampling, truncating, convolution our 

point of discussion is truncation. The sampled waveform is 

truncated by multiplication with the rectangular function 

so that N sample values remaining after truncation equate 

to one period of the original waveform f(t). The F.T. of 

truncated function Significantly distorts with respect to 

the original transform F(w). However, when this function 

is sampled by the frequency sampling function the 

distortion is eliminated. This follows due to equidistant 

impulses of frequency sampling function.

II) Truncation interval not Kqoal to Period
If a periodic band-limited function is sampled and 

truncated to consist of other than an integer multiple of 

the period, the resulting discrete and continuous F.T. 

will differ considerably. Consider the following figure.
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Suppose that the function f(t) is sampled and truncated. 

Note that the sampled, truncated function is not an 

integer multiple of the period of f(t). After convolution 

this gives the periodic function but it is not the exact 

copy of original function f(t). Therefore it is necessary 

to examine the same result in frequency domain.

Fourier transform of the sampled truncated waveform 

of fig (2.3)(e) is obtained by convolving the frequency 

domain impulse functions of fig (2.3)(c) and fig (2.3)(d). 

Sampling of the resulting convolution at frequency 

intervals of 1/T0 yields the impulses a3 given in fig 

(2.3) (g). These sample values represent the F.T. of the 

periodic time waveform of fig (2.3) (g) There is an impulse 

at zero frequency. The average value is not expected to be 

zero because the truncated wave do not contain even number 

of cycles.

This discrepancy between the continuous and discrete 

F.T. is probably often encountered. Thus effect of 

truncation at other than a multiple of the period is to 

create a periodic function with sharp discontinuities. 

This results in additional frequency components in the 

frequency domain.
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Discrete Fourier Transform properties :
Since discrete Fourier transform is simply a special case 
of the Fourier transform, and has similar properties as 
follows.

1) Linearity
If F(n/NT)and G(n/NT) are the Discrete Fourier transform 
of f(kT) and g(kT) respectively, then Discrete Fourier 
Transform of [f(kT) + g(kT)} is [F(n/NT ) + G (n/NT)]

2) Symmetry :-If f(kT)and F(n/NT) are a discrete Fourier 
transform pair
Then f(-n)and(1/N)F(kT) are the Discrete Fourier transform 
pair

N-l
f (-n) - (1/N) Z F(KT)e"i2*nk/N

n-0

3) Time shifting If f(kT) is shifted by the integer 'r'
its Discrete Fourier transform is obtained by multiplying 
F(n/NT) by the factor e"12*nr/N i.e. F(n/NT)

4) Frequency shifting If F(n/NT) is shifted by the integer 
'r' then its inverse discrete Fourier transform is 
multiplied by ei2*rk/N

We have

n-l
F (n/NT) - Z f (KT)e'i2*kn/*

k-0
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F[(n-r)/NT] 2 f (kT)e"12*(n~r,l,/N
k-0

- 2jf (kT)ei2,,ric/N] e-i2*nk/K

Alternate Inversion Formula :

The discrete inversion formula may also written as -

N-l
f(kT) =12 [F* (n/NT) e"12*nlc/N] *

N «

Where * indicates complex conjugate

Consider F(n/NT)=R(n/NT)+il(n/NT)

N-l
f(kT)=(l/N) 2 [R(n/NT)-il(n/NT)]

n-0
-i2*nk/N

w

Also it can be shown that

N-l
f (kT) - (1/N)2 F(n/NT) e12snk/N

n-0

This formula can be used to compute both F.T. and its 

inverse F.T.

• Even Functions If f(kT) is an even function then

discrete Fourier transform of f(kT) is an even function 

and is real because.



48

F(n/NT) 2 f (kT)e'i2*kB/N
n-0

N-l N-l
- 2 f(kT)Cos(2nnk/N)-i 2 f(kT) Sin(2*nk/N)k=0 k»0
=■ N-l2 f(kT) Cos(2imk/N)

K-0

= R(n/NT)

Also, for the given real and even function F(n/NT), its 

inverse discrete Fourier transform f(kT) is an even function.

ODD FUNCTION

If f(kT) is odd function then its discrete Fourier 

transform is an odd and imaginary function given by

N-l
F(n/NT) = 2 f (kT) e'12*nk/N

n“0

N-l
= 2f(kT) [Cos (2rcnk/N) - i sin(2imk/N)

n-0

N-l
= -i 2f(kT) sin (2wnk/N)

l>”0

il(n/NT)

Similarly, if F(n/NT) is odd and imaginary function then

its inverse discrete transform is odd function.
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(2.4) Discrete Convolution and Correlation:-

These are the most important properties of discrete 
Fourier Transform. It is possible to obtain the relation 
between the continuous and discrete convolution.
Discrete Convolution:

If f(kT) and g(kT) are periodic functions with period N 
then Discrete convolution is defined by

N-l
Y(kT) - 2 f(iT)g[(k-i)T]i-0

It is denoted by y(kT) - f (kT) * g(kT)
Here g[(k-i)T] is the image of g(iT) shifted by the amount kT.

graphical Discrete Convolution:-
Graphical computation of discrete convolution is similar 

tc that of continuous convolution only differ from integration 
in continuous convolution is replaced by the summation. For 
discrete convolution the steps are

i) Folding ii) Shifting iii) Multiplication and 
iv) Summation

The functions f(kT) and g(kT) are periodic functions, that is, 
f(kT) - f[(k + rN)T]

g(kT) - f[(k + rN)T], r - 0, ±1, ±2, . . . 
hence the result of convolution are repeated after the period
N.
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Now we will explain in detail the convolution of finite 

duration and infinite duration waveform.

Discrete Convolution of Finite Duration Waveforms
Consider the functions f(t) and g(t) as illustrated below. 

To evaluate the discrete convolution, we sample f(t) and g(t) 

with sample interval T and we assume that both sample functions 

are periodic with period N.

fig(a)
y X (t) iy h(t) ik y(t)
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l«- kt kt

N
fig (b)

# 4

N kt

Figure (2.4)(b) shows that the discrete convolution y(kT) is 

very poor that is overlapping takes place due to lack of 

sufficiently large period.

If P * No. of samples of f(t).

Q a No. of samples of g(t) then the choice of 

N * P + Q - 1, results a function described by N => P+Q - 1,
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that is, there is no overlapping. Thus for this value of N the 
discrete convolution results in a periodic function where each 
period approximates the continuous convolution results.

From figure(2.4) (b) it is observed that there is 
difference in the scale T. Hence the modified result is

N-l

Y(kT) = T Z f (iT)g[ (k-i)T]i-0

which is identical with the continuous convolution. The 
error introduced by the constant T is made negligible by making 
T very small.

Discrete Convolution of an Infinite Waveform and Finite 
Waveform: -

Let f (t) be infinite waveform and g(t) be finite but both 
the function are periodic. Since f(kT) is infinite duration 
waveform the convolution result is a funciton of f(kT) at both 
ends of the period, such a condition has no meaningful 
interpretation in terms of the desired continuous convolution. 
Similar values are obtained for each shift value until the Q 
points of g{kT) are shifted by Q-l, that is, the end effect 
exists until shift k ■= Q-l. But the end effect does not occur 
at the right end of the N sample values. If the sample interval 
T is chosen sufficiently small, then the discrete convolution 
closely approximation the continuous convolution except the end
effect.
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(2.5) Applying The Diaaroto Fourier Transform
We can obtain the approximation to the F.T. by means of 

discrete Fourier transform. The first step in applying the 
discrete F.T. is to choose the number of samples N and the 
sample interval T. Then using the formula

N-l
F(n/NT) - T Zf(kT) e-i2**/ii , n - 0# 1, .... N-l

le-0

------ (2.5.1)

where T is introduced to produce equivalence between the 
continuous and discrete transforms, we can find the discrete 
transform of f(t).

• Inverse Fourier Transform : -
If a continuous real and imaginary frequency functions are 

given, by using the inverse discrete Fourier transforms,

N-l
f (kT) - Aw 2 [ R(nAw) + i I (nAw) ] e12*nk/N

n-0

for k - 0, 1, .. N-l ------ (2.5.2)

where Aw is the sample interval in frequency, the 
corresponding time function can be determined.

We know that in equation (2.5.2) R(w) is even function so 
it is possible to fold R(w) about the sample point n = N/2. 
Also sample R(w) upto only n = N/2 and fold it to get the 
required samples.
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Similarly, since I (w) in (2.5.2) is odd frequency 

function, it is require to fold it about n = N/2 and flip 

the result. In some of the cases it is require to set the 

sample value at some points to preserve the symmetry.

If sampled frequency function is specified correctly, the 

inverse discrete Fourier transform approximates the continuous 

results.

FREQUENCY CONVOLUTION THEOREM
If F(n/NT) & G(n/NT) are the discrete Fourier transform of 

flkT)& g(kT) then discrete Fourier transform of the product 

f(kT).gfkT) is the convolution of the F(n/NT ) and G(n/NT) 

By definition, convolution Y(n/NT) is given by

N-l
Y(n/NT) - 2 F(r/NT) G[(n/NT)-r]

r-o

N-l
= £< 

r*o

N-l N-l N-l
= 2 2 f (kT) g(kT)e-12*kn/N { 2 ei2*kt/N }

m-0 k-0 r-0
if m = k bracketed term becomes N

N-l
Y (n/NT) = N 2 f (kT) g (kT)ei2xkn^

k-0
N-l N-l
2 F(n/NT) G(n/NT - r) - N2 f(kT) g (kT) e"i2*kn/N
r-0 k-0
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Discrete Correlation Theorem

If F(n/NT) and G(n/NT) are the discrete Fourier transform 

of f(kT) and g(kT) respectively then discrete Fourier transform 

of the correlation

N-l2 f(rT) g (k + rT) is F* (n/NT) G(n/NT)r-0

where indicate the complex conjugate of F*(n/NT)

Parseval's Theorem: - The theorem states that

N-l N-l2 f2 (kT) - (1/N) 2 |F(n/NT)|2k-0 k-0

Consider y (kT) = f (kT) .f (kT) then by convolution theorem, the

discrete Fourier transform of y(kT) is convolution of the

discrete F.T. of f(kT), that is,

N-l N-l2 f2(kT)e_i2*nk/N = (1/N) 2 F(r/NT) F(n - r/NT)k-0 r-0

if n = 0, then we get,

N-l N-l2 f2 (kT) - (1/N) 2 |F (r/NT) |2k-0 r-0

This proves the parseval's theorem,


